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A Novel Harmonic Solution for Chatter Stability of Time
Periodic Systems

Fabrizio Defanta,1,∗, Paolo Albertellib

aR&D Department, Pama S.p.A, Viale del Lavoro 10, 38068 Rovereto (TN), Italy
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Abstract

Chatter vibrations strongly limit productivity in milling. Due to the presence

of rotating parts with asymmetric stiffness and stability enhancement strate-

gies which act through a periodic variation of stiffness, there is growing interest

in estimating the stability maps of systems with Linear Time Periodic dynam-

ics together with periodic cutting excitation. Applying Exponentially Periodic

Modulated test signals to the dynamic cutting force equation and represent-

ing the dynamics of the system through the Harmonic Transfer Function, the

innovative Harmonic Solution (HS) and its zero-order approximation were de-

rived in this research. HS is a frequency domain representation of a system

described by the combination of two independent periodicities. It is possible to

take into account these periodicities together in HS or singularly, resulting in

the Zero Order HS or in the well-known Multi-Frequency Solution. This novel

formulation can deal efficiently with spindle dependent and independent dynam-

ics and is prone to industrial applications due to its flexibility and efficiency.

More specifically, in this work the developed methodologies were used to assess

the cutting stability of systems with a periodically modulated stiffness. The

accuracy and efficiency of HS were validated by comparison with the results
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achieved by the use of the semi-discretization method. Results are in agreement

with those obtained using semi-discretization. Moreover, admitting a slight pre-

cision loss, HS and its zero-order approximation are orders of magnitude faster

than semi-discretization, giving reliable stability maps from seconds to a few

minutes.

Keywords: linear stability, chatter, time delay, linear time periodic systems,

stiffness variation

1. Introduction

Chatter is an ancient but still current problem facing machinists, which is

the first limitation for machining productivity and cost reduction. The most

common mechanism of chatter is the regeneration of chip thickness. Vibrations

between tool and workpiece leave a wavy surface after a tooth pass, which is cut

again by the subsequent tooth. Therefore, the chip thickness and the cutting

force vary causing system instability. By increasing the depth of cut, the modu-

lation leads to strong self-excited vibrations, which are detrimental to both the

quality of the processed workpiece and the health of the machine tool. The pre-

diction of stability maps given as function of the spindle speed (Ω) and depth of

cut (a) covers a crucial role while planning machining operations. Those maps

are known as stability lobes diagrams, which can be estimated through time

domain (i.e. Semi-discretization [1, 2], Full-discretization [3] and others [4, 5])

and frequency domain techniques (e.g. Zero Order Approximation Solution [6],

Multi Frequency Solution [7] and other extensions [8, 9]). Time domain tech-

niques are based on the Floquet theory, where the eigenvalues of the matrix

which links the state at time t0 and one period later t0 + T (i.e. monodromy

matrix) give the properties of stability. For time delayed systems the mon-

odromy is infinitely dimensional, therefore techniques aim to achieve reduction

to a finite problem, without losing stability information. Those methods can

take into account different types of delay and periodicity of the system, however

they are generally time consuming. On the other hand, frequency domain tech-
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niques consider the delay as a feedback control loop. Consequently, the stability

limit is studied by solving the characteristic equation of the closed loop system.

These strategies are generally efficient and find their practical application in

industry with good results. However, approximations of the dynamics and of

the time delay are taken into account. Considering the neglected aspects may

be intricate and usually leads to losing the generality of the approach.

The stability analysis of systems with linear time periodic (LTP) dynamics

has gained interest, and consequently the estimation of stability lobes diagrams

under this assumption. The main source of periodicity is given by the rota-

tion of the tool. The first consequence is that the cutting force rotates with it,

thus the directional cutting force coefficients vary periodically [10]. Moreover,

the presence of asymmetric stiffness of rotating parts [11] (i.e. two fluted end

mills) or of the workpiece [12] (i.e. thin wall) introduce LTP dynamics. These

problems were solved by means of changing the coordinates from stationary to

rotational in the frequency domain, which leads to a linear time invariant (LTI)

but speed dependent system. In the presence of combined stationary and ro-

tating asymmetric stiffness, an extension of the Multi Frequency Solution was

developed by Mohammadi and Ahmadi [9]. It takes into account systems with

LTP dynamics the period of which is a small multiple of the spindle rotation.

Moreover, a novel strategy to increase the stability limit, known as stiffness vari-

ation, works by periodically varying the stiffness of the system with a period

that is independent from the spindle rotation. The stability was first studied

by Segalman and Redmond [13] by means of numerical integration of the Delay

Differential Equation at particular points of the stability lobes diagram. Then,

studies was mainly focussed on the turning operation where the stability is stud-

ied based on harmonic balance [14], temporal finite element techniques [15], an

energy approach [16] and an averaging method [17]. However, the last works

deal with full-discretization approximating the delay term using Hermite [18]

and Lagrange [19] interpolation and semi-discretization in a milling application

[20, 21]. Semi-discretization gives accurate results, however it is time consuming

and the identification of the modal parameters is needed. The computational
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time depends on the Floquet (fundamental) period, which may be thousands

times the stiffness variation period under these assumptions. Therefore, the so-

lution time may be extremely long. Moreover, taking into account systems with

multiple critical modes will increase the complexity, and thus the computational

effort.

In this paper, the Harmonic Solution (HS) and Zero Order Harmonic Solu-

tion (ZOHS) are developed efficiently to take into account the LTP dynamic in

the frequency domain. The Harmonic Solution (HS) is obtained applying the

theory of LTP systems developed by Wereley [22]. Thus, Exponentially Periodic

Modulated (EMP) signals and harmonic balance are applied to the dynamic cut-

ting force in milling. In LTP dynamics, the Harmonic Transfer Function (HTF)

plays the role of Frequency Response Function (FRF). It is shown that HTF

also deals with LTI systems and the novel formulation gives a new perspective

to the existing LTI techniques. Indeed, the Multi Frequency Solution [7] can be

written in terms of the HTF. Furthermore, the zero order approximation of HS

(truncation considering zero harmonics) is Altintas’s Zero Order Approximation

solution [6]. The HS converges rapidly when the dynamics vary according to

the spindle speed rotation. However, when it is due to a constant frequency of

stiffness variation the number of harmonics which must be taken into account

in order to assure an accurate estimation of the stability lobes diagram grows,

which leads to long computational time. Thus the ZOHS was developed, which

only considers the constant value of the cutting force as in [6], but includes

the harmonics due to the variation of the dynamics (i.e. HTF). It was shown

that the ZOHS gives accurate results by order of magnitude faster than semi-

discretization. Overall, this can be a suitable tool for application in industry

and for conducting efficient optimization of stiffness variation parameters.

This paper is organized as follows: in Section 2 the dynamic milling equation

and the representation of LTP dynamics in frequency domain are introduced.

In Section 3 the HS was derived and it is shown how by managing the content of

the directional matrix and HTF it is possible to reproduce the Multi Frequency

Solution formulation [7] and the novel ZOHS. Finally, in Section 4 HS and ZOHS
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were validate through semi-discretization and the enhancement of the stability

limit due to stiffness variation is evaluated.

2. Materials and methods

2.1. Dynamic Equation of Milling with Stiffness Variation

A 2-dof model is taken into account, where the stiffness is modulated ac-

cording to a given function. For the sake of generality, the mass and damping

are also considered to be time periodic.

M(t)q̈(t) + C(t)q̇(t) + K(t)q(t) = F(t) (1)

The left hand side of Eq. (1) contains the Tsv−periodic mass M(t) = M(t+Tsv),

damping C(t) = C(t + Tsv) and stiffness K(t) = K(t + Tsv) matrices of the

system, while on the right hand side there is the cutting force F(t). Finally,

q(t) is the 2-dof position vector, which consider the two orthogonal direction

x and y in the cutting plane (Fig. 1). The cutting force depends on the chip

thickness [6], which is given by the difference between position of the current

cutter and the previous cutter in the same angular position ϕ (Fig. 1):

h(ϕj) = g(ϕj)
(
st sin(ϕj) + (vj,0 − vj)

)
(2)

where st is the feed per tooth, (vj,0, vj) are the dynamic displacement of the

cutter at the previous and present tooth periods respectively and g(ϕj) is a unit

step function which determines whether the cutter is in or out of the cut.

g(ϕj) =

1 if ϕst ≤ ϕj < ϕex

0 if ϕj < ϕst or ϕj < ϕex

(3)

The static part st sin(ϕj) is neglected because it does not affect the dynamic chip

load regeneration mechanism. Thus, by substituting the dynamic displacement

the chip thickness reads:

h(ϕj) = g(ϕj)
(

∆x sin(ϕj) + ∆y sin(ϕj)
)

(4)

5



<<
<
<
<
<
<
<
<

Ω

𝑋

𝑌

𝜑𝑗

tooth j

tooth j-1

tooth j+1
workpiece

tool

ℎ(𝜑𝑗 )

vibration mark
(j-1)

vibration mark
(j)

Fx

Fycx

kx

cy ky

𝜑𝑠𝑡

𝜑𝑒𝑥

Fig. 1. 2-dof milling model

where ∆x = x− x0 and ∆y = y − y0. Finally, the dynamic force is given by:

F(t) =
1

2
aKtAD(t)

(
q(t)− q(t− τ)

)
(5)

where Kt is the tangential cutting force coefficient and AD(t) is the τ−periodic

directional matrix, the components of which are the time-varying directional

dynamic milling force coefficients given in [6]. Finally, the equation of motion

reads:

M(t)q̈(t) + C(t)q̇(t) + K(t)q(t) =
1

2
aKtAD(t)

(
q(t)− q(t− τ)

)
(6)

As shown in Eq. (6), the equation of motion which governs the regenerative

cutting mechanism in milling is delayed and periodic. The periodicity is given

by the lowest common multiple of the tooth passing period τ and the period of

stiffness variation Tsv, while the force depends on the chip thickness, which is

given by the instantaneous and past position of the cutter (q(t) and q(t− τ)).

For the sake of simplicity, in the following section a simplified 2-dof stiffness

variation model was considered. Only the stiffness was varied about the natural
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frequency according to a given function fi(t) (sine, square, triangle, random,

. . . ) as in [20]. Rearranging and explicating the matrices’ components, the

equation of motion of the system reads:

q̈(t) +

2ζxωnx 0

0 2ζyωny

 q̇(t) +

ω2
nx(1 + fx(t)) 0

0 ω2
ny(1 + fy(t))

q(t) =

=
1

2
aKt

1/mx 0

0 1/my

αxx αxy

αyx αyy

(q(t)− q(t− τ)
)

(7)

2.2. Time Periodic Dynamics in the Frequency Domain

The input - output relation for LTP systems cannot be achieved considering

complex exponential test signals u(t) = est. Indeed, when applying 1+asv sinωpt

to a time periodic gain, the output is given by the sum of three complex expo-

nentials [22]:

y(t) = est +asv e(s+iωp)t +asv e(s−iωp)t (8)

The output is modulated by the harmonics of the system’s fundamental fre-

quency, known as the pumping frequency ωp. The transfer function in LTI

systems maps a sinusoidal frequency input ω signal, into a sinusoidal output

signal of the same frequency, but with a possible different amplitude and phase.

The same transfer function for LTP systems has been elusive, because it maps

a sinusoidal frequency input ω signal, into a multi-sinusoidal ω + inωp output,

where n = . . . ,−2,−1, 0, 1, 2, . . . . EMP signals u(t) = e(s+inωp)t (where s ∈ C)

in LTP systems play the role of a complex exponential in LTI systems, thus it

is possible to map the input-output relation as shown in [22] as shown briefly

below.

The state space representation of an LTP system relates to Eq. (9) and Eq. (10).

ẋ(t) = A(t)x(t) + B(t)u(t) (9)

y(t) = C(t)x(t) + D(t)u(t) (10)
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State, input and output are substituted by EMP signals and the matrices are

expanded using the Toeplitz transform. The Toeplitz transformation organized

the Fourier coefficients of matrices A(t) (computed as in Eq. (19)) into a matrix

with a block-Toeplitz form:

A =



. . .
...

...
...

...

. . . A0 A−1 A−2 . . .

. . . A1 A0 A−1 . . .

. . . A2 A1 A0 . . .

...
...

...
...

. . .


(11)

The definition is similar for matrices B(t), C(t) and D(t), the Toeplitz trans-

formations of which are B, C and D. Rearranging the equations as in [22] it is

possible to find the link between the Fourier coefficients of the input with those

of the output Y = H̃(s)U, which defines the analytical formulation of the HTF

(Eq. (12)):

Y =
{
C[sI− (A−N )]−1B +D

}
U (12)

whereN = blkdiag(inωpI), while Y and U are the vectors of Fourier coefficients

of output and input respectively, which have the form:

Y =
(
. . . Y−2 Y−1 Y0 Y1 Y2 . . .

)>
(13)

This formulation is useful to compute the HTF from the state space representa-

tion, however it does not give information about the content of HTF elements.

Indeed, by expanding the matrix and vectors of Eq. (12), it is possible to see

that the elements are independent from each other:

...

Y−1

Y0

Y1

...


=



. . .
...

...
...

...

. . . H−1,−1(s) H−1,0(s) H−1,1(s) . . .

. . . H0,−1(s) H0,0(s) H0,1(s) . . .

. . . H1,−1(s) H1,0(s) H1,1(s) . . .

...
...

...
...

. . .





...

U−1

U0

U1

...


(14)
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A more convenient way to write the input - output relation is based on the

impulse response representation [23]. The generic element Hn,m acts as a filter

and a frequency shift, thus it can be written as:

Yn =

+∞∑
n=−∞

Hn,m(s)Um

=

+∞∑
n=−∞

Hn−m(s− inωp)Um

(15)

This form of the HTF matrix is also known as the Frequency-Lifted Transfer

Operator, which reads:



...

Y−1

Y0

Y1

...


=



. . .
...

...
...

...

. . . H0(s− iωp) H−1(s) H−2(s+ iωp) . . .

. . . H1(s− iωp) H0(s) H−1(s+ iωp) . . .

. . . H2(s− iωp) H1(s) H0(s+ iωp) . . .

...
...

...
...

. . .





...

U−1

U0

U1

...


(16)

The H0 function, which is on the main diagonal of the HTF, links the harmonics

of the input with harmonics of the output at the same frequency. Therefore,

the dynamics of an LTI system can be represented in terms of a block-diagonal

HTF. Conversely, the out-of-diagonal terms link the harmonics of the input with

harmonics of the output at different frequencies, which is the characteristic of

LTP systems (frequency shift).

For the sake of information, the use of HTF plays a crucial role in applying

the method in industries. It can be experimentally identified [24, 25] and the

results can be introduced in the algorithm to study the stability without fur-

ther manipulation, while with time domain techniques the modal parameters

are needed. Moreover, the presence of multiple modes does not affect the com-

putational effort. However, those aspects were not dealt with in depth in this

paper.
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3. Stability Analysis

3.1. Harmonic Solution

The HS is derived starting from the dynamic cutting force of Eq. (5). The

EMP signals for the force, the state and the Fourier transformation of the direc-

tional matrix at pumping frequency ωp, which is the greatest common divisor

between the tooth pass frequency τ and the frequency of stiffness variation ωsv,

are considered in the following equations:

F(t) =

+∞∑
n=−∞

Pn esnt (17)

q(t)− q(t− τ) =

+∞∑
m=−∞

Qm esmt
(

1− e−smτ
)

(18)

AD(t) =

+∞∑
n=−∞

Λn einωpt (19)

where sn = s+ inωp and s ∈ C and similarly for sm.

Substituting Eq. (17), Eq. (18) and Eq. (19) in Eq. (5) and rearranging, the

equation reads:

+∞∑
n=−∞

Pn esnt =
1

2
aKt

+∞∑
n=−∞

Λn einωpt
+∞∑

m=−∞
Qm esmt

(
1− e−smτ

)
+∞∑

n=−∞
Pn esnt =

1

2
aKt

+∞∑
n=−∞

+∞∑
m=−∞

Λn Qm

(
1− e−smτ

)
esm+nt

+∞∑
n=−∞

Pn esnt =
1

2
aKt

+∞∑
n=−∞

+∞∑
m=−∞

Λn−m Qm

(
1− e−smτ

)
esnt (20)

The input - output relation can be written in terms of the HTF (Eq. (15)):

Qm =

+∞∑
n=−∞

Hl−m(s− i lωp)Pl (21)

Then, substituting Eq. (21) in Eq. (20):
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+∞∑
n=−∞

Pn esnt =
1

2
aKt

+∞∑
n=−∞

+∞∑
m=−∞

+∞∑
l=−∞

Λn−mHl−m(s−i lωp)Pl

(
1−e−smτ

)
esnt

(22)

Finally, harmonic balance leads to a set in terms of the following equation:

Pn =
1

2
aKt

+∞∑
m=−∞

+∞∑
l=−∞

Λn−mHl−m(s− i lωp)Pl

(
1− e−smτ

)
(23)

Managing summations may be cumbersome, therefore the equations are rear-

ranged in Toeplitz notation:

P =
1

2
aKt

(
AD −ADE

)
H̃P (24)

where E = I e−smτ = I e− i(ωc+mωp)τ at the limit of stability and AD is the

Toeplitz transformation of the directional matrix AD(t).

Expanding the matrices, HS reads:



...

P−1

P0

P1

...


=

1

2
aKt





. . .
...

...
...

...

. . . I 0 0 . . .

. . . 0 I 0 . . .

. . . 0 0 I . . .

...
...

...
...

. . .


−



. . .
...

...
...

...

. . . I e− i(ωc−ωp)τ 0 0 . . .

. . . 0 I e− iωcτ 0 . . .

. . . 0 0 I e− i(ωc+ωp)τ . . .

...
...

...
...

. . .






. . .
...

...
...

...

. . . Λ0 Λ−1 Λ−2 . . .

. . . Λ1 Λ0 Λ−1 . . .

. . . Λ2 Λ1 Λ0 . . .

...
...

...
...

. . .





. . .
...

...
...

...

. . . H0(iωc − iωp) H−1(iωc) H−2(iωc + iωp) . . .

. . . H1(iωc − iωp) H0(iωc) H−1(iωc + iωp) . . .

. . . H2(iωc − iωp) H1(iωc) H0(iωc + iωp) . . .

...
...

...
...

. . .





...

P−1

P0

P1

...


(25)

3.2. Zero Order Harmonic Solution

The matrices of Eq. (25) have infinite dimension, consequently a truncation

of the harmonics is needed to compute the stability map. In practice, according
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to Bachrathy [8], a good guess for the number of considered harmonics for LTI

systems is RLTI = 2ωn,max/Ω. In the LTP system the pumping frequency ωp

plays the role of the spindle speed Ω. Thus, the truncation number can be

expressed as:

RLTP =
2ωn,max

Ω

Tp
τ

(26)

where Tp is the pumping period, τ is the time delay or cutting pass period and
Tp
τ

is the Pumping Period to Delay Ratio (PPTDR).

Irrational ratios between stiffness variation period and time delay make the

pumping frequency tend towards zero. Therefore, the dimension of the prob-

lem increase leading to unfeasible computational time. This means that the

behaviour of the LTP system plays a crucial role in the selection of the proper

method to determine the stability. The two behaviours considered are:

1. Constant frequency of stiffness variation, when the stiffness variation fre-

quency is independent from the spindle speed (which is the case modelled

by Wang et al. [20]).

2. Constant PPTDR, when the stiffness modulation is due to the spindle

rotation [9] (i.e. PPTDR is constant and usually small).

It is possible to efficiently consider HS with a constant PPTDR of up to 3 - 4

(i.e. the number of harmonics needed is 3 - 4 times the LTI case). However,

this is still not efficient enough for applications where the stiffness variation

frequency is constant. According to Altintas [6], in practical applications the

constant value of the directional matrix AD(t) = AD,0 is enough to obtain a

good approximation of stability lobes diagrams, especially when the radial depth

of cut is high. Thus, it is possible to take into account only the average value of

the directional matrix and the truncated HTF. As a consequence the dimension

of the problem is reduced, because under this assumption the periodicity is only

due to the HTF and only its harmonics are taken into account (i.e. ωp = ωsv).

Practically, in Eq. (23)m = n is considered, thus only the constant terms Λ0 are

12



taken. Rearranging the equation, the Zero Order Harmonic Solution (ZOHS) is

given by the following equations.

Pn =
1

2
aKt

+∞∑
l=−∞

Λ0Hl−n(s− i lωp)Pl

(
1− e−snτ

)
(27)

P =
1

2
aKt

(
AD,0 −AD,0E

)
H̃P (28)



...

P−1

P0

P1

...


=

1

2
aKt





. . .
...

...
...

...

. . . I 0 0 . . .

. . . 0 I 0 . . .

. . . 0 0 I . . .

...
...

...
...

. . .


−



. . .
...

...
...

...

. . . I e− i(ωc−ωsv)τ 0 0 . . .

. . . 0 I e− iωcτ 0 . . .

. . . 0 0 I e− i(ωc+ωsv)τ . . .

...
...

...
...

. . .






. . .
...

...
...

...

. . . Λ0 0 0 . . .

. . . 0 Λ0 0 . . .

. . . 0 0 Λ0 . . .

...
...

...
...

. . .





. . .
...

...
...

...

. . . H0(iωc − iωsv) H−1(iωc) H−2(iωc + iωsv) . . .

. . . H1(iωc − iωsv) H0(iωc) H−1(iωc + iωsv) . . .

. . . H2(iωc − iωsv) H1(iωc) H0(iωc + iωsv) . . .

...
...

...
...

. . .





...

P−1

P0

P1

...


(29)

3.3. Application to Linear Time Invariant Dynamics

The HS deals directly with systems characterized by LTI dynamics. Under

this condition the formulation shows the following properties:

• The FRF evaluated at different harmonics is generalized considering only

the diagonal of the HTF.

• The exponential I e− i(ωc+mωp)τ = I e− iωcτ because the pumping frequency

is the cutting pass frequency, which is simplified by the delay τ .

This formulation leads to the Multi Frequency Solution [7] in Eq. (30).

13





...

P−1

P0

P1

...


=

1

2
aKt

(
I − I e− iωcτ

)


. . .
...

...
...

...

. . . Λ0 Λ−1 Λ−2 . . .

. . . Λ1 Λ0 Λ−1 . . .

. . . Λ2 Λ1 Λ0 . . .

...
...

...
...

. . .




. . .
...

...
...

...

. . . H0(iωc − iωt) 0 0 . . .

. . . 0 H0(iωc) 0 . . .

. . . 0 0 H0(iωc + iωt) . . .

...
...

...
...

. . .





...

P−1

P0

P1

...


(30)

Furthermore, considering zero harmonics, Eq. (25) reduces to Altinta’s Zero

Order Approximation solution [6]:

P0 =
1

2
aKt

(
1− e− iωcτ

)
Λ0H0(iωc)P0 (31)

3.4. Roots computation

The stability is determined through the roots of the characteristic equation.

Its formulation depends on the properties of the dynamical system and the de-

sired approximation of the directional matrix. The flowchart in Fig. 2 helps in

the selection of the proper formulation. Once the characteristic equation is de-

fined a root finding problem has to be solved in order to draw the stability lobes

diagram. When dealing with LTP systems the roots are given by the nontrivial

solutions of Eq. (24) and Eq. (28) for the HS and the ZOHS respectively. The

determinant of the characteristic equation is written in terms of the HS for the

sake of generality:

det

(
I− 1

2
aKt

(
AD −ADE

)
H̃

)
= D(a,Ω, ωc) = 0 (32)

The roots finding problem of Eq. (32) is a system of 2 equations (i.e. real and

imaginary part) and 3 variables (i.e. depth of cut a, spindle speed Ω and chatter
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Fig. 2. Selection of the proper characteristic equation formulation and computation of the

Stability Lobes Diagram

frequency ωc). This has been solved through an efficient strategy known as

the Multi-Dimensional Bisection Method [26]. It needs an initial mesh, which

is related to the desired spindle speed range and the expected depth of cut.

Moreover, the chatter frequency range must be defined, which is the most critical

part. Practically, good results were obtained considering chatter frequencies

at around the critical mode, with amplitude equal to the pumping frequency

[ωn− ωp

2 , ωn+
ωp

2 ]. In the end, the lower envelope covering all the roots in terms

of depth of cut in 3-dimensional space is taken to be the stability limit. The

presence of closed areas in stable or unstable regions represents and island of

instability or stability respectively.
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4. Results and Discussion

In this section the HS and ZOHS were applied to the model of Eq. (7) to

determine the stability lobes diagram. HS and ZOHS deal with the constant

PPTDR and constant frequency stiffness variation respectively. Both cases were

treated by first considering a convergence analysis to evaluate the proper num-

ber of harmonics to take into account and determine the computational effort

(Table 1). Then, the methods were validated by comparing the results obtained

through semi-discretization (Table 2). Finally, the stability enhancement com-

pared to the equivalent LTI system was evaluated over a wide spindle speed

range (Table 3).

The milling of an aluminium alloy was taken into account, the parameters of

which were defined in accordance with [20] as follows: the number of teeth is

N = 2, cutting force coefficients are Kt = 600 MPa and Kn = 200 MPa, the

radial depth of cut is aD = 0.1 and down-milling is adopted. The modal masses

are mx = my = 0.03993 kg, the natural frequencies are ωn,x = ωn,y = 922 Hz

and the damping ratios are ζx = ζy = 0.011.

4.1. Constant frequency stiffness variation - ZOHS

Constant frequency stiffness variation is important due to the work of Wang

et al. [20], where a wide range of stiffness variation parameters (i.e. frequency,

amplitude, function of stiffness variation) were considered with the purpose of

optimization within a narrow spindle speed range. ZOHS validation takes into

account a constant stiffness variation frequency ωsv = 50 Hz and relative ampli-

tudes asv,x = asv,y = 0.1. The modulation functions considered are sinusoidal

(Eq. (33)) and piece-wise constant (Eq. (34)).

f(t) = asv sin(ωsvt) (33)

f(t) = asv sgn
(
sin(ωsvt)

)
(34)

The convergence analysis is shown in Fig. 3 considering a sinusoidal stiffness

variation function. When R = 0 is taken, which is equivalent to the Zero Order
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Fig. 3. Convergence analysis of ZOHS with constant frequency stiffness variation (Eq. (28))

Approximation solution [6], the solution does not give information about LTP

behaviour. Thus, the number of harmonics considered was increased and the

computational time increases as shown in Table 1. Considering R = 1 the ab-

solute limit of stability is closer to the actual value and the solution converges

with 5 harmonics (green line).

The validation of ZOHS is given in Fig. 4 and Fig. 5, which show the stability

lobes diagrams for a sinusoidal and a piece-wise constant function of stiffness

variation respectively. The blue line was computed using ZOHS, while the red

line is the reference case computed using semi-discretization. The discretization

factor taken into account in semi-discretization is k = 90, while ZOHS approx-

imates the solution with R = 10 harmonics. ZOHS neglects the harmonics of

the cut passing frequency, indeed the flip bifurcations at about 5200 rpm are

missing in both cases, together with the island of instability at about 4800 rpm

in the piece-wise constant modulation case (Fig. 5). In any case, the results are

in good agreement in terms of the lobes’ shape and position and the absolute

limit of stability. Moreover, ZOHS is more efficient, indeed semi-discretization

takes about 38 hours, while ZOHS gives excellent results in 55 s, as shown in

Table 2. The greater computational efficiency is due to the harmonics trunca-

tion, because only those that affect the stability can be taken into account. As a
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Fig. 4. Validation of ZOHS with sinusoidal function and constant frequency stiffness variation

consequence, ZOHS can cover an important role in industrial applications and

for further evaluation and optimization of stiffness variation parameters (i.e.

frequency, amplitude, function of stiffness variation).

The efficiency of ZOHS makes it possible to consider a wider spindle speed

range with a negligible increase of the computational time. Therefore, the anal-

ysis is extended to evaluate the constant frequency stiffness variation at lower

spindle speeds. The black line in Fig. 6 shows the stability lobes diagram of

the equivalent LTI system computed using the Multi Frequency Solution, while

the blue and red path represent the stability lobes diagrams considering sinu-

soidal and piece-wise constant function of stiffness variation respectively. The

technique shows the maximum increase of stable depth of cut in terms of the

absolute limit of stability at low cutting speeds, the results of which are sum-

marized in Table 3. The major effect is given while modulating through the

piece-wise constant function. The stable depth of cut almost tripled in the

piece-wise constant function case, however it needs an instantaneous variation

of the dynamic properties which is unrealistic. Therefore, the result produced

by considering the sinusoidal stiffness variation is closer to what can be achieved
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Fig. 5. Validation of ZOHS with piece-wise constant function and constant frequency stiffness

variation

in practice. Overall, constant frequency stiffness variation has the greatest po-

tential at medium - low cutting speed, consequently it can find its application

in milling of materials characterized by a low cutting speed (e.g. steel and

titanium).

4.2. Constant PPTDR - HS

Constant PPTDR is characteristic of those applications where stiffness vari-

ation is due to the spindle rotation and is usually characterized by a small

and integer PPTDR. This application fits with the characteristic of HS, con-

sequently a precise evaluation of the stability lobes diagrams is possible. The

evaluation of its efficiency and accuracy considers a constant PPTDR Tp

τ = 2

and a sinusoidal function of stiffness variation (Eq. (33)) with relative amplitude

asv,x = asv,y = 0.1.

The convergence of this method with the number of harmonics is studied and

results are shown in Fig. 7. Considering R = 0 the method converges quickly to

the Zero Order Approximation solution [6] for the equivalent LTI system. The
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Fig. 6. Stability enhancement of constant frequency stiffness variation

Table 1: Computational time considering an increasing number of harmonics

ZOHS HS

R t [s]

0 3 3

1 14 7.5

5 55 12

10 120 42

20 565 277

25 847

30 1785

40 4785

50 9495
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Table 2: HS and ZOHS validation using semi-discretization

Case f(t) Method R t Approximation

Constant

ωsv

asv sin(ωsvt) and

asv sgn
(
sin(ωsvt)

)
SD - 38 h Reference

ZOHS
10 2 min Optimal

5 55 s Excellent

Constant

PPTDR
asv sin(PPTDRωTt)

SD - 112 min Reference

HS

50 160 min Optimal

40 80 min Excellent

10 42 s Good

Table 3: Stiffness variation effect on milling stability

Case f(t) Method ∆alim [%] Ω [rpm]

Constant

ωsv

asv sin(ωsvt)
ZOHS

+110 2500

asv sgn
(
sin(ωsvt)

)
+170 2500

Constant

PPTDR
asv sin(PPTDRωTt) HS +139 3500
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Fig. 7. Convergence analysis of HS with constant PPTDR stiffness variation (Eq. (24))

more harmonics considered, the more the computational time required as shown

in Table 1. With R = 1 the absolute limit of stability is close to the real value

but still far from the convergence. By increasing to R = 5 the lobes follow the

final shape better, however the convergence is achieved between R = 40 and

R = 50.

The solution is equivalent to that obtained using semi-discretization. Fig. 9

shows that the two stability lobes diagrams are in perfect agreement over the

whole range of speeds. Considering a spindle speed range of between 4000 and

6000 rpm (Fig. 9) it is possible to see that HS is able to detect the instability

island at about 4600 rpm. The computational time at convergence is close

to that of semi-discretization evaluated with a discretization factor k = 100

(Table 2). However, good results were obtained considering 10 harmonics and

the solution time is an order of magnitude faster than with semi-discretization.

In Fig. 10 and Table 3 the comparison between constant PPTDR stiffness

variation and the equivalent LTI system is shown. The stability limit is more

than doubled at low and medium spindle speeds. Therefore, an accurate design

of asymmetric rotating parts leads to an increase of the productivity of the

machine in the range of low and medium cutting speeds.

Overall, the efficiency of HS is almost equivalent to semi-discretization at

convergence. However, in the frequency domain it is possible to neglect higher
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Fig. 8. Validation of HS: detection of island of instability

order harmonics, thereby abruptly reducing the computational time. With ref-

erence to the blue line in Fig. 7 computed with R = 10 harmonics, this shows a

small loss of accuracy in the shape of the lobes and the identification of the island

of instability is missing. Nevertheless, for practical applications it is a widely

acceptable approximation. Under these conditions the solution took only 42 s

to be evaluated compared to 112 min using semi-discretization. Consequently,

HS can be a relevant tool for industrial applications and for conducting rapid

analysis and optimization of LTP dynamics.

5. Conclusions

LTP system dynamics in milling applications are playing an important role

in practical applications. The LTP dynamic can be due to the presence of asym-

metric stiffness in rotating or stationary parts of the machine tool and workpiece.

Moreover, the periodic modulation of the stiffness leads to the enhancement of

the absolute stability limit at low and medium cutting speeds. This is a novel

passive strategy to increase productivity in metal cutting, which is known as
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over a wide spindle speed range
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stiffness variation and is gaining interest thanks to its potential. The traditional

formulation of milling dynamics in the frequency domain can only deal with LTI

systems, while time domain techniques are more general but time consuming

and need a modal representation of the system. Thus, it is difficult to deal with

in industries and they have found their application in research. In this paper

the HS and the ZOHS are presented, which are two novel formulations in the

frequency domain based on the LTP system theory. On one hand, HS is the

most general solution which covers the contribution made by the LTP dynamics

and the cutting process dynamics. Indeed, by managing the two matrices that

make these contributions, it is possible to obtain the simplified ZOHS or the well

known Multi Frequency Solution. The first considers the harmonics of the LTP

dynamics and the constant contribution of the cutting dynamics, vice-versa the

second considers the harmonics of the cutting dynamics and the LTI dynamics

of the system. HS is able to give a precise prediction and is efficient in the

presence of a small, integer and constant PPTDR. On the other hand, ZOHS

considers only the average value of the cutting dynamics, giving rapid solutions

in presence of a dynamic behaviour independent from the spindle rotation (i.e.

constant frequency of stiffness variation). Stability lobes diagrams are given

within 10 min on a commercial laptop, which is an order of magnitude faster

than what it is possible to achieve using semi-discretization. HSs are based on

the HTF, which can be experimentally identified and the results can be directly

introduced in the algorithm. Moreover, the computational effort does not de-

pend on the complexity of the dynamical system, which means that it is possible

to deal efficiently with systems characterized by multiple critical modes. These

characteristics fulfills the need of industrial applications and make the process

of stiffness variation parameters optimization easier and faster.
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