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THREE SATELLITES FORMATION FLYING: DEPLOYMENT AND
FORMATION ACQUISITION USING RELATIVE ORBITAL

ELEMENTS.

Francesca Scala*, Gabriella Gaias†, Camilla Colombo‡, and Manuel
Martin-Neira§

This paper presents the analysis for the deployment and the acquisition proce-
dures for a three-satellites formation flying, on a sun-synchronous orbit, as part of
a study for a European Space Agency potential high resolution L-band radiometer
mission for land and ocean applications. The methodologies for formation-flight
establishment and reconfiguration maneuvers are presented, to enable the oper-
ational phase which foresees a continuous low-thrust control profile to keep the
formation rigid and safe. The design is performed using relative orbital elements,
including maximum delta-v limitation, safety condition requirements, and pertur-
bation effects. The results, verified through high-fidelity propagation, apply to a
wide range of Earth observation missions exploiting distributed systems.

INTRODUCTION

In the last decade, multi-satellite formation flying missions have increased their importance in
the field of Earth observation and remote sensing. Distributed missions, where different satellites
work as distributed nodes of a network of sensors, can enhance the capabilities of a single space-
craft, both for scientific performances and single-point failure risk.1, 2 Since 2009, the Soil Moisture
and Ocean Salinity (SMOS) satellite has shown how high-resolution scientific observations could
improve the performances of a wide range of land and ocean applications, such as meteorological
and climate predictions.3, 4 Exploiting multi-satellite formation flying is seen as a potential oppor-
tunity to increase the virtual aperture size of the scientific payloads, and, as a result, their spatial
resolution.5, 6 This paper presents the analysis for the deployment and the formation acquisition
procedures for a three-satellites formation flying, on a perturbed quasi-circular Sun-Synchronous
orbit at 770 km of altitude. Specifically, this study is part of a new mission concept proposed by
the European Space Agency (ESA) devoted to the investigation of the feasibility of future multi-
satellite formation-flying for L-band interferometry applications. Given the current capabilities of
distributed systems, the possibility to deploy a formation of three identical satellites is envisioned,
mounting an L-band interferometric radiometer for scientific purposes. A preliminary study on the
scientific payload demonstrated the feasibility to achieve a spatial resolution of 1-10 km for land
and oceans application, instead of the 40 km resolution of the SMOS single-satellite mission.3, 6, 7
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The design of the initial phase of the mission is important for formation flying missions. Ensuring
collision avoidance during the formation deployment is very challenging and requires the selection
of proper initial safe separation conditions.8 For the case in analysis, the formation will be placed
with a single launch on a Sun-Synchronous Orbit (SSO). The deployment mechanism will impart a
separation velocity to each of the three satellites. The analysis is performed in the framework of the
Relative Orbital Elements (ROEs),9, 10 as well as considering the shape of the relative trajectories in
the co-moving radial-transversal-normal (RTN) orbital frame.11, 12 During the commissioning phase
of each satellite, the most relevant perturbations in the low Earth orbit environment are included.
For design purposes, a clear insight can be gained using the analytical first-order state transition
matrix and second-order state transition tensor of the relative dynamics, subject to the perturbation
from the whole geopotential.10 The major contribution – produced by the Earth’s oblateness J2 -
causes a secular drift in some ROEs, and this behavior must be carefully considered to ensure that
the relative motion remains in the required boundary, with no collision risk probability.

This paper presents the maneuvers strategy for an optimal formation reconfiguration before the
nominal scientific operations begin. In literature, the problems of formation reconfiguration have
been widely studied. Several solutions have been proposed for either impulsive or continuous con-
trol. The former is typically preferred with stringent payload constraint, which might require a
reduction of the disturbances due to a continuous thrust profile.13–15 Conversely, the latter thrust
profile can generate continuously a very precise output for the formation maintenance and correc-
tion of relative navigation errors.16–18

For the mission presented, the L-band scientific payloads require a fixed relative attitude profile
for proper functioning. A continuous control profile is required during the nominal scientific phase
to keep a rigid formation and a safe flight condition. Accordingly, the propulsion system embarked
on the spacecraft has been sized to enable such specific baseline formation. Consequently, the au-
thors investigate continuous thrust reconfiguration strategies for establishing the nominal formation
geometry. The relative motion of the satellites is described in both the ROEs framework and in the
RTN orbital frame. The system dynamics include the effect of the J2 perturbation, which is the most
relevant perturbing term to the unperturbed motion for the case under study. Moreover, the contin-
uous thrust profile is included as an acceleration contribution to the natural motion. The aim of the
reconfiguration maneuver is the design of the optimal trajectory for the formation, which minimizes
the propellant consumption and implements the collision-avoidance conditions. The optimization
procedure can be addressed with different strategies. This paper presents an optimization technique
that relies on convex optimization.19 Such procedure allows the computation of the optimal condi-
tion with low computational cost, by solving a convex minimization problem. For this reason, the
strategy could also be considered to be implemented on-board for real-time computation of generic
reconfiguration maneuvers for the formation, during the operational life of the mission.17

The proposed analysis provides a baseline procedure to safely initialize the formation and to de-
fine the requirements for the deployment system of the launcher. The methodology applies to other
multi-satellite missions in similar orbital scenarios, also considering the recent trend of employing
low-thrust engines on-board scientific satellites. The results of this analysis are verified through
high-fidelity simulations to assess the realistic performances of the proposed guidance and control
strategies.
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MISSION OVERVIEW

The mission presented is a Formation Flying (FF) study currently in development by the European
Space Agency, Airbus, and Politecnico di Milano, intending to increase the imaging resolution by
exploiting the virtual aperture given by the formation itself. Each satellite will be equipped with
an L-band interferometer and will behave as a node of a network to gain high-resolution images
(up to 1-10 km) for land and oceans application. The SSO reference orbit has an altitude of 770
km, with a Local Time of the Ascending Node (LTAN) at 6 a.m.. The resulting nominal orbital
parameters of the mission are reported in Table 1. A tight formation flying is designed around the
virtual reference point on the orbit. The virtual plane of the formation is orthogonal to the orbital
plane so that the semi-major axis of the three satellites is very similar. The position of the array can
be described in the (x, y, z) state in the orbital co-moving frame. The x-axis is in the direction of the
reference orbit radius, the y-axis represents the curvilinear distance along the osculating orbit, and
the z-axis is perpendicular to the reference orbit. The formation is planar, belonging to the (y, z)
plane, and distributed at the vertexes of a triangle, with the barycenter at the origin. It is assumed a
virtual equilateral triangle with a side nominally equal to 13 m. The formation geometry is depicted
in Figure 1. It can be observed that the satellites are close to each other, and they are not on a
natural relative trajectory. The mission will require continuous control of the relative position to
counteract any possible collision risk. Specifically, the propulsive system is selected to be a low
thrust engine, with a maximum thrust available of 25 mN. The nominal condition of the formation
is reported in Table 1. Its orientation in the TN plane is selected to have the same magnitude of
natural oscillation in the normal direction for all the satellites. This results also in a balancing of the
propellant consumption during the scientific mission operations.

SSO Orbit

a (km) e (-) i (deg) Ω (deg) ω (deg)

7146 0 98.50 271 0

FF nominal condition

xR (m) xT (m) xN (m)

Sat 1 0 0 -5.63
Sat 2 0 6.5 5.63
Sat 3 0 -6.5 5.63

Table 1: Keplerian elements of the reference SSO orbit and relative position of the formation flying
satellites in the RTN frame.

This paper focuses on the formation acquisition procedures after the orbit injection by the launcher.
A fast reconfiguration was simulated as a preliminary analysis, to understand the limitation due to
the propulsive system on-board. In the real scenario, a more relaxed constraint on the reconfigura-
tion period will be simulated, to reduce even more the propellant consumption. The analysis was
performed including both the mean J2 and the control effect in the equation of motions. Then,
the reconfiguration maneuver is modeled as a linear convex optimization subject to the dynamical
constraints, with fixed initial and final conditions. The problem is manipulated to obtain a con-
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Figure 1: Geometry of the formation in the RTN reference frame.

vex description of the control problem. This approach is a quite common direct method to quickly
solve an optimal control problem, by discretizing the system to obtain a finite-dimensional param-
eter optimization problem.17, 20 This approach is selected to include easily the fixed initial and final
conditions for the reconfiguration in a fixed time interval, resulting in a simpler representation with
respect to the classic linear programming approach.

EQUATIONS OF MOTION

In literature, the limitation of the Clohessy-Wiltshire (C-W) equations has been widely discussed.
Particularly, they introduce significant errors in the long-term prediction of the motion, especially
for large inter-satellite separations. To account for these limitations, several models have been
developed, which also allow the introduction of the effect of the earth’s oblateness perturbation
(J2).11, 21, 22 For this work, only the primary gravitational perturbation is considered, with no incor-
poration of drag or other perturbing effects. For the orbital condition defined in Table 1, the effects
of drag and secondary perturbation can be reasonably neglected for the preliminary analysis. In this
paper, the relative motion of the three satellites in the formation is described with respect to the ref-
erence point, nominally the geometric baricenter of the formation. This virtual point is described by
the Keplerian orbital elements (a, e, i, Ω, ω, M), with M the mean anomaly. The three satellites
in the formation, identified as the Deputies, are expressed in ROEs and in the Hill Orbital Frame,
which are also functions of the integration constants of the C-W equations in the Hill orbital frame.9

The ROEs for each deputy are described as a set of dimensionless variables:

δα =



δa
δλ
δex
δey
δix
δiy

 =



(ad − a)/a
ud − u+ (Ωd − Ω) cos(i)
edcos(ωd)− ecos(ω)
edsin(ωd)− esin(ω)

id − i
(Ωd − Ω)sin(i)

 (1)

where a, e, i, Ω, ω are the classical Keplerian elements, and u = M + ω is the mean argument
of latitude, depending on the mean anomaly and on the argument of perigee. The ROEs are com-
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Figure 2: Hill Orbital system (x, y, z) with respect to the Earth-Centred Inertial system (i, j, k).

posed by the relative semi-major axis, the relative mean longitude and the relative eccentricity and
inclination vectors respectively. In this representation, the chief satellite defines the origin of the
Hill orbital frame, the local RTN frame. This is considered a curvilinear coordinate system defined
by the unit vectors [ex, ey, ez]. In this system the state of the three satellites is described by a vec-
tor X = (x, y, z, ẋ, ẏ, ż)T , in the radial, transversal and normal direction respectively, as depicted
in Figure 2. The relative motion under the effect of the mean J2 is propagated through the ROE-
based state transition matrix (STM).10 Afterward, the relationship between the state X at the initial
and current time is obtained using the linearized mean-to-osculating relationship and the first-order
mapping into the Curvilinear reference frame provided by the geometric method of Gim and Al-
friend.21 Although these are known to introduce linearization errors,10, 23 for this preliminary study
it is accepted. Note that this approximation affects the error in the initial conditions of the con-
sidered reconfiguration, that is when the satellites are far enough from each other. The geometric
transformation between the RTN representation, X to the ROEs formulation δα is defined as:

X(t) = {A(t) + κB(t)}δα(t), (2)

where the coefficient κ represents the contribution of the Earth Oblateness: κ = 3J2R
2
e , with

Re the radius of the Earth. Knowing the state transition matrix for the relative mean elements,
δα(t) = φαδα(t0), it is possible to recover the relation for the relative dynamics in RTN frame:

X(t) = φJ2(t, t0)X(t0) (3)

where the state transition matrix φJ2(t, t0) for the relative motion is:

φJ2(t, t0) = {A(t) + κB(t)}φα{A(t0) + κB(t0)}−1 (4)

The transformation matrix {A(t)+κB(t)}was computed with the approach in Gim and Alfriend.21

The representation with the State Transition Matrix is computationally efficient with respect to a full
integration of the dynamical system, since it requires the solution of the system at each time step,
with no integration at all. This representation can be used only with linearized system dynamic, but
can accurately approximate the non-linear motion of the system.21 The Eq. (3), represents then the
natural motion under the influence of the J2 perturbation. The state transition matrix φJ2(t, t0) can
be in general described as a matrix A(t, t0). Specifically, this matrix could be derived from a more
complex dynamic to include also the secondary order perturbing effect on the satellite motion.
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LOW THRUST OPTIMAL MANEUVER

The satellites in the formation are equipped with a low thrust propulsive system, which provides
the control term during the whole mission via continuous acceleration. This control is introduced in
the dynamical system as a continuous effect on the natural dynamics. The control term is described
in the RTN relative frame as a control input: u(t) = (ux(t), uy(t), uz(t))

T . The continuous control
is typically introduced in the dynamical system as a integral term, affecting the velocity components
of the state vector:

X(t) = A(t, t0)X(t0) +

∫
t
Bu(t) dt (5)

with A(t, t0) the generic matrix describing the natural dynamics of the system under the effect of
the J2 perturbation. The control input matrix B is introduced to correctly relate the control term to
the velocity components of X:

B =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (6)

In this paper, both the satellite state X(t) and the acceleration vector u(t) are known only at the
initial and final conditions. The initial condition is given by the formation flying condition after the
orbit insertion and commissioning phase. At this point a reconfiguration maneuvre is required by
the propulsive system. In this paper, the motion is discretized in time to include the control term
in the STM representation, as described in the following. The discretization of the system is the
first step to write an optimal control problem in convex form. Specifically, the convexification of
the problem aims to obtain a system with a unique optimal solution. The approach followed for
discretizing the system is similar to the one introduced for the system dynamics in the relative RTN
frame in literature.22 This representation allows a simple immediate discretization of the system
dynamic, including the effect of the control action. The discretization of the system in K time
instants is reduced to

xk+1 −Akxk −∆tBuk = 0, k = 1, ...,K − 1. (7)

Reconfiguration as a constrained optimal problem

The reconfiguration maneuver can be described as a time-optimal or a fuel-optimal problem. In
this case, the approach was to fix the time for the reconfiguration and optimize propellant consump-
tion. The following control problem was considered:

minimze : J (u(t)) :=

∫ tf

0
||uj(t)||dt,

subject to : ẋj(t) = A(t, t0)Xj(t) +

∫
t
Buj(t) dt; xj(t0) = xj0; (8)

xj(tf ) = xjf ; ||uj(t)|| ≤ Tmax;

where the cost function J (u(t)) was selected to minimize the control effort, t0 and tf are the
initial and final time respectively, and Tmax is the maximum thrust available from the propulsive
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system. The constraints include the system dynamic for each satellite, with j = 1, ..., 3. The initial
and final state of each satellite is imposed in the optimization, as well as the control effort, which
should not exceed the maximum thrust available by the propulsive system. Moreover, due to the
minimum allowable distance between the satellite, a collision-avoidance condition is implemented
and verified after the optimization. Now, the problem is manipulated into a convex form. This
requires the discretization of the entire control problem, for both constraints and cost function. The
following conditions were considered in the convexification procedure:

No. of satellites : j = 1, ..., N ; (N = 3) (9)

Time discretization : k = 1, ...,K. (10)

For each satellite j, the state is a (6K + 3(K − 1)) column vector xj containing the position, the
velocity, and the control vector at each time instant k:

x̂j =
(
x1
j ... xkj ... xKj u1

j ... ukj ... uK−1
j

)T
(11)

For the whole formation (j = 1, ..., N ), the full state is a N(6K + 3(K − 1)) column vector Z:

Z =
(
x̂1 x̂2 x̂3

)T (12)

For conciseness, we define the length of the decisional vector for the generic satellite j as M =
6K + 3(K − 1). Now the cost function is written as:

J = norm(ĤZ∆t) (13)

where ∆t is the time step of the discretization: ∆t = tk+1− tk, while the Ĥ is chosen as a (N ·M)
square matrix to extract only the control terms from the decisional vector Z:

Ĥ =

 ... ... ...
0M×M(j−1) H 0M×M(N−j)

... ... ...

 ∀j = 1, .., N (14)

And the matrix 0 is defined as (M) null square matrix, apart from the components to extract the
control term u:

H(6K + 1 : M, 6K − 1 : M) =
[
I3(K−1)

]
(15)

where the I3(K−1) is the identity matrix of dimensions 3(K − 1). With the same procedure, the
system dynamics, the initial conditions and the final conditions are expressed as:

ÂsdZ = 0 (16)

Â0Z = X0 (17)

ÂfZ = Xf (18)

For the system dynamics, Âsd is a (6N(K − 1)×N ·M) matrix defined as:

Âsd =

 ... ... ...
0M×M(j−1) Asd 0M×M(N−j)

... ... ...

 ∀j = 1, .., N (19)
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where Asd is a (6(K − 1)×M) matrix which includes the dynamical behaviour for the satellite j
in the FF:

Asd =

 ... ... ...
06×6(K−1) −A(tk) I6 06×6K+3(k−3) −∆B 06×3(K−k−1)

... ... ...

 ∀j = 1, .., N

(20)
For the initial condition, Â0 is a (6N(K − 1)×N M) matrix defined as:

Â0 =

 ... ... ...
0M×M(j−1) A0 0M×M(N−j)

... ... ...

 ∀j = 1, .., N (21)

where A0 is a (6(K − 1) × M) matrix which includes the dynamical behaviour for the satellite j
in the FF. While X0 is defined as a (N · 6K) column vector:

X0 =
[
x01 ... x0j ... x0N

]
(22)

to impose both initial condition on the relative position and velocity. For the final condition, Âf is
a (6N(K − 1)×N M) matrix defined as:

Âf =

 ... ... ...
0M×M(j−1) Af 0M×M(N−j)

... ... ...

 ∀j = 1, .., N (23)

where Af is a (6(K − 1) ×M) matrix which includes the dynamical behaviour for the satellite j
in the FF. while Xf is defined as a (N · 6K) column vector:

Xf =
[
x1(tK) ... xj(tK) ... xN (tK)

]
(24)

to impose both initial condition on the relative position and velocity. Finally, the maximum available
thrust is imposed with the convex form:

ÂtZ ≤ TmaxI6N(K−1)×1 (25)

In this case, the matrix Ât is defined for the case of multiple thruster, i.e. each satellite could provide
a thrust in a generic direction along the (x, y, z) relative orbital frame. This matrix is given by:

Ât =

 ... ... ...
0M×M(j−1) At 0M×M(N−j)

... ... ...

 ∀j = 1, .., N (26)

where the matrix for the maximum thrust is defined as At = [Ãt;−Ãt], as

Ãt(:, 6K + 1 : M) = I3(K−1) (27)

Finally, the collision avoidance is implemented starting from the minimum inter-satellite distance
allowed before the collision among two pair of satellites happens. The condition is recovered from
the requirement that ||xkj −xkl ||2 ≥ R2

coll, with j, l the indexes of a pair of satellite of the FF and the
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Rcoll the minimum inter-satellite distance margined by 20%. The convex form of this requirement
is implemented as

ÂcaZ ≥ R2
collI6NK×1 (28)

where the matrix Âca is defined depending on the formation geometry and current state. In our
case, it is given by

Âca =

 Aca 06K,3(K−1)) −Aca 06K,6(2K−1)) ...

Aca 06K,6(2K−1)) ... −Aca 06K,3(K−1))

06K,3(K−1)+6K) Aca 06K,3(K−1)) −Aca 06K,3(K−1))

 (29)

The matrix Aca is chosen to extract from the state vector Z the component xkj . After that, the
equations are turned into their convex form, and the new optimal control problem is reformulated
as follows:

minimze : J (u(t)) := norm((ĤZ)∆t),

subject to : ÂsdZ = 0; Â0Z = X0; (30)

ÂfZ = Xf ; ÂtZ ≤ TmaxI6N(K−1)×1;

ÂcaZ ≥ R2
collI6NK×1

This problem was implemented in MATLAB® and to solve convex optimization problem, we used
CVX, a package for specifying and solving convex programs.24, 25 The CVX supports diciplined
convex programming, where constraints and objectives are automatically transformed in canonical
form and solved.

MISSION DESIGN: INITIAL PHASE PRELIMINARY RESULTS

This section presents the results of the analysis for the initial phase design, from the orbit injection
to the formation reconfiguration of the mission, described in Section Mission Overview.

Orbit injection

The three satellites are launched together with a single launch, and the separation procedure is
planned as follows. The final stage of the launcher brings the satellites on the nominal SSO orbit (see
Table 1), and then imparts a separation velocity of 1 m/s to each satellite in the transversal – along-
track – direction. Note that for this study the direction of ejection of the satellites from the carrier
is determined by the typical operation strategy adopted by launcher providers and therefore is not a
degree of freedom of the problem. This is a substantial difference with respect to in-orbit formation
establishment26 or envisioned for swarm deployment.8 The time separation between each satellite
at the deployment is 10 s. After the injection, due to the velocity separation, the satellites are on an
orbit very close to the SSO nominal orbit, with a separation mainly in the argument of latitude. The
RTN relative position and velocity imparted by the launcher to each spacecraft is [0, 0, 0, 0, 1, 0]T

(m/s). The situation just after the injection is reported in Figure 3. Both conditions in the RTN and
ROEs frame are depicted considering the satellite 1 as the reference satellites, nominally the first one
released by the launcher. It shows that the time separation in the deployment is enough to guarantee
a good separation in δλ and in δey. In the case under analysis, the launcher provides a delta-v
in the tangential direction of 1 m/s every 10 s, to ensure the safe separation among the satellites.
Increasing the time separation results also to an increase of the spatial separation, increasing the
safety of the deployment but posing more challenges to the successful establishment of the nominal
FF geometry. The corresponding RTN and ROEs elements are shown in Figure 4.
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(a) (b) (c)

Figure 3: Initial condition after orbit injection by the launcher with 10 s time separation (Satellite 1
is taken as the reference). RT-plane relative condition (a) and ROEs (b, c).

(a) (b) (c)

Figure 4: Initial condition after orbit injection by the launcher with 20 s time separation (Satellite 1
is taken as the reference). RT-plane relative condition (a) and ROEs (b, c).

Commissioning phase

Once the three satellites are placed on their initial orbit, the commission phase is necessary to per-
form the preliminary tests on the satellite subsystem and components: the calibration/validation of
each onboard instrument is performed. In this scenario, a preliminary analysis is considered without
the use of the low-thrust continuous control profile, assuming a natural evolution of the satellites
under the effect of the orbital perturbations. Two main scenarios are investigated. A first scenario
considers a short commissioning phase, up to 1 month. A second scenario, instead, analyses the
commissioning for a much longer period, up to 6 months The satellites’ initial conditions were sim-
ulated with a high fidelity propagator, to accurately simulate the real behavior of the system under
the orbital perturbations.

The final conditions to the satellite 1 are reported in Figure 5. Moreover, the final Keplerian
elements for each satellite are reported in Table 2. It can be seen that the natural evolution brings
the satellites to increase the separation to the reference orbit. Specifically, the J2 effect is evident
on the semi-major axis, the eccentricity of the orbits, causing in time an increase of the eccentricity
and a decrease of the semi-major axis. Moreover, the drift in the right ascension of the ascending
node is present under the effect of the J2 perturbation. The propagation was performed with a high
fidelity propagator (i.e. GMAT software) including the most important perturbations. The variation
underlined in Table 2 results in a higher propulsive effort for a longer commissioning phase. This
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is valid under the hypothesis of considering a fixed time interval available for the reconfiguration of
the formation. In this way, we investigate the feasibility of a fast reconfiguration to understand the
limitation of the low thrust propulsive system for a quick maneuver time.

(a) (b) (c)

(d) (e) (f)

Figure 5: RTN and ROEs condition after commissioning phase, for 1 month propagation (case 1:
a,b) and 6 month propagation (case 2: c,d). The relative elements for both RTN and ROEs frame
are recover for satellite 2 and 3 with respect to satellite 1.

a (km) e (-) i (deg) Ω (deg) ω (deg) M (deg)

Case 1

Sat 1 7145.07 7.8387e− 4 98.50 300.89 295.52 50.96
Sat 2 7145.07 7.8154e− 4 98.50 300.89 295.15 51.33
Sat 3 7145.07 7.7934e− 4 98.50 300.89 294.77 51.71

Case 2

Sat 1 7128.02 0.001807 98.51 89.94 2.52 195.48
Sat 2 7128.02 0.001802 98.51 89.93 2.52 195.54
Sat 3 7128.02 0.001796 98.51 89.94 2.51 195.61

Table 2: Final Keplerian elements of the satellites after the commissioning phase. Case 1 identifies
the commissioning of 1 month, while case 2 identifies the commissioning of 6 month.
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Formation reconfiguration strategy

The strategy for the formation reconfiguration presented in this section aims at estimating the
propulsive effort for a quick maneuver. Specifically, a rapid reconfiguration is assumed to happen
in one orbital period. One comment is necessary for this assumption. During the real mission op-
erations, and typically after the commissioning, it is not required to have a fast reconfiguration.
Nominally this situation could also last several days to save propellant. This work wants to investi-
gate the limitation of a fast reconfiguration to assess a limit in the propellant consumption needed
for establishing the formation. The formation initial and final condition, after the commissioning
phase and during the nominal operations respectively, are shown in Table 2 and 1. The condition in
RTN is computed from the ROEs elements, considering the curvilinear reference frame. The chief
elements are reported in Table 1. The simulation assumes a total reconfiguration in 1 orbital period
for the three satellite systems, with a discretization of 0.5◦/n deg on the orbit. Hence the final time
is taken as tf = 360◦/n with n the reference orbit mean motion. Furthermore, a safety distance
margined by 20% was considered to maintain the satellites at least to a 10 m distance.

(a) (b)

Figure 6: Reconfiguration trajectory for the case 1 (1 month commissioning).

(a) (b)

Figure 7: Reconfiguration trajectory for the case 2 (6 month commissioning).
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Figure 6 and 7 show the reconfiguration strategy for the two cases presented in the section Com-
missioning phase. For the second case, with a longer commissioning phase, the satellites are farther
from the virtual reference point. For this reason, they will follow a very similar trajectory. Fig-
ure 8 represents the relative trajectory of satellite 2 and 3 respect to satellite 1 to appreciate the
different trajectory followed. In these figures, the filled marker represents the target final position.
The other marker instead, represents the initial condition before the reconfiguration maneuver. The
initial separation with respect to the reference orbit is much more evident in the second case since
the six-month commissioning produces a higher variation in the semi-major axis and eccentricity of
the orbits. The satellites are reconfigured in a triangular formation, as shown in Figure 6-b and 7-b,
around the reference virtual point on the nominal SSO orbit.

The collision avoidance is satisfied in both cases, as depicted in Figure 9 and Figure 10. Those
figures represent the spacecraft inter-satellite distance. It is shown how for the entire formation
reconfiguration, the satellites stay at more than 10 m from each other. Moreover, this stringent
condition is reached only at the final steps of the reconfiguration, when the formation tends to the
nominal case, with a final inter-satellite distance of 13 m.

Figure 8: Reconfiguration trajectory for the case 2 (6 month commissioning). The relative trajectory
of satellites 2 and 3 are here represented with respect to the trajectory of satellite 1.

Figure 9: Inter-satellite distance evaluation during the reconfiguration manoeuvre (1 month com-
missioning).
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Figure 10: Inter-satellite distance evaluation during the reconfiguration manoeuvre (6 month com-
missioning).

Finally, also the maneuvering plan is shown in Figure 11 and 12. In both cases, the maneu-
vering plans provide an optimal strategy to correct at a certain time instant the trajectory, sav-
ing propellant. In the first case, the satellites are positioned around the reference point such that
the trajectory followed is quite different, and this results in a control strategy different for each
satellite. In this case, the delta-v required by each satellites for the reconfiguration is respectively
[0.9591 0.5925 1.790] mm/s. On the other hand, in the second case, it was shown that the tra-
jectory followed is very similar. The maneuvering plan is almost equal among the satellites. This
second condition requires a delta-v of 5.7361 m/s for the reconfiguration.

Figure 11: Maneuvring plan evaluation for each satellite during the reconfiguration maneuvre (1
month commissioning).
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Figure 12: Maneuvring plan evaluation for each satellite during the reconfiguration maneuvre (6
month commissioning).

CONCLUSION

In this paper, we show a fast approach to reconfigure a satellite formation after the orbital injec-
tion. The maneuvering plan is defined via the optimization of the control problem in the convex
form. This methodology allows a fast resolution of the system (∼ 3 s for both cases presented),
by discretizing the problem in relatively few time instant. Moreover, the methodology applied, en-
sures the application of a delta-v only at optimal time instants, saving propellant consumption. In
the first framework, the results provide a fast and cheap reconfiguration, since, in a short commis-
sioning phase, the difference in relative orbital parameters is small. On the other hand, the second
case presented, implements a quite higher delta-v, this is mainly due to the constraint given on the
longer duration of the commissioning time. A fast reconfiguration is more expensive due to the
more significant difference among the satellite elements and the reference orbit ones.

In both cases, the reconfiguration problem is approached as a minimization problem. The cost
function aims to minimize the total delta-v for the maneuvers. The explicit derivation of the con-
straint from the system dynamics, initial conditions, and final conditions support the software im-
plementation of the proposed strategy. A convex approach is computationally less expensive than
an optimization including the integration of the dynamics at each time step. This could also be
envisioned as a proper method to be put in the on-board software for formation maneuver imple-
mentation. Moreover, the concept of a fast maneuver could be applied to formation maneuvers
during the nominal mission phase, such as for the safety maneuver to switch to safe mode or to
implement a maneuver just after a possible failure in the system.

Further development of the methodology will include the uncertainties after the launcher injection
in the semi-major axis and the inclination. This will be managed with a Monte Carlo simulation to
generate the initial condition for the formation reconfiguration to the solver.
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