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Figure 1: Our proposed 3D Topology Transformation method disentangles the concepts of structural shape and volumetric topology style of
objects in 3D space. The Generator of our Vox2Vox is able to transform the 3D input models (on the top) to novel 3D representations (on the
bottom), while retaining the original overall structure.

Abstract

Generation and transformation of images and videos
using artificial intelligence have flourished over the
past few years. Yet, there are only a few works aim-
ing to produce creative 3D shapes, such as sculptures.
Here we show a novel 3D-to-3D topology transfor-
mation method using Generative Adversarial Networks
(GAN). We use a modified pix2pix GAN, which we call
Vox2Vox, to transform the volumetric style of a 3D ob-
ject while retaining the original object shape. In par-
ticular, we show how to transform 3D models into two
new volumetric topologies - the 3D Network and the
Ghirigoro. We describe how to use our approach to con-
struct customized 3D representations. We believe that
the generated 3D shapes are novel and inspirational. Fi-
nally, we compare the results between our approach and
a baseline algorithm that directly convert the 3D shapes,
without using our GAN.

Introduction
Artificial Intelligence (AI) is experiencing enormous growth
in popularity within the fields of creative arts and design.

Image style-transfer based on deep neural networks (Gatys,
Ecker, and Bethge 2016; Zhu et al. 2017) has become very
popular both in scientific and artistic communities, influenc-
ing image creation as well as videos and movies production
(Huang et al. 2017). This approach allows achieving a de-
coupling of content and style in art (Johnson, Alahi, and Fei-
Fei 2016), where AI has become able to generate new pieces
of art using the style of one piece and the content of another.

In the context of utilizing machine learning algorithms
to produce new artworks, Generative Adversarial Networks
(GAN) have played an integral role in the recent studies, ow-
ing to their ability to learn representations of data and to gen-
erate outputs that mimic realistic elements (Radford, Metz,
and Chintala 2015), including songs, paintings, and sketches
(Briot, Hadjeres, and Pachet 2017; Dumoulin, Shlens, and
Kudlur 2017; Ha and Eck 2017). While in many GANs
the input is a random noise, conditional GANs (cGANs)
(Mirza and Osindero 2014) can be used to pair a specific
input with the desired generated output, as in the case of
the pix2pix architecture (Isola et al. 2017), able to generate
new realistic images from different representations. While
most of these efforts in using GANs have focused on 2D



images, the technology has become mature enough to apply
these methods to 3D shapes. Multiple works have gener-
ated realistic 3D reconstruction of shapes starting from pho-
tos (Wu et al. 2016; Brock et al. 2016) Recently, there
have also been many works on generating or learning a point
cloud representation of 3D objects (Achlioptas et al. 2017;
Li et al. 2018). There have also been many works on con-
verting 2D images or depth-maps to 3D (Li et al. 2019;
Shin, Fowlkes, and Hoiem 2018). However, there has been
little research on how to create stylistically different 3D rep-
resentations of a given 3D shape.

In this paper, we present Vox2Vox, a new 3D cGAN, that
generalizes pix2pix to 3D. As shown in Figure 1, Vox2Vox is
capable of transforming the topology and the internal struc-
ture of a 3D object, while maintaining its overall shape. We
propose two volumetric topologies, the Ghirigoro and the
3D Network, and we describe how to train our Vox2Vox
model to create new topology transfers. We then demon-
strate the effectiveness of our approach by comparing the
results obtained with our AI model against those obtained
with a pure procedural algorithm.

Related Work
Before proceeding to describe the details of our approach,
we will review other work on creating 3D shapes with AI.

3D Shapes Synthesis. 3D shape synthesis is used to model
and reproduce shapes in 3D space. While the first appli-
cations of 3D geometry models mainly concerned video
games and visual media, nowadays, reproducing 3D shapes
of real world objects influences design and architecture, to
self-driving cars, to scientific and medical visualizations.
Our work contributes to a shift from the manual creation
of 3D models with computer-aided design tools to automat-
ically generated 3D shapes from different inputs. In ad-
dition to approaches that use probabilistic graphical mod-
els (Kalogerakis et al. 2012), the advent of Deep Learn-
ing brings the opportunity to automatically synthesize novel
3D shapes by assembling parts of 3D objects, extracted
from model databases, to create new compositions (Huang,
Kalogerakis, and Marlin 2015). However, these approaches
require collections of labeled 3D object parts, which de-
spite the release of many 3D databases are still hard to ac-
quire. To relax the labels requirement, view-based gener-
ative models are employed. They allow for reconstruction
of 3D shapes given 2D images that represent one or more
view points of the object (Su et al. 2015; Qi et al. 2016;
Soltani et al. 2017). However, reconstructing 3D shape
starting from its 2D representation often yields low qual-
ity results due to the missing information, making it hard to
produce unique inputs and realistic 3D objects.

Generative Adversarial Networks. GANs have become
one of the most popular neural network architectures to gen-
erate novel realistic outputs (Radford, Metz, and Chintala
2015; Brock, Donahue, and Simonyan 2018). GANs are
composed of two neural networks, the Discriminator, trained
to distinguish between the real and the generated inputs, and
the Generator, trained to produce new outputs that look real.

GANs have been used to generate voxel-based object rep-
resentations in the 3D space (Brock et al. 2016; Wu et al.
2016), starting from random noises. However, producing a
desired shape requires exploring the latent space in order to
find the correct random input for the Generator. In this con-
text, cGANs introduce non-random inputs to control the out-
puts of the Generator (Goodfellow et al. 2014). cGANs have
been employed as 3D shape Generators in (Wu et al. 2016;
Xie et al. 2018), where 2D images and a conditional proba-
bility density function are respectively used to condition the
output of the Generator and map the input to the desired 3D
shapes. However, only few works exist about controlling the
output of the Generator with 3D shapes as conditional in-
puts. (Ongun and Temizel 2018) presents a 3D-cGAN able
to perform rotations of volumes in the 3D space. In compar-
ison, our approach aims to transfer the shape of the input,
while modifying its volumetric topology to obtain a novel
collection of 3D objects, and, to the best of our knowledge,
our is the first 3D-cGAN model for 3D topology transfor-
mations.

Style Transfer. Style transfer aims to learn the content
and the structure of an input element while changing its
style based on a different style source. In the past, many
works have been released that perform 2D-to-2D style trans-
fer on images and videos (Johnson, Alahi, and Fei-Fei 2016;
Gatys, Ecker, and Bethge 2016). 2D-to-3D style trans-
fer is mainly employed to apply specific textures or col-
ors from 2D samples to 3D objects (Nguyen et al. 2012).
(Kato, Ushiku, and Harada 2018) presents a novel 2D-to-
3D style transfer approach able to perform gradient-based
3D mesh editing operations to modify also the surface of
the 3D shapes based on the image used as style source.
(Ma et al. 2014) is one of the first works about 3D-to-
3D style transfer: the proposed algorithm computes the
analogy between one source element and the related target
and applies it to synthesize new outputs based on differ-
ent sources. This deformation-based approach is also used
to generate different poses of animal meshes (Sumner and
Popović 2004) and modify the design of 3D furniture, build-
ings models, and different classes of objects (Xu et al. 2010;
Liu et al. 2015; Lun, Kalogerakis, and Sheffer 2015;
Mazeika and Whitehead 2018). However, these works re-
quire a specific formulation of analogy between the different
parts of the analyzed objects that limits their application to
few collections of 3D models. In this context, our work lays
the foundation for a novel 3D-to-3D style transfer. Indeed,
with our 3D-cGAN model for 3D topology transformations,
we can say that the style is sedimented in the trained network
and multiple styles are supported with different weights of
our Vox2Vox Generator. A future step would be allowing
both shapes and styles as inputs of the Generator.

Approach
The goal of this paper is to convert a 3D shape into an alter-
native 3D representation inspired by the original. We will
focus on converting the shape into a 3D Network, which
is an abstract representation in the same vein as cubism in
art. A network (graph) consists of two types of components:
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Figure 2: Pipeline. We present two 3D representations: the 3D Network topology (top) and the Ghirigoro topology (bottom). Our pipeline
starts with a 3D model and converts it to its filled 3D voxel representation. The 3D voxel representation is fed as input to the Generators
of Vox2Vox trained to perform the topology transfers. The results are the new 3D voxel representations, where different channels contain
different information of the new 3D shape (e.g. node and link distributions and for the 3D Network topology). Finally, the output 3D model
is reconstructed from the voxel representation with our Procedural Network algorithms.

1) Nodes, being the entities to be connected and 2) Links,
which are the wires connecting the nodes. Like scaffold that
supports the interior of the 3D object, we want the nodes to
be placed in suitable locations inside the shape and links to
connect these nodes to form a 3D Network.

However, as we will discuss later, a random or a uniform
choice of where to position nodes and link points doesn’t
result in aesthetically pleasing results. Thus, we have to
find a better way to choose where to place the nodes and
link points. This requires us to find what part of the 3D
shape should contain more nodes in order for the shape to
be represented better than random nodes, and we would
have to hand-code the criterion for finding this node den-
sity. If, however, the aesthetics is changed slightly, e.g. hav-
ing curvy links like a scribble taking the shape of the net-
work, we will need to, again, hand-code a procedure for the
new aesthetics. Solving this inverse-problem of finding an
algorithm or rule for suitable distribution of node and link
positions inside the 3D shape can be very difficult. In con-
trast, training a system that would learn by examples could
be much easier. Therefore, we want our Vox2Vox cGAN
to be able to produce the node and link distributions, using
voxels. Once we have this distribution, we can use a pro-

cedural algorithm, we called Procedural Network, that takes
the voxels as an input (together with the number of nodes
and the number of points to be used for links connecting
nodes) and generates the final 3D Network representation.

In this way the main challenge moves from creating an
algorithm that performs the transformation of the desired
topology (in this case Network 3D) to creating the dataset
necessary for training the AI model. Fortunately, creating
arbitrary 3D Networks and converting them to space-filling
3D blobs is much easier than doing the reverse, as we will
discuss in the section about model training. Once we have
3D Networks with their respective 3D figures, the 3D-cGAN
is able to learn how to convert the latest to the former, while
finding a pure procedural algorithm for doing so may be dif-
ficult and an optimization process may be costly. Another
benefit of this approach is that, if we want to choose a differ-
ent aesthetics, we can create a new aesthetics-related train-
ing dataset and not worry about the inverse problem.

Proposed Method
As stated in the previous section, solving the problem of cre-
ating a neural network to perform topology transfer is equiv-
alent to creating a neural network that can take a 3D shape



and produce a voxels-based distribution of nodes and links
to put inside it. Thus, the output should preserve the gen-
eral 3D structure of the input. It was shown in (Isola et al.
2017) that when preserving the overall location of features
in the input and output is important, the U-Net architecture
performs much better than an encoder-decoder architecture,
owing to its skip layers. U-Net (Ronneberger, Fischer, and
Brox 2015) is also known to converge with relatively little
training data, making it ideal for our application. We, there-
fore, choose a U-Net architecture for the main component
of our neural network. However, given a 3D shape, there are
many different ways that one can fill this shape with a net-
work. This means that when generating 3D blobs from net-
works, many different network layouts may end up having
similar 3D blobs. This will confuse a neural network, as the
same input is being assigned different 3D Networks as “la-
bel”. This is precisely where a cGAN becomes useful. Un-
like a simple neural network, where multiple labels would
result in the network choosing the average of those labels,
in a GAN the loss is minimized as long as the GAN learns
to produce one of the correct labels, so that the Discrimina-
tor cannot tell the output from the real data. In summary, we
need a cGAN which has U-Net architecture for its Generator
and a Discriminator suitable for classifying 3D shapes. This
is essentially exactly what the pix2pix architecture (Isola et
al. 2017) does, only in 3D instead of 2D. Thus, the architec-
ture of Vox2Vox will be very similar to pix2pix, but the 2D
convolutional layer will be replaced with 3D convolutions
and the number of layers and filters will be different.

Pipeline Overview. Figure 2 shows an overview of the
pipeline for converting a 3D shape into a 3D Network. First
we transform a 3D input mesh to a filled voxel represen-
tation, given a target 3D resolution. The filled voxels are
passed to the Vox2Vox Generator which outputs two chan-
nels of voxels: ch. 1 for the distribution of where to put
nodes and ch. 2 for distribution of points along links con-
necting the nodes. Finally, the voxel distributions for nodes
and links are passed to the Procedural Network (described
in detail below) algorithm to produce the final 3D Network.

Model Architecture. Table 1 shows the details of the
modules used in the Vox2Vox Generator and Discriminator.
The Generator has a U-Net architecture, with four Down3D
modules in the encoder and four Up3D modules in the de-
coder each of which contains a 3D convolutional layer. Dur-
ing training, the input shape is 64× 64× 64 and the encoder
layers have 32, 64, 128 and 128 filters, encoding the input to
4× 4× 4× 128 shape. The decoder layers have 128, 64, 32
and C filters. C is the number of desired output channels,
which for the 3D Network problem is two, one for node and
one for link distribution. The Up3D modules also get the
output of the encoding layers as input, as in U-Net. The Dis-
criminator consists of four 3D convolutional layers, yielding
a 8 × 8 × 8 output. The cost function for the Discriminator
decides whether on all the 8 × 8 × 8 patches of the node
and link distributions match the input 3D blob in a certain
way. If the Generator successfully produces a node and link
distribution which matches the blob over all the 8 × 8 × 8
similar to how the real data matches the blob, the Discrim-

Generator Training
shape

Predict
shape Filters Params

Input Layer 643 1923 1 -
Down3D* 323 963 32 2,080
Down3D 163 483 64 131,392
Down3D 83 243 128 524,928
Down3D 43 123 128 1,049,216
Up3D 83 243 256 1,049,216
Up3D 163 483 128 1,048,896
Up3D 323 963 64 262,304
Up3D* 643 1923 C 8,194

Discriminator Output
shape Filters Params

Input Layer 643 C -
Down3D* 323 1 3,088
Down3D 163 3 32,800
Down3D 83 64 131,136
Down3D+* 83 1 32,769

* No Batch Normalization + Kernel size=8

Table 1: Model Architecture. The Vox2Vox Generator has a U-
Net architecture made of Down3D modules which contain 3D con-
volutional layers, and Up3D modules which does an Upsampling
by a factor of 2 in each direction, followed by a 3D convolutional
layer, Dropout and Batch Normalization. The Discriminator con-
sists only of Down3D modules. The number of filters, output di-
mensions and the number of parameters for each layer in the Gen-
erator and Discriminator are reported.

inator will get fooled. Because of the third dimension, the
training process of Vox2Vox is both very memory intensive
and computationally very expensive. That is why we chose
to do the training in the resolution of 64 × 64 × 64 vox-
els. However, during prediction we increase the input size
to produce higher quality outputs. Indeed, a nice feature of
U-Net is that, since all layers are convolutional, we can pro-
duce larger outputs by simply modifying the input shape of
the trained network. Note that, this increase in input size will
not result in larger “features”. For example, if the Vox2Vox
trained at resolution 64 produces nodes with radius 5 voxels
maximum, increasing the input shape to 192 will still only
produce nodes of radius 5. Similarly, if at resolution 64 the
maximum length of links produced is 10 voxels, it will be
the same when the input size is changed to 192. This is be-
cause the convolutional layers in all layers will still have the
same receptive field of, say 8×8×8 on the input, at both 64
and 192 resolutions. However, what this allowS us to do is
that we can feed arbitrary large inputs to a trained Vox2Vox
(192 was the maximum size our GPU memory allowed) and
convert them into 3D Networks. Moreover, making the input
larger allows us to convert objects with much higher details
than the size of the objects in the training set. Therefore,
after we train Vox2Vox on 64× 64× 64 voxels, we change
the input shape to 192×192×192 and produce higher qual-
ity outputs. We used Vox2Vox on a variety of different 3D
sculptures and passed the output to the Procedural Network
Algorithm to extract the generated 3D Network (Fig. 4).

Model Training
The training procedure of Vox2Vox (Figure 4) is similar to
the pix2pix one: we present the Discriminator with a pair of



Figure 3: Model Training. Sequence of 3D Network outputs from the Vox2Vox Generators while growing of epochs.

Figure 4: Training Vox2Vox: For conversion to a 3D Network,
we first create a network and lay it out in 3D. Then we convert
the network into two formats: 1) a 3D blob found by assigning
large radii to nodes and large thickness for links and merging them
together (input of the Generator); 2) Separate node and link dis-
tribution data with nodes having reasonably small radii and links
being relatively thin (real input of the Discriminator). The output
of the Generator will have two channels, the predicted node and
link distributions (fake input of the Discriminator).

inputs, which is the concatenation of the 64× 64× 64 array
of the 3D shape with the 64×64×64×C array of real or fake
output along the channels, yielding a 64× 64× 64×C + 1
array. For the real pair, the label is a 4 × 4 × 4 array of
ones, and for the fake pair the array is zero. The main dif-
ference is our training data is 3D and completely synthetic
(see sections about training data below). Some points to note
is that, we exploited the convolutional nature of the U-Net
layers also during training. During the training process, the
input is a 64 × 64 × 64 binary array (0 in empty spaces
and 1 inside the 3D shape) and output of the Generator is a
64 × 64 × 64 × C array, where C is the number of chan-
nels. While this training converges to reasonably good re-
sults after around 10 epochs, we found that first training on
32×32×32 binary arrays and very small networks, and then
doing transfer learning by increasing the input resolution re-
sulted in faster convergence to reasonably good results.

3D Network Training Data. We create a variety of net-
works first and then lay them out in 3D using a custom force-
directed layout algorithm, inspired from (Dehmamy, Milan-
louei, and Barabási 2018), which makes sure nodes do not
overlap. We then create two arrays from the network. One is
a 64× 64× 64 array of the 3D shape of the layout, merging
nodes and link segments by replacing them with overlapping
large and small spheres, respectively. This 3D shape is the
input of the Generator. The second is a 64 × 64 × 64 × 2

array, with the first channel being the nodes and the sec-
ond the links, which are again replaced by spheres, this time
with smaller radii (Figure 4). Then, we replace nodes with
spheres and segments along links with spheres which over-
lap and make the connected links. We generate about 700
such networks and heavily augment the dataset by rotating
them in multiples of 20 degrees about the x,y and z axes
to create a dataset of about 30,000 data points. We trained
Vox2Vox with a few different thicknesses for links and sizes
for nodes to determine a good choice for the sizes of the
nodes and links so as to avoid space-filling links and nodes,
which would let the Generator exploit this structure and fool
the discriminator by simply filling the inside of the shape.
Figure 3 shows a sequence of 3D Network outputs from the
Vox2Vox Generators while growing of epochs.

Note on Input Network Topology. There exist many dif-
ferent generative processes for producing networks which
result in very different connectivity patterns. We found that
using random graphs (Erdős and Rényi 1960) resulted in
poor results. In these graphs, any node is equally likely to
connect to any other node, resulting in a completely ran-
dom network, with all nodes having a similar degree (i.e.
number of links attached to them). The Vox2Vox Generator
was able to produce reasonable positions for the nodes, but
failed at producing good links between them. Our hypothe-
sis is that, since links in these networks are completely ran-
dom, the Discriminator overfitted to the few samples it had
been trained on and was never satisfied with any other vari-
ation of the links. In contrast, when we trained the Vox2Vox
on networks generated using a “rich gets richer” (Barabási-
Albert (BA)) model (Barabási and Albert 1999) the results
improved dramatically. In the BA model some nodes, known
as hubs, have significantly more links than other nodes. The
BA model has “hubs” which are nodes with a much higher
degree than most other nodes, which contrasts it strongly
from the random ER network where all nodes have more or
less the same degree. We chose the size of the nodes in the
3D array to be a function of their degree. When making the
voxel representation, we assign lager node radii nodes with
a higher degree. We believe that this predictable correlation
between the node size and the density of links was learned
by the Generator and was exploited to fool the Discrimina-
tor, allowing it to produce good results.

Usually, to train GANs a single input is presented to the
network at a time (Goodfellow et al. 2014), meaning batch
size 1. This will force the Generator to try to learn the fea-
tures of a single example. However, this will result in a very
slow progression of the training. On the other hand, larger



Figure 5: Results. Example of results for the 3D Network and the Ghirigoro topologies. The columns are similar to the pipeline illustration
2. Red models refer to the 3D Network topology, and blue models are for the Ghirigoro. The First column shows the original 3D model,
second the voxel representation, third is the Vox2Vox output, fourth the inferred network components and fifth is the final outcome.

batch size yields faster convergence, but presenting a large
batch of data result in more of an averaged output, stopping
it from choosing a single pattern. Therefore, in the initial
stages of the training, we set the batch size to 8 to allow for
a faster approach towards good filters. In later stages, we re-
duced the batch size to 2 and then 1 to fine-tune the results.

Ghirigoro: Training on a Second Topology. Aside from
converting shapes to 3D Networks, we also tried a second,
related topology. The “Ghirigoro” (doodle) topology con-
sisted of converting a 3D shape into a long scribble that
mimics its shape. This style has only one output channel,
which is a set of long curvy lines, crossing more rarely than
the 3D Network case, and there are no nodes. To construct
the final doodle shape from the GAN we used the Procedu-
ral Network algorithm with different settings. The result is
not exactly a doodle, as the Procedural Network may cross-
link two parallel pieces of the doodle, resulting in a network.
Nevertheless, the aesthetic is close to a doodle. The pipeline
is shown at the bottom of Figure 2 and the results are pre-
sented along with the 3D Network case in Figure 6.

Procedural Network algorithm
We interpret the two output channels of the Vox2Vox Gen-
erator as node and link distributions. To extract a network
from these distributions, we first use K-means to choose cen-

ters for nodes and for points along the links. We choose a
higher K for link points than nodes in the K-means. We then
form a network from points that are close to each other, con-
necting link points and node centers in a dense network. To
avoid connecting points that are far from each other, we par-
tition the space into small regions and connect points within
each partition to each other. To avoid artifacts from the po-
sition of partition walls, we repartition the space multiple
times by slightly shifting the partition walls by a random
value. This method of connecting nodes and link points
works better than a k-nearest neighbor method, as all nodes
need not have the same degree, and hence neighbors. This
results in a series of connected paths connecting nodes using
via intermediate link points. Finally, we use the A* search
algorithm (Hart, Nilsson, and Raphael 1968) to extract links
between nodes.

To see how using the Vox2Vox output as a prior for node
and link distribution compares against not using having this
prior, we apply the above procedure to the original 3D shape
voxels. This means that, to find node locations we just take
the filled voxels of the 3D shape and apply K-means to it.
This will fill the interior of the shape with randomly chosen
node locations. Our default was choosing 300 node loca-
tions. We then do the same thing for link points, except that
we choose 50 times more points to serve as points along



Figure 6: Pure procedural algorithm comparison. We
show the results of the proposed 3D Topology Style Trans-
fer approach. For each 3D input model (first column from
left), we present its volumetric transformations based on the
3D Network topology (second column) and the Ghirigoro
topology (third column). We then compare the results of the
Procedural Network algorithm (fourth column) that applies
the volumetric transformation directly on the 3D input.

links (i.e. 50× 300 points). The rest of the procedure is the
same. Comparing the outcomes, we observe that the base-
line procedure results in curved and broken links, while the
proposed Vox2Vox model produces 3D shapes with more
effectively distributed links and nodes.

Results
Figure 5 shows the results of the proposed 3D topology style
transfer approach. For each 3D input model, we present
its volumetric transformations into the 3D Network topol-
ogy and the Ghirigoro topology. We then compare in Fig-
ure 6 the results of the baseline pure procedural algorithm
that applies the volumetric topology transformation directly
on the 3D input. As is evident in Figure 6, the baseline
(fourth column, black model) looks quite messy. The base-
line also requires a much higher node density to be able to
capture the shape of the object. In comparison, using the
Vox2Vox output a prior for the node and link distributions of
the 3D Network (second column, red) results in much nicer
results with much fewer nodes an links. Vox2Vox chooses

node locations very economically and strategically, preserv-
ing the overall structure of the shape with much fewer nodes.
Vox2Vox also does a very interesting job with the Ghirigoro
style (third column, blue). The results all preserve the shape
of the object very well, while using very few curved lines.

Thus, our results show that it is possible to perform com-
plex 3D topology style transfer using our Vox2Vox archi-
tecture, if we possess a good number of samples in the de-
sired style, or are able to generate such samples. The sam-
ples could have any arbitrary or random shape and the task
of Vox2Vox is to figure out how to convert a given shape
into that style. Moreover, the resolution of the output can be
modified, as long as the size of the features does not need
to scale with the input size. Lastly, one could use other pro-
cedures to convert the Vox2Vox output to high quality 3D
shapes, like our Procedural Network algorithm.

Conclusion and Future Direction
In this paper, we presented a novel 3D-to-3D topology trans-
fer paradigm based on transformations in 3D space. In
particular, we built a 3D conditional GAN, Vox2Vox, that
performs volumetric transformations to modify the internal
structure of any 3D object, while maintaining its overall
shape. We described our complete pipeline to apply our ap-
proach to two different topologies: the 3D Network and the
Ghirigoro. The results obtained by employing our method-
ology are novel and inspirational. We compared the out-
puts of the pipeline while using or not the 3D-cGAN and
found that using the Vox2Vox output as a prior distribution
results in much nicer outcomes where features are placed
in strategic positions in the 3D shape preserving its struc-
tural features. As a future direction, we plan to improve the
3D-to-3D topology transfer by given also the topology as a
conditional input of the generative network. To do that, the
machine learning algorithm has to learn itself the abstraction
of the topology from a given 3D object.
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Erdős, P., and Rényi, A. 1960. On the evolution of random
graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1):17–60.
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image
style transfer using convolutional neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2414–2423.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.
Ha, D., and Eck, D. 2017. A neural representation of sketch
drawings. arXiv preprint arXiv:1704.03477.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Huang, H.; Wang, H.; Luo, W.; Ma, L.; Jiang, W.; Zhu, X.;
Li, Z.; and Liu, W. 2017. Real-time neural style transfer for
videos. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 7044–7052. IEEE.
Huang, H.; Kalogerakis, E.; and Marlin, B. 2015. Analy-
sis and synthesis of 3d shape families via deep-learned gen-
erative models of surfaces. In Computer Graphics Forum,
volume 34, 25–38. Wiley Online Library.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
arXiv preprint.
Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016. Percep-
tual losses for real-time style transfer and super-resolution.
In European Conference on Computer Vision, 694–711.
Springer.
Kalogerakis, E.; Chaudhuri, S.; Koller, D.; and Koltun, V.
2012. A probabilistic model for component-based shape
synthesis. ACM Transactions on Graphics (TOG) 31(4):55.
Kato, H.; Ushiku, Y.; and Harada, T. 2018. Neural 3d mesh
renderer. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 3907–3916.
Li, C.-L.; Zaheer, M.; Zhang, Y.; Poczos, B.; and Salakhut-
dinov, R. 2018. Point cloud gan. arXiv preprint
arXiv:1810.05795.
Li, X.; Dong, Y.; Peers, P.; and Tong, X. 2019. Synthesiz-
ing 3d shapes from silhouette image collections using multi-
projection generative adversarial networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 5535–5544.
Liu, T.; Hertzmann, A.; Li, W.; and Funkhouser, T. 2015.
Style compatibility for 3d furniture models. ACM Transac-
tions on Graphics (TOG) 34(4):85.
Lun, Z.; Kalogerakis, E.; and Sheffer, A. 2015. Elements
of style: learning perceptual shape style similarity. ACM
Transactions on Graphics (TOG) 34(4):84.
Ma, C.; Huang, H.; Sheffer, A.; Kalogerakis, E.; and Wang,
R. 2014. Analogy-driven 3d style transfer. In Computer
Graphics Forum, volume 33, 175–184. Wiley Online Li-
brary.

Mazeika, J., and Whitehead, J. 2018. Towards 3d neural
style transfer. In AIIDE Workshops.
Mirza, M., and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Nguyen, C. H.; Ritschel, T.; Myszkowski, K.; Eisemann, E.;
and Seidel, H.-P. 2012. 3d material style transfer. In Com-
puter Graphics Forum, volume 31, 431–438. Wiley Online
Library.
Ongun, C., and Temizel, A. 2018. Paired 3d model genera-
tion with conditional generative adversarial networks. arXiv
preprint arXiv:1808.03082.
Qi, C. R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; and Guibas,
L. J. 2016. Volumetric and multi-view cnns for object clas-
sification on 3d data. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 5648–5656.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net:
Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing
and computer-assisted intervention, 234–241. Springer.
Shin, D.; Fowlkes, C. C.; and Hoiem, D. 2018. Pixels,
voxels, and views: A study of shape representations for sin-
gle view 3d object shape prediction. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 3061–3069.
Soltani, A. A.; Huang, H.; Wu, J.; Kulkarni, T. D.; and
Tenenbaum, J. B. 2017. Synthesizing 3d shapes via model-
ing multi-view depth maps and silhouettes with deep gener-
ative networks. In The IEEE conference on computer vision
and pattern recognition (CVPR), volume 3, 4.
Su, H.; Maji, S.; Kalogerakis, E.; and Learned-Miller, E.
2015. Multi-view convolutional neural networks for 3d
shape recognition. In Proceedings of the IEEE international
conference on computer vision, 945–953.
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