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Abstract—In the past few years, Convolutional Neural Net-
works (CNNs) have seen a massive improvement, outperforming
other visual recognition algorithms. Since they are playing an
increasingly important role in fields such as face recognition,
augmented reality or autonomous driving, there is the growing
need for a fast and efficient system to perform the redundant and
heavy computations of CNNs. This trend led researchers towards
heterogeneous systems provided with hardware accelerators, such
as GPUs and FPGAs. The vast majority of CNNs is implemented
with floating-point parameters and operations, but from research,
it has emerged that high classification accuracy can be obtained
also by reducing the floating-point activations and weights to
binary values. This context is well suitable for FPGAs, that are
known to stand out in terms of performance when dealing with
binary operations, as demonstrated in FINN, the state-of-the-
art framework for building Binarized Neural Network (BNN)
accelerators on FPGAs. In this paper, we propose a framework
that extends FINN to a distributed scenario, enabling BNNs
implementation on embedded multi-FPGA systems.

Index Terms—Binarized Neural Networks, BNN, PYNQ, em-
bedded, distributed

I. INTRODUCTION

With the huge growth in the use of Convolutional Neural
Networks (CNNs), the need for increasingly efficient solutions
in terms of performance and power consumption has devel-
oped in recent years. It is well known that CNNs, especially
deeper networks, require a significant amount of resources
to store all the parameters needed for the computations, i.e.
weights and activations, and massive computational power. A
solution to lighten computations and reduce power consump-
tion and memory footprint has been shown to be the use of
Binarized Neural Networks (BNNs) [1], [2]. In these networks,
all the heavy floating point computations are mapped to low-
precision arithmetic operations and can be reduced to binary
operations. This is where Field Programmable Gate Arrays
(FPGAs) come in handy, as noted by Zhou et al. [3] in their
work on neural networks with low bitwidth parameters.

However, it is possible to achieve greater performance and
a significant reduction of both the global resource usage the
dynamic power consumption by leveraging the possibilities
offered by distributing the computations on a multi-FPGAs
system. This also leads to an improvement of the scalability
of the accelerators, since it allows to perform computations on
very deep neural networks whose parameters would not fit on
the On Chip Memory (OCM) of a single board.

In this work we propose BNNsplit, an extension of the
framework developed by Umuroglu et al. [4] for implementing
BNNs inference accelerators on embedded distributed FPGA-
based computing systems, focusing on the implementation of
a binarized deep convolutional neural network on a multi-
PYNQ-Z1 system.

II. BACKGROUND

The key reasons behind the choice of Field Programmable
Gate Arrays (FPGAs) for this work are the low latency of the
board and the high level of exploitable parallelism to perform
a large number of convolutions. Moreover, FPGAs are one of
the best hardware choices when dealing with binary values,
as shown in [1], [2]. Some implementations of low-precision
CNNs accelerators on FPGAs have already been developed,
such as the work by Moss et al. [5] that presents a high
performance BNN accelerator on the Intel®Xeon+FPGATM

platform and FINN [4], a framework developed by Xilinx
that provides fast inference accelerators using a dataflow-
style streaming architecture on PYNQ-Z1 and Ultra96 boards.
More in detail, the authors of FINN described a novel set of
optimizations to efficiently map the different layers of BNNs
to the FPGA resources while maximizing the throughput
requirements defined by the user. However, FINN assumes that
all BNN parameters can fit into the available OCM of a single
FPGA and, to the best of our knowledge, no solutions for
BNNs on multi-FPGAs systems have ever been explored.

We started from this point to propose a methodology that
extends the FINN framework in a distributed context. The
major problem was to find an efficient way to divide one
of the proposed neural networks without any performance
loss. One of the core ideas of the network splitting was to
reduce the resource usage, to let the framework handle larger
neural networks with a greater amount of parameters (i.e.
weights and activations) that would otherwise saturate the
memory of a single board. In addition, another fundamental
purpose of an efficient network division is to increase the
throughput with respect to the single node, assuming that
the given distributed system is not network-bounded. This
could lead to lower resource usage (with respect to replicating
the whole network on multiple parallel boards), allowing to
exploit further procedures such as partial reconfiguration, to
use different applications on the same system without loss in
terms of performance.



Fig. 1. Plot showing the amount of bytes per image to transfer at each layer.

III. RELATED WORKS

The idea of implementing BNNs on FPGA-based systems
is not new. [6], [7] shows how FPGAs can provide orders
of magnitudes in efficiency improvements over CPU/GPU-
based solution. The authors implemented a BNN accelerator
targeting a high-end Altera Aria 10 FPGA. In [8], authors
demonstrate the advantages of using BNNs over classical
CNNs solutions, implementing an FPGA-based accelerator
that is synthesized from C++ to FPGA-targeted Verilog. [9]
describes an accelerator for BNNs targeting the Maxeler MPC-
X2000 platform, that shows a promising speed with respect to
the low energy consumption. However, none of these solu-
tions provides details on how to manage the ever-increasing
size of BNNs architectures by exploiting distributed systems
with multiple processing elements. [10], [11] demonstrates
the advantages of using an FPGA-based distributed system,
implementing both a framework for the efficient deployment
of data analytics on a multi-PYNQ system mapping the Spark
framework on FPGAs and an interface that is implemented
with Remote Procedure Call to partition hardware design on
multiple boards, through an Ethernet network. Yet, to date,
[12] is the only work that shows an implementation of neural
networks in a distributed FPGA system. The authors propose
a CNN-based face detection algorithm implemented on an
embedded, distributed system of multiple FPGAs. However,
the approach is specific to the face detection context and
uses quantization instead of binarization to optimize the neural
network parameters.

IV. METHODOLOGY

1) BNN topology: The choice of the BNN to divide was
based on both the size of the network and the type of
the parameters. Since all the networks implemented by the
FINN [4] framework fit the OCM of a single FPGA, the
most significant BNN to split would certainly be the largest
one. Furthermore, the proposed BNNs differ from each other
in the type of parameters (i.e. weight and activations), that
can be both 1 and 2-bit parameters. 2-bit parameters are
more versatile during the HLS synthesis since the Multiply-
Accumulate (MAC) operations performed on 2 bits can be
implemented both on Mul LUT and DSP48 cores - while MAC
operations on 1-bit parameters are simple XOR operations,

not supported by the above-mentioned cores. Thereby, the
chosen BNN is the CnvW2A2, a deep convolutional neural
network with 6 convolutional layers and 3 fully connected
layers, whose activations and weights are 2-bit parameters.

2) Splitting strategy: Since the objective of this work is
to find an efficient way to distribute the framework on a
multi-FPGAs system, a first strategy is to split the BNN so
as to minimize the amount of data transferred between the
PYNQs, building a pipeline for data processing. This option
could allow avoiding network bottlenecks while reducing the
resource utilization per board with respect to the full network.
Additionally, the BNN parts can be replicated and reused in
parallel in order to increase the overall throughput. Further
concerns of the BNN splitting could be searching for a trade-
off between the resource balance among the PYNQs and the
amount of data transferred in the network, dividing the BNN
into more than 2 parts.

3) Proposed design: The proposed BNN splitting was
performed by searching for the layer whose output data was
the smallest in terms of bytes per image. The analysis and
evaluation of the possible divisions showed that the output
data of the convolutional layers progressively decrease from
12544 Bytes/img after the first convolutional layer to just
64 Bytes/img after the last convolutional layer. The plot in
Fig. 1 shows the decrease of bytes per image at different
split points, from more than 12000 Bytes/img dividing after
Layer 0 to 64 Bytes/img dividing after Layer 5. The selected
BNN was therefore divided into two parts, choosing the split
point between the last convolutional layer and the first fully
connected layer. The first part (Part 1) handles the convolution
and max pooling operations, while the second part (Part 2)
performs the fully connected computations. The two resulted
kernels process memory batches of ap_uint<64> via AXI4
ports, that are converted into streams at the beginning of the
computation, see Fig. 2.

4) Resource optimization: In order to evaluate all the pos-
sible solutions in terms of resources utilization, three possible
implementations of the MAC operations were explored -
presented in the FINN [4] framework:

• Default implementation: this implementation of the
multiplications leaves the choice of the resource to Vi-
vado, that will automatically map the function to the
hardware.

• Implementation on DSP48: this implementation force
the use of DSP48 cores (#pragma HLS resource
core=DSP48). However, the results obtained in terms
of resource utilization is very similar to the Default
implementation and the design fails to meet the timing
requirements after Vivado synthesis.

• Implementation on Mul LUT: this implementation ex-
ploits Multiplier implemented with LUTs (#pragma
HLS RESOURCE core=Mul_LUT) and it is the best
in terms of resources utilization and clock frequency.
In fact, only a few DSP48 cores are used, reducing the
power consumption by 13% with respect to the other two
options.



Fig. 2. Representation of the proposed design.

V. EVALUATION

1) Resource utilization: The results of resource utilization
obtained after the place and route phase on the convolutional
part (Part 1) show that the best solution is to force the
multiplications of the MAC on Mul LUT cores. With this
configuration, it is possible to reach a modest reduction of
most of the resource utilization (-12% of LUT, -14.5% of
LUTRAM, a slight reduction of FF and -11% of BRAM)
with respect to the full BNN. Both the DSP48 and the default
implementations have a slightly higher resource usage with
respect to the Mul LUT solution, and a massive - but expected
- utilization of DSP48 for the multiplications, reaching the sat-
uration of the available cores. This clearly leads to the higher
power consumption of the DSP48 and default configurations
(nearly +13% of power consumption with respect to both
the full BNN and the convolutional block implemented with
Mul LUT). The fully connected part (Part 2) instead does
not experience a significant difference between the different
configurations.

2) Performance: The measured execution times and
throughputs of the three different implementations were sur-
prisingly very similar, probably due to the fact that the
allocated DSP48 cores in both the default and the DSP48
alternatives are not actually needed at runtime. The fully con-
nected block, being very light in terms of resources exploited
and computation, and receiving a reduced amount of data in
input due to the convolution operations previously performed
on the image, is able to reach a potential data processing
throughput of nearly 720 chunks/s - assuming no network
latency for the time being. The convolutional part is instead
much slower, due to the heavy computations performed within
the layers. Nonetheless, its throughput is nearly 40% higher
with respect to the full network on a single board. Both the
mean and standard deviation of throughput and the execution
time shown in Table I were computed over 30 executions for
each configuration, reconfiguring a single PYNQ-Z1.

3) System distribution: With the aim of distributing the
framework on a multi-FPGAs system, one must take into
account the limits imposed by the network connection between
the PYNQ-Z1 boards, that could significantly reduce the
amount of data transferred per second, both between the
boards and between boards and hosts. A potential solution
to overcome the network problem could be to leverage the
Gigabit Ethernet PHY of the PYNQ boards, making them
communicate throughout a 1 Gbps connection. In this way,
we could be able to transmit 125 MB/s, namely 312 img/s of
400 KB each. This means that the bottleneck would pass from
the network side to the processing side, making the distributed

Fig. 3. The 3-PYNQ solution.

solution on two PYNQ-Z1 boards potentially competitive
with the full BNN loaded on a single PYNQ-Z1. Since the
network capacity is higher than the board throughput, this
will result in a bottleneck on the processing side, lowering
the potential amount of data transferred per second from
312 img/s to 205 img/s in the single board case - i.e. the
full network throughput, see Table I. The two PYNQ-Z1
distributed solution instead would potentially allow exploiting
the higher throughput of the convolutional layers, increasing
the overall throughput by 40% with respect to a single board
solution. In this network unbounded context, by replicating the
full BNN on two separate PYNQs and parallelizing the two
different computations, the result would simply be the double
of the throughput of the single PYNQ, since the processing is
limited by the PYNQ’s throughput - i.e. 410 img/s.

By means of a 3-PYNQ distributed system (Fig. 3), one
could not only leverage the network capacity but also exploit
the 720 chunks/s - i.e. 64 Byte img/s - throughput of the fully
connected block loaded on the third PYNQ. The amount of
data per second arriving from the convolutional blocks would
optimistically be the sum of the two convolutional throughputs,
hence 574 img/s. Assuming for the time being a minor latency
of the input buffer of the third PYNQ, the overall throughput
could reach a maximum of 574 img/s, again a 40% throughput
gain with respect to the full BNN on two separate PYNQs.

With the solution shown in Fig. 3 we would be able to
achieve the 40% throughput gain not only with a minor raise
of BRAM and FF usage (+3.6% BRAM, +4.4% FF), but also
with a slight reduction of the overall LUT and LUTRAM
utilization (-7.8% LUT, -27.41% LUTRAM) with respect to
the system composed by 2 separate PYNQs replicating the full
BNN. Moreover, if we consider a further system composed by
3 separate PYNQs with the full BNN, the net dynamic power
consumption caused by the resource usage would increase by
39%, while the throughput gain with respect to the solution
in Fig. 3 would be only 7% at most (651 img/s against
574 img/s). This makes the 3-PYNQ-Z1 system with just the
replication of the convolutional block the best compromise
between performance and power consumption. Nonetheless, a
further increment in the number of boards of the distributed
system would lead to the saturation of the fully connected
block, that cannot support more than 720 chunks/s. With three
replicas of the convolutional block, the throughput gain goes
down to 10% with respect to three separate PYNQs in parallel
performing the computations of the full BNN (the respective



TABLE I
RESOURCE UTILIZATION, POWER CONSUMPTION (P), THROUGHPUT (MEAN & STD) [img/s], EXECUTION TIME (MEAN & STD) [us]

Part Core LUT % LUTRAM % FF % BRAM % DSP48 % P [W ] Thr m Thr std ExT m ExT std
Full Mul LUT 70.12 42.74 48.30 100.00 14.55 1.836 205.51 0.07 4867.77 1.36
Part 1 Mul LUT 58.35 28.17 44.62 88.93 14.55 1.823 287.10 1.24 3480.23 1.63
Part 1 DSP48 63.58 28.28 46.34 88.93 100.00 2.106 287.22 0.44 3480.56 1.09
Part 1 Default 63.54 28.26 46.34 88.93 100.00 2.065 287.16 0.84 3480.40 1.36
Part 2 Mul LUT 15.70 2.36 11.76 25.71 0.00 1.511 719.60 0.60 1389.70 1.19
Part 2 DSP48 15.79 2.41 11.69 25.71 4.09 1.519 719.52 0.57 1390.63 1.05
Part 2 Default 15.70 2.36 11.76 25.71 0.00 1.511 719.56 0.59 1390.17 1.12

overall throughputs are 720 chunks/s and 615 img/s). With
4 replicas of the convolutional blocks, all the advantages are
lost.

4) Testing: To test our distributed solution, we took ad-
vantage of the FARD [13] framework, an event-based system
that we modified to support jobs and pipelines. In particular,
a job has been implemented as a task accepting data from
an input queue that is killed after all the data has been
processed. The pipeline has been created by generating at run-
time the graph of peers (representing the pipeline) and sending
configuration messages to start the jobs and to configure the
bitstreams. The measurements in Table I show throughput
and execution times of the single nodes, without considering
communication overhead. The fully connected block, being
very light in terms of resources exploited and computation,
and receiving a reduced amount of data in input due to the
convolution operations previously performed on the image,
is able to reach a potential data processing throughput of
nearly 720 chunks/s - assuming no network latency for the
time being. The convolutional part is instead much slower,
due to the heavy computations performed within the layers.
Nonetheless, its throughput is nearly 40% higher with respect
to the full network on a single board. The experimental testing,
on a sample of 30 runs (each classifies 20 images), showed an
average response time of 0.083767s with a standard deviation
of 0.007515s.

VI. CONCLUSION

As demonstrated with this work, an efficient division of a
BNN can actually lead to a potential enhancement of perfor-
mances, making it the first step towards the extension of the
FINN framework on a multi-FPGAs architecture. We presented
a network divided into two distinct blocks, minimizing the data
transferred between the boards. As a future direction, other
splitting strategies, such as dividing the BNN into multiple
partitions in order to extract higher performances and balance
the resource utilization on the various boards, could be ex-
plored. The presented configuration with the network divided
in convolutional block and fully connected block leaves a
large amount of free resources on the board where the fully
connected kernel is placed. Hence, future works could regard
the leveraging of the free area to implement other applications
without performance loss. For example, the free resources
could be exploited by means of partial reconfiguration, i.e.
modifying at runtime a portion of the bitstream loaded on the
board.
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