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Abstract

Close proximity operations around small bodies are extremely challenging
due to their uncertain dynamical environment. Autonomous guidance and nav-
igation around small bodies require fast and accurate modeling of the gravita-
tional field for potential on-board computation. In this paper, we investigate a
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model-based, data-driven approach to compute and predict the gravitational ac-
celeration around irregular small bodies. More specifically, we employ Extreme
Learning Machine (ELM) theories to design, train and validate Single-Layer
Feedforward Networks (SLFN) capable of learning the relationship between the
spacecraft position and the gravitational acceleration. ELM-base neural net-
works are trained without iterative tuning therefore dramatically reducing the
training time. Analysis of performance in constant density models for asteroid
25143 Itokawa and comet 67/P Churyumov-Gerasimenko show that ELM-based
SLFN are able learn the desired functional relationship both globally and in se-
lected localized areas near the surface. The latter results in a robust neural
algorithm for on-board, real-time calculation of the gravity field needed for
guidance and control in close-proximity operations near the asteroid surface.

Keywords: Extreme Learning Machine; Gravity Modeling; Asteroid

1. Introduction

Over the past few years, there has been a strong interest in sending robotic
spacecrafts to small bodies in the solar system, including comets (e.g. Rosetta
Mission) and Near Earth Asteroids (NEAs, e. g. Hayabusa Mission). The inter-
est in exploring small bodies stems from the fact that they have been minimally
processed since the birth of the solar system. Indeed, detailed remote mapping
and in-situ sampling of such objects may provide scientists with opportunities to
unveil the early history of the solar system (Ciesla and Charnley (2006)). Aside
from the extremely valuable contribution that NEA missions would provide to
the global understanding of the origin of the Solar System, such robotic missions
would help characterize and quantify the amount of extraterrestrial natural re-
sources (Kargel (1994)), as well as help quantifying the risk that such objects
may collide with planet Earth (Strange et al. (2013)). The NASA OSIRIS REx
Asteroid Sample Return Mission has arrived in proximity of the asteroid Bennu
in August 2018 and shortly after the spacecraft approach, initiated the map-
ping operations that will culminate with the collection of a surface sample to
be returned on Earth by 2023. Meanwhile, the Japanese space agency JAXA
has been operating Hayabusa 2 around asteroid Ryugu with similar intents.
Furthermore, NASA is planning for additional missions to small bodies such as
Lucy, who will be launched in 2021 to execute a tour of six Jupiter’s Trojans
(Levison et al. (2017)), and Psyche, an orbiter mission that will explore the
origin of planetary cores by studying the metallic asteroid, 16 Psyche (Oh et al.
(2016)).

Any of the currently operating and upcoming asteroid or comet missions
requires planning a set of robust close-proximity operations around small bod-
ies. Such operations tend to be extremely challenging and complicated by a
number of factors including irregular shape and mass distribution, weak and
uncertain gravitational field, accelerations due to outgassing of comets, as well
as perturbing accelerations due to solar radiation which in many cases tend to
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be of the same order of magnitude of the gravitational acceleration. Due to
such factors, the orbital dynamics around small bodies significantly deviates
from the ideal Keplerian motion and tends to be highly irregular. In strongly
perturbed dynamical systems, the orbital motion tends to be very unstable and
many orbits either escape or crash on the small body surface. Each small body
exhibits a certain number of orbits that can be considered to be stable over
a long period of time (Berry et al. (2013)). Likewise, planning and executing
close-proximity operations such as hovering, landing and Touch-And-Go (TAG)
(Brillouin (1933)) require an accurate characterization of the dynamical envi-
ronment including accurate knowledge and representation of the gravitational
field. Indeed, precise design of descending trajectories requires accurate knowl-
edge of the gravitational acceleration. Autonomous, closed-loop operations may
need an efficient and fast representation of the gravity field near the surface for
on-board calculations of the guiding acceleration command and/or timing the
impulse.

The classical approach to modeling the gravitational field has been via the
spherical harmonics expansion method. The multi-pole expansion has been
largely employed to represent the gravitational potential field because of the
high accuracy ensured with relatively low computational cost. Indeed, once
the gravitational coefficients are measured (e.g. via a radio science orbital cam-
paign during the operational phase), the gravitational acceleration can be easily
computed by taking the spatial derivatives of the potential harmonics with the
desired degree of precision. However, the mathematical convergence of the se-
ries is guaranteed only for points outside the so-called Brillouin Sphere, i.e.
a sphere centered at the expansion center and circumscribing the outermost
mass element of the small body (Russell and Arora (2012a)). Inside the sphere,
the series of harmonics is known to diverge. Whereas the divergence does not
constitute a problem for near-spherical small bodies, it causes major issues for
bodies exhibiting irregular shape and mass distribution. As a result, the ex-
terior potential is not capable of modeling the gravitational field inside the
Brillouin Sphere. Alternatives to the exterior gravity model potential exist, e.g.
the mass concentration (mascon) model (Werner and Scheeres (1996a)) and the
polyhedral model (Takahashi et al. (2013a)). Whereas the first model tends to
be inaccurate, the polyhedral gravity field can accurately describe the gravity
field as function of the density (homogeneous or heterogeneous). However, the
polyhedron model is very computationally expensive and generally not suitable
for ground-based Monte Carlo simulations or for on-board propagation of the
spacecraft dynamics. Recently, the so-called interior gravity field expansion has
been investigated both from a theoretical (Takahashi et al. (2013a)) and com-
putational (Huang et al. (2006b)) point of view. The method, which is a variant
of the exterior gravity harmonic expansion, is computationally inexpensive but
tends to be less general and restricted to TAG scenarios because convergence
is guaranteed up to one point at the surface and total mapping has not been
studied.

Recently, there has been interest in exploring new methods in modeling the
gravitational field using a data-driven approach. For example, Yang et al. (Yang
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et al. (2020)) developed a computationally fast method to calculate the grav-
itational acceleration of small irregular bodies using Chebyshev polynomials.
The proposed approach relies on an analytical approximation of the polyhedron
gravity via polynomial interpolation. Similarly, Gao and Liao (Gao and Liao
(2019)) propose a Gaussian Process Regression approach to gravity acceleration
modeling. The overall idea is to directly approximate the map between position
around the asteroid and the corresponding gravitational acceleration using a
learning paradigm rooted in statistical machine learning.

In this paper, we propose a new methodology for modeling the gravity field
of an irregular small body for a fast, accurate, and efficient calculation of the
gravitational acceleration as function of the relative position around the small
body of interest. The methodology is based on a recently developed machine
learning approach called Extreme Learning Machines (ELMs) (Huang et al.
(2006a)) which employ a Single Layer Feedforward Network (SLFN) to model
the non-linear relationship between inputs and outputs. In this case, the goal
is to train, both in batch and sequential fashion, a SLFN to represent the re-
lationship between spacecraft position around the small body of interest and
the value of the gravitational acceleration (i.e. g(r)). We rely on a series of
physical models (e.g. polyhedral models) to accurately represent the spatial
variation of gravity field around the small body and sample the spacecraft posi-
tion to generate the training set ri, g(ri)

N
i=1 that specifies the desired functional

relationship. Subsequently, we employ the ELM theories to efficiently train the
network to learn the desired relationship g(r). Once trained and validated, the
ELM-based SLFN is capable of processing a new input position (i.e. locations
that have never been seen by the network) and rapidly compute the correspond-
ing gravitational acceleration. The method is particularly suited for situations
that require fast and accurate calculations of the gravity field as function of the
position (e.g. on-board propagation of spacecraft trajectories during operations
near the surface of a highly irregular body (Simpĺıcio et al. (2018); Furfaro et al.
(2013); Pinson and Lu (2018); Yang et al. (2019)).

This paper is organized as follows. First, the classical methods for comput-
ing the gravity field around small bodies (i.e. asteroids and comets) are briefly
reviewed. Then, the model-based, data-driven ELM approach is described
both theoretically and operationally. The Bayesian optimization approach is
discussed as fundamental methodology employed to tune the ELM hyper pa-
rameters. Subsequently, the proposed approach is evaluated in modeling the
gravity field of the asteroid 25143 Itokawa and the comet 67P/Churyumov-
Gerasimenko. High-fidelity polyhedron models are employed to generate the
desired training set and to evaluate the performance of the proposed ELM
modeling approach for both local and global gravity field determination. The
ELM-based gravity acceleration is also employed to compute the closed-loop,
energy-optimal acceleration command that may occur during real-time guided
landing scenarios. The paper ends with conclusions and a look at future efforts
beyond this study.
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2. Review of Methods for Modeling the Gravity Field in Small Bodies

2.1. Spherical harmonics expansion

The most common and best documented approach concerns the representa-
tion of the gravity potential as derived by an expansion of orthogonal spherical
harmonics, hereinafter denoted as SH, for brevity’s sake. One common notation
for the exterior gravitational potential is:

U(r, φ, θ) =
GM

r

∞∑
n=0

(
R?

r

)n n∑
m=0

Pnm sinφ
[
anm cos(mθ) + bnmsin(mθ)

]
(1)

where R? is the reference radius, Pnm is the associated Legendre function of de-
gree n and order m, and anm and bnm are the spherical harmonics coefficients;
the spherical coordinates (r, φ, θ) are radius, latitude and longitude respectively.
One major advantage of such an approach lies in the possibility of adjusting the
complexity of the representation depending on the required accuracy by trun-
cating the series, thus reducing the computational cost of the algorithm. In fact,
in most applications, a suitably accurate gravitational model can be achieved
by retaining only few relevant terms of the expansion. As analyzed by Werner
and Scheeres (1996b), the main flaw of the SH approach is its unstable con-
vergence behaviour inside the Brillouin sphere, which can be identified as the
sphere circumscribing the body. Evaluating the gravity potential of an arbitrary
object through SH inside craters, valleys and tori, may produce grossly incorrect
results, making this approach unreliable for dynamical environment modeling
when performing Touch-and-Go (TAG) or landing on irregular bodies. Taka-
hashi and Sheeres (Takahashi et al. (2013b)) recently presented a method to
extend the convergence region within the Brillouin sphere by relying on interior
spherical harmonics expansion. Although the series convergence issue is bril-
liantly tackled, the degree of complexity introduced does not make this method
appealing for practical implementations of on-board guidance algorithms. It’s
worth mentioning that another deficiency of the SH approach is the lack of a
cheap and systematic check condition to discriminate between points inside and
outside the volume of the body.

2.2. Mass concentrations

Mass Concentrations (MASCONS) offer an alternative to model the gravity
field of an object. The use of localized finite concentrated masses, distributed in
grids over a volume to realize the entire mass of the body, has been around
since the first satellite geodesy applications in the early 1970s (Weightman
(1967), Russell and Arora (2012b)). Original formulations involved combina-
tion of global SH solutions and accurate local MASCONS descriptions. Indeed,
it’s common practice to use refined mass elements to describe accurately local
gravitational effects along a reference path, while the mass elements distribution
is coarser anywhere else.
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The MASCONS approach converges to the actual gravitational potential of
the mass distribution considered, but it is in general less accurate than SH, given
the same computational effort. Because of its natural structure, MASCONS is
well suited for parallel computation implementations. But despite the simplicity
and the attractive convergence properties, an accurate estimate of the gravity
force is generally affected by large errors, and requires a very high number of
mass elements, as documented in Werner and Scheeres (1996b). Analogously to
the SH approach, MASCONS does not provide information on the a point field
being inside or outside the body.

2.3. Polyhedron model

In 1996 R.A. Werner et al. presented a method to use polyhedral models in
order to determine in closed form the gravitational field of an arbitrary object.
A polyhedral model consists of a number of triangular plates that approximate
the shape of the celestial body, as accurately as possible, depending on the
number of facets considered.

Figure 1: Low resolution polyhedron model of 25143 Itokawa. Low resolution model of asteroid
25143 Itokawa from Gaskell et al. (2008), with 49152 triangular plates.

As discussed in reference Werner and Scheeres (1996b), using the divergence
theorem and green’s identities, the gravity potential and the attraction can be
expressed as a summation of integrals over the number of facets of the target.
In the particular case of a polyhedron, the exact analytical solution does not
involve numerical integral but can be expressed as a pure summation, including
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logarithms and inverse tangents as most complex operations:

∇U(r) = σG

(
−

∑
e∈edges

EereLe +
∑

f∈faces

F frfωf

)
(2)

Expressions of matrices Ee, F f and scalars Le and ωf are formulated in Werner
and Scheeres (1996b). This suggests that, although very simple, such a strategy
suffers from high computational demands when very accurate shape models,
with a number of facets in the order of millions, are considered. The analytical
expression (2) is the exact solution of a uniform polyhedron with given density,
and the better the actual shape is resembled by the facets, the better Equa-
tion (2) approximates the actual field and it is as close as the actual field as
the accurate is the shape approximation. Unlike SH approach, the polyhedron
method can be used well within the exterior Brilluoin sphere up to the very
surface of the target, without incurring undesired large misestimations. In fact,
the exact gravity potential solution holds also in proximity of those morpho-
logically peculiar regions such as ridges, valleys and even tori. Contrary to SH
and MASCONS, the polyhedron model also provides an effective and cheap
way to distinguish points that are inside or outside the target body. In fact, as
discussed in reference Werner and Scheeres (1996b) , the discriminant between
points inside, on the surface and outside the polyhedron is the value of the
Laplacian of the gravity potential ∇2U , which is a function of only the same
quantities required to compute the local gravity field in the same position:

∇2U(r) = −σG
∑

f∈faces

ωf (3)

The tricky and elegant derivation of the closed form expression of the polyhedron
gravity potential, attraction, and Laplacian is discussed in detail in reference
Werner and Scheeres (1996b).

3. Machine Learning Methodology

In this section, we describe the proposed methodology and approach to model
the functional relationship between spacecraft position and gravitational accel-
eration of small bodies. Importantly, the ELM theories are employed to train a
SLFN that quickly and accurately computes the gravitational acceleration ex-
ibithed by a specified asteroid or comet. Importantly, the bayesian optimization
framework is employed to optimize the network hyperparameters (e.g. number
of neurons, regularization parameter) to maximize the network performance.

3.1. Extreme Learning Machines

In the last decades, Extreme Learning Machines (ELM) have been proposed
as an innovative method to overcome many of the challenges presented by the
conventional machine learning algorithms (Support Vector Machines, Neural
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Table 1: Overview of activation functions.

Activation Functions
Name Expression Output range

Step h(x) =

{
0 x < 0

1 x ≥ 0
x = 0 ∨ x = 1

Sigmoid h(x) = 1
1+e−x x ∈

(
0, 1

)
Hyperbolic tangent h(x) = ex−e−x

ex+e−x x ∈
(
− 1, 1

)
Arctangent h(x) = arctan(x) x ∈

(
− π

2 ,
π
2

)

ReLu h(x) =

{
0 x < 0

x x ≥ 0
x ∈

[
0, ∞

)
Gaussian Function h(x) = e−x

2

x ∈
(
0, 1

]

Nets, Huang (2015)). It has been shown that ELM can achieve better general-
ization capabilities and learning scalability without the requirement of human
intervention and with much less computational effort, with learning times re-
duced by factor of thousands if compared with traditional learning algorithms
(Huang et al. (2012)). ELM were originally developed for SLFNs, and then
extended to “generalized” SLFNs, which may not be neuron-alike (Duan et al.
(2016)). The idea that learning can be achieved without iteratively tuning
highly-specialized neurons of a network (which is recently confirmed by evi-
dences in the field of biological neural systems) is the base onto which modern
ELM theories have been built (Fusi et al. (2016)). It has been proven by Huang
et al. (2012) that if a SLFN with tunable hidden nodes’ parameters can learn
a regression of a target function f(x), then, if the hidden nodes’ activation
functions hi(x,wi, bi), i = 1 . . . L are non-linear piecewise continuous, train-
ing of the network does not require tuning of those parameters. Examples of
commonly used activation functions are reported in Table 1. This means that
input weights wi and biases bi of hidden nodes can be assigned randomly, and
a SLFN will still maintain the property of universal approximator, as long as
the output weights βi are calculated properly. This proposition, which is the
cardinal principle of ELM, has been formalized by Huang et al. (2012):

Theorem 1. Given any non-constant piecewise continuous function h : R 7→
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R, if Span{h(x,w, b) : (w, b) ∈ Rd × R} is dense in L2, for any continu-
ous target function f and any function sequence {hi(x) = h(x,wi, bi)}, i =
1, . . . , L randomly generated based on any continuous sampling distribution,
limL→inf ‖f − fL‖ = 0 holds with probability 1 if the output weights βi are
determined by ordinary least square to minimize ‖f(x)− fL(x)‖.

Expanding to the case of N training set inputs
{
xj
}

with j = 1 . . . N , one
can write the N output equations of the SLFN as:

yj =

L∑
i=1

βihi(xj ,wi, bi) for j = 1 . . . N (4)

with βi ∈ Rmout×1 and wi ∈ Rmin×1, where min is the dimension of the input
and mout is the size of the output. A training process in which all the data in the
training set are presented at the same time to the learner is called batch learning.
In Figure 2 is depicted the SLFN presented with a batch of N examples, and
the connections between input, hidden and output layer.
Let’s define the hidden layer matrix of the network as H, whose i-th column

xk,1

xk,2

xk,3

xk,m in

w1, b1

w2, b2

wL, bL

yk,1

yk,m out

x1,1 x2,1 xN,1

y1,1

y1,m out

y2,1

y2,,m out

y3,1

yN,m out
...

x1,2 x2,2 xN,2

x1,3 x2,3 xN,3

x1,m in x2,m in xN,m in

... ...

... ... ...

...

...

...

...

...

...
m in

N

N

m out

β1

βL

β2

...

...

...

Figure 2: N observations
{
xi,yi

}
are available to the learner include input data (xi on the

left) and output data (yi on the right) and the parameters of the ELM is adjusted (green in
center) to match the data. The output of the learner is, for each of the inputs, expressed by
Equation 4.

is the output of the i-th hidden node with respect to the set of inputs X =
[x1, . . . , xN ] ∈ Rmin×N :

H =

 h(x1,w1, b1) . . . h(x1,wL, bL)
...

. . .
...

h(xN ,w1, b1) . . . h(xN ,wL, bL)

 , H ∈ RN×L (5)

It is possible to write in compact matrix formulation the outputs of the SLFN
when the set X is processed through the hidden layer, by gathering yi, i =
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1, . . . , N as the columns of Y ∈ Rmout×N

fL(X) = Y = Hβ with β =

β1
T

...

βL
T

 , β ∈ RL×mout (6)

The training algorithm of ELM is aimed at the minimization of the cost func-
tional E representing the training error of the SLFN.

E = ‖Hβ − T ‖2 , with T =

 t1
T

...
tN

T

 , T ∈ RN×mout (7)

Where T is the collection of the supervisor responses. According to Theorem
1, and for the most common case in which the number of nodes in the SLFN
is lower than the number of data to fit, the trained network is a universal
approximator if β are assigned according to the Least Square Error (LSE) of
the overdetermined linear system:

Hβ = T (8)

The necessary and sufficient condition to have the solution β with minimum L2

norm among all least squares solutions is to evaluate β using the Moore-Penrose
generalized inverse of the hidden layer matrix H (Serre (2000)), Casella et al.
(2007) . Accordingly, the ELM training algorithm for SLFN can be written as:

β = H†T H† = (HTH)−1HT (9)

As suggested by the works of Bartlett (Bartlett (1997), Bartlett (1998)), the
choice of β as the set of smallest output weights satisfying the least squares
condition ensures good generalization performance of the network when the
number of hidden nodes is high. As it can be observed by considering Equa-
tion 9, the ELM training algorithm does not require iterative tuning of any
parameter, but it just consists of the expensive evaluation of the pseudo in-
verse of H, usually obtained via Singular Value Decomposition (SVD) with a
huge computational complexity O(NL2). However, as discussed in Huang et al.
(2012), ELM approach allows reduction of the effort required for the training of
a SLFN as compared with iterative, gradient-based algorithms with the same
accuracy performances, while, at the same time, the capability of prediction on
real world data is increased by choosing the smallest output weights β. This
training paradigm is focused on the efficiency in performing well on the training
data, but it can lead to overfitting, i.e. poor generalization capabilities of the
regressor: even if a perfect training with zero error can be accomplished, dis-
crepancies on the “never seen” test set could be unacceptably high. The ELM
training algorithm (Equation 9) is then said to be a realization of the Empirical
Risk Minimization (ERM) (Vapnik (1992)) induction principle, meaning that
the training is aimed only at the minimization of a risk functional, in this case
the squared norm of the errors, depending only on the known input-response
data.
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3.2. Regularized Extreme Learning Machines

As opposed to ERM, Structural Risk Minimization (SRM) theory is based
on the simultaneous minimization of a risk functional considering two terms: a
term directly related to the empirical risk, and a further term concerning the
complexity of the learning machine (Vapnik (1992)). It’s proven in Bartlett
(1997) that ELM generalization capabilities can be enhanced if a further term
controlling the magnitude of the output weights β, called regularization term,
is combined to the empirical risk functional. Huang et al. (2012), provided a
detailed demonstration of regularization techniques applied to ELM, and showed
the efficiency of the above mentioned approach.
The regularized ELM training algorithm is then aimed at the minimization of
the following risk functional:

E =

N∑
i=1

‖ξi‖
2

+K ‖β‖2 (10)

or, equivalently and in compact form:

Ẽ =
1

2
C ‖Hβ − T ‖2 +

1

2
‖β‖2 (11)

with C = 1
K and subject to the training residuals equality constraints:

ξi,j = h(xi)βj − ti,j i = 1, . . . , N j = 1, . . . ,mout (12)

where ξi,j is the j-th component of the residual error on the i-th training sample.
The quantity h(xi) represents the hidden layer output corresponding to the
input xi, βj is the output weights vector linking the hidden layer to the j-th
output node, and ti,j is the j-th component of the i-th sample output. The
regularization factor K is a positive number expressing the importance of the
minimization of the empirical risk with respect to the magnitude of the output
weights β.
Minimization of Ẽ in Equation 11 is equivalent to solving the optimization
problem with lagrangian:

LẼ(β, ξ,λ) = C
1

2

N∑
i=1

‖ξi‖
2

+
1

2
‖β‖2 −

N∑
i=1

mout∑
j=1

λi,j(h(xi)βj − ti,j + ξi,j) (13)

The quantity λi,j is the Lagrange multiplier associated with the j-th component
of the i-th training sample. The optimality conditions are:

∂LE
∂βj

= 0 → βj =

N∑
i=1

λi,jh(xi)
T → β = HTλ (14)

∂LE
∂ξi

= 0 → λi = Cξi i = 1, . . . , N (15)

∂LE
∂λi

= 0 → h(xi)β − tTi + ξTi = 0 i = 1, . . . , N (16)
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with λi = [λi,1, . . . , λi,mout]
T and λ = [λ1, . . . ,λN ]T . Based on the number

of nodes in the hidden layer and the size of the training sets, different efficient
solutions are found to the above mentioned problem:

• The number of training samples is not huge: N ≈ L
Substituting Equations 14 and 15 in 16:( I

C
+HHT

)
λ = T (17)

Multiplying by HT and considering Equation 14, the training algorithm
of the regularized ELM can be written as:

β = HT
( I
C

+HHT
)−1

T (18)

• The number of training samples is huge: N � L
From Equations 14 and 15:

β = CHT ξ → ξ =
1

C
(HT )†β (19)

and substituting in Equation 16 and rearranging leads to the expression
of the output weights β:

β =
( I
C

+HTH
)−1

HTT (20)

which corresponds to the solution of mout linear systems of dimension L.

3.3. Large Dataset Management: Online Sequential ELM

When dealing with big training sets with millions of data, ELM tends to
become computationally extremely demanding, and most of the time, it becomes
practically impossible to rely on the LSE solution (Equation 9) to train a SLFN.
Two main causes can be identified.

• The number of elements of the hidden layer matrix H is N × L. The
memory used by the variable can grow very quickly, reaching orders of
magnitude of ∼ 1TB for networks with L ∼ 105 nodes and N ∼ 106

observations in the dataset.

• The computational cost in terms of number of operations in order to solve
the linear system in Equation 20 of dimension L is O(L3). As L becomes
high enough, the amount of CPU time required grows rapidly, resulting in
extremely large training times which makes this approach not practical.

Recently, a variant of ELM has been developed for cases, such as time series
predictions, in which not all training observations are available to the learner
simultaneously. In such scenarios, the learning machine needs to implement a
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modified algorithm in order to be able to learn from training samples presented
one-by-one or chunk-by-chunk. Consider a SLFN with L hidden nodes trained
using regularized ELM with an initial chunk of N0 available training samples
X0 = [x1 . . .xN0

]. Equation 20 including the regularization term can be written
as:

β0 = (HT
0H0 +

I

C
))−1HT

0 T 0 = K−1
0 H0T 0 (21)

with

H0 =

 h(x1,w1, b1) . . . h(x1,wL, bL)
...

. . .
...

h(xN0 ,w1, b1) . . . h(xN0 ,wL, bL)

 , H0 ∈ RN0×L

T 0 =

 t1
T

...
tN0

T

 , T 0 ∈ RN0×mout β0 =

 β1
T

...

βN0

T

 , β0 ∈ RL×mout

(22)

Now, assume that another chunk of N1 observations becomes available to the
learner, which now has to minimize the training error considering both the
previous and the current chunks of data presented, by suitably evaluating the
updated set of output weights β1:

L1 =

∥∥∥∥[H0

H1

]
β1 −

[
T 0

T 1

]∥∥∥∥2

(23)

The LSE solution (Equation 9) can be written as:

β1 =

([
H0

H1

]T [
H0

H1

])−1 [
H0

H1

]T [
T 0

T 1

]
= K−1

1

[
H0

H1

]T [
T 0

T 1

]
(24)

with K1 satisfying the relation:

K1 = HT
0H0 +HT

1H1 = K0 +HT
1H1 (25)

With some simple rearrangements, equation 25 can be rearranged:

β1 = K−1
1

([
H0

H1

]T [
T 0

T 1

])
= K−1

1

(
HT

0 T 0 +HT
1 T 1

)
=

= K−1
1

(
K0K

−1
0 HT

0 T 0 +HT
1 T 1

)
= K−1

1

(
K0β0 +HT

1 T 1

)
=

β0 +K−1
1 HT

1

(
T 1 −HT

1 β0

)
(26)

Since K−1
1 is used to evaluate the updated solution β1, it is convenient to use

an update formula for K−1
1 itself, by means of Woodbury’s formula (Golub and

Van Loan (2012)):

K−1
1 = K−1

0 −K
−1
0 HT

1

(
I +H1K

−1
0 HT

1

)−1
H1K

−1
0 (27)
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This process can be generalized to the case of sequential learning when the k+1
chunk of examples is presented to the SLFN. The update formula for β, which
requires the update for K−1 as well, is then given by Equations 29, 28.

βk+1 = βk +K−1
k+1H

T
k+1

(
T k+1 −HT

k+1βk
)

(28)

K−1
k+1 = K−1

k −K
−1
k H

T
k+1

(
I +Hk+1K

−1
k H

T
k+1

)−1
Hk+1K

−1
k (29)

The innovation term T k+1−HT
k+1βk in Equation 28 can be seen as the residual

when the output weights associated to the previous sequential learning are used:
if this term is zero, then the outdated output weights perfectly fit the new
chunk of observations, so βk+1 = βk. An important feature of the recursive
training is that each time a new chunk of Nk+1 data is presented, the update of
output weights βk+1 involves only terms evaluated at the current and previous
sequential step. This means that the SLFN can be trained sequentially by
presenting small chunks of data with Nk � N , thus reducing the amount of
memory required to store big variables such asH, and at the same time allowing
for memory clearing at each step.

In fact, each time a chunk of training observations is presented to the ma-
chine, it is discarded as soon as βk+1 is evaluated, along with all the quantities

related to the previous learning step, except for βk and K−1. It is remarked
that, comparing the algorithm for R-ELM (Equation 9) and the initial learn-
ing phase of OSELM described in Equation 21, it can be observed that when
rank(H0) = L, ELM and OSELM can achieve the same learning performances.
In order to have rank(H0) = L, the number of initialization data should not be
less than the hidden node number (N0 ≥ L). Generally, OSELM suffers some
drawbacks (Liang et al. (2006)):

• In general OSELM relying on Recursive Least Square Error (RLSE) train-
ing algorithm is less accurate than ELM, given the same amount of hidden
nodes in the network. Best performances can be obtained if the number of
observations in the initial chunk of data is equal to the number of neurons
in the SLFN.

• If regression or classification can be performed on the same machine using
the same set of training data, in general OSELM will be more computa-
tionally expensive than batch learning using classical R-ELM.

3.4. Performance indices

In order to assess the risk associated to predictions by the trained learning
machine, several performance indices commonly used in the analysis of regres-
sion models have been considered in this study:

Mean Square Error (MSE): This scalar index is used to indicate the ex-
pected value of the square of the difference between the output of the
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trained SLFN and the target response given by the the supervisor:

MSE =
1

N

N∑
i=1

‖yi − ti‖2 (30)

where N is the number of elements included in the set considered. Values
of MSE close to zero mean that the regressor model is able to fit the data
efficiently.

Root Mean Square Error (RMSE): It is the square root of the mean square
error and represents an the standard deviation of the residual between the
prediction and the observation:

RMSE =

√√√√ 1

N

N∑
i=1

‖yi − ti‖2 =
√
MSE (31)

This quantity is an indication, on average, of how far the prediction of the
SLFN is from the real observation.

Normalized Root Mean Square Error (NRMSE): It is a non-dimensional
performance index suitable for the comparison of efficiency on sets char-
acterized by targets in a wide magnitude range.

NRMSE =

√
1
N

∑N
i=1 ‖yi − ti‖

2√
1
N

∑N
i=1 ‖ti − µt‖

2
=
RMSE

σt
(32)

where µt is the mean value of the targets and σt is the standard deviation
of the targets. NRMSE is suitable to represent and compare prediction
performances for very different targets

3.5. Bayesian Optimization

This section is aimed at giving a brief overview of Bayesian optimization, as
a tool to perform automatic tuning of complex learning machines hyperparam-
eters, a practice that is often left to be handled by human experience or brute
force search. This global optimization approach is well suited for automatic set-
ting of the architecture of the network in order to minimize an objective function
b = b(x) defined on a bounded subset Γ ∈ RD. This function usually does not
have a simple closed form representation or it is too expensive to evaluate, and
it is treated as an unknown deterministic or stochastic ”black-box” which can
be sampled at any point x ∈ Γ. The algorithm consists of a sequential search
that, at the k-th round, selects a location at which the objective function is
queried. This observation, along with the previous ones, is used to infer a belief
on the behaviour of the objective function. The process of sampling and update
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is iterated until a specified stopping criterion is met: the algorithm returns the
final recommendation of x̄ which minimizes b(x), for x ∈ Γ.

x̄ = argmin
x∈Γ

b(x) (33)

Differently from other optimization algorithms, the Bayesian approach does not
rely on information about local derivatives of the objective function, but it is
rather aimed at building and refining a model of b(x) via Bayesian posterior
update based on the entire set of samples acquired during previous sequential
decision rounds. Bayesian optimization relies on Gaussian processes (GP) re-
gression to fit the objective to the incoming observations, while the choice of
the next query point is determined by an acquisition function evaluated on the
refined model.

A GP is a stochastic process with the property that any finite dimensional
collection of N random variables {b(xi),xi ∈ Γ}, i = 1, . . . , N , drawn from the
GP, has a multivariate gaussian distribution, identified by a mean µ(x) : Γ →
RN and a covariance matrix K ∈ RN×N , whose components ki,j , i, j = 1 . . . , N
map two elements xi,xj ∈ Γ into R. This property can be written as: b(x1)

...
b(xN )

 ∼ N(
µ(x1)

...
µ(xN )

 ,

k(x1,x1) · · · k(x1,xN )
...

. . .
...

k(xN ,x1) · · · k(xN ,xN )

) (34)

The notation f ∼ N (µ,K) is used to state that f has multivariate gaussian
distribution. Referring to Equation 34, it is natural to extend the property
to collections of random variables with N → ∞: in this case b is seen as an
extremely high dimensional vector, drawn from an extremely-high multivariate
distribution. The elements of the huge vector b represent the value of the ob-
jective variable given the infinite set of inputs xi: intuitively it can be seen
that b(x) is a function, drawn from the GP characterized by a mean function
µ(x) : Γ 7→ R and a covariance function or kernel k(x,x) : Γ × Γ 7→ R. Gaus-
sian processes are then the generalization of Gaussian distributions: whereas
distributions describe vectorial or scalar random variables, processes governs
the properties of functions (Williams and Rasmussen (2006)). Equation 34 can
be written in compact form as:

b(x) ∼ GP(µ, k) (35)

meaning that it is assumed that the unknown objective b is a Gaussian Process
(GP). At the beginning of the routine to find the minimum of b(x), there is
no empirical information about this function. Before gaining samples, only a
priori beliefs can be inferred in terms of mean and covariance functions of the so-
called prior process. Since any real valued µ(x) may give rise to an acceptable
GP, it is assumed, without loss of generality, that µ0(x) = 0 over the entire
bounded domain Γ. On the other hand, more care should be taken in the choice
of the kernel k, which must be such that, given any set of {xi, . . . , xN}, the
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covariance matrix K is positive definite, where K is:

K =

k(x1,x1) · · · k(x1,xN )
...

. . .
...

k(xN ,x1) · · · k(xN ,xN )

 (36)

The other role of the prior covariance k is to express our belief on the correlation
(i.e. the smoothness) of the unknown objective function: in practice this means
that, as it is reasonable to assume in many applications, the kernel should
represent the belief that similar inputs produces similar outputs of the objective
function. Among the many kernel functions available in the literature, Matlab
built-in Bayesian Optimization routine bayesopt uses by default the kernel
function automatic relevant determination (ARD) Matèrn 5/2 (Williams and
Rasmussen (2006)):

k(xi,xj ,θ) = σ2
f

(
1 +

√
3 r

σl

)
exp

(
−
√

3 r

σl

)
(37)

parametrized on the components of the set of parameter θ, which for the Matèrn
5/2 case are σl and σf representing a characteristic length scale and the signal
standard deviation, respectively. The quantity r is defined as:

r =
√

(xi − xj)T (xi − xj)

Once the prior process is assumed, the first samples {xk, yk} of the objective
function are acquired: a Bayesian update procedure is implemented to select
the process conditioned on the newly arrived sample by adjusting the kernel
parameters θ. The Matlab built-in function fitrgp, called by bayesopt is used
to fit the gaussian process to the objective function samples. Assuming that
the samples are affected by a noise with variance σ2, the posterior Q, i.e. the
distribution conditioned on the evidences {xk, yk}, will also be a GP. The mean
function of the posterior is interpreted to be the best fit to the data, while the
posterior covariance function is representative of uncertainty on the fit of the
data.

Among the many acquisition functions that can be found in the literature,
the algorithm considered in the case studies presented in this document employs
the family of the expected improvements aEI(x). The expected improvement
considers the expected amount of improvement in the objective function, ignor-
ing values of the optimization variables that cause an increase in the objective.
Supposing that the best function observed so far is bbest evaluated at xbest, let’s
define the utility function u(x) defined as:

u(x) = max(0, bbest − b(x)) (38)

A reward equal to bbest − b(x) is then gained only if b(x) is less that bbest,
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otherwise it is null. The expected improvement is then defined as aEI(x, Qk):

aEI(x, Qk) = EQk
[u(x)|x,Dk] =

∫ bbest

−∞
(bbest− b(x))N (b(x);µ(x), k(x, x)))db

= (bbest − µ(x))φ(bbest;µ, k(x,x)) + k(x,x)N (bbest;µ(x), k(x,x))) (39)

where xbest is the location corresponding to the minimum mean of the posterior
observed so far. The next query point, i.e. the k+ 1 observation location of the
Bayesian optimization algorithm is then selected according to:

xk+1 = argmax
x

aEI(x, Qk) (40)

Considering Equation 39, it can be seen that aEI is a combination of two terms:
an exploitative term, guiding the choice of the next observation where the mean
prediction is low and an explorative term which make regions with high un-
certainty attractive for the next query. This exploration-exploitation tradeoff
characterizes the family of expected improvement acquisition functions. The
process of sampling, prior model updating to a posterior, and acquisition func-
tion evaluation is repeated for each sampling round, until the maximum number
of observations is reached, or until the difference between consecutive recom-
mendations x becomes smaller than a fixed threshold.

4. Results: Gravity field modeling

In this section, we report the design, training, validation and the performance
obtained while applying ELM theories combined with bayesian optimization to
the problem of modeling small bodies gravity field. To this end, we consider
two test cases, i.e. asteroid Itokawa and comet 67P/Churyumov-Gerasimenko,
and we employ high-fidelity polyhedron models to accurately generate train-
ing points representative of the functional relationship between position and
corresponding gravitational acceleration generated by the small body. Impor-
tantly, for both cases, we consider the ability of the trained SLFN to compute
the gravitational acceleration as part of a potential on-board, energy-optimal,
closed-loop guidance system for landing on the small body surface (Hawkins
et al. (2012)).

4.1. ELM-based SLFN for Asteroid Itokawa

In this first case, we focus on asteroid Itokawa and we show the design,
training and validation of a SLFN capable of computing the gravitational accel-
eration for the above mentioned small body. Importantly, we evaluate accuracy
and computational training times for both global and localized gravity mod-
eling. The localized version of the forward network has been employed in a
simulated guided landing scenarios where the feedback generalized Zero-Effort-
Miss/Zero-Effort-Velocity (ZEM/ZEV) algorithm (Guo et al. (2013); Hawkins
et al. (2012)) employs the trained SLFN to propagate the trajectory on-board.
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The polyhedron model has been employed to generate the training set. More
specifically, the shape models, derived by R. Gaskell (Gaskell et al. (2008)) and
used to generate the datasets for global and local 25143 Itokawa gravity field,
are based on Hayabusa AMICA (Asteroid Multi-Band Imaging Camera) im-
ages acquired between September 11th and November 12th, 2005. These shape
models are derived from the Implicitly Connected Quadrilateral (ICQ) models,
and they have been adjusted to suit an easy management in MATLAB R©, by
composing a matrix V ∈ RNV ×3 whose rows contain the body frame coordi-
nates of each of the vertices. The row number in V represents the vertex ID.
Each shape model is also comprised of a connectivity matrix F ∈ RNF×3 that
represents how the facets are composed, by indicating on each row the ID of the
three vertices that, connected, identify the triangular plate. All models are ex-
pressed in body fixed reference frame and describe a set of triangular plates that
approximate the asteroid surface, with different resolutions available (Gaskell
et al. (2008)).

A first attempt to learn the global mapping from the body-fixed Cartesian
coordinates to the local gravitational attraction field vector, within a spherical
region surrounding the body, was performed using a low-resolution, constant-
density polyhedron model with 49, 152 plates. A higher-fidelity polyhedron
model employing a higher resolution model with 3, 145, 728 triangular faces is
also considered to accurately model the gravitational acceleration in a localized
portion of the asteroid space. For practical reasons, due to the high computa-
tional effort of the Polyhedron algorithmic routine using such a high number
of faces and vertices, the landing guidance study is limited to the inside of a
cylindrical region broad enough that all the landing trajectories considered are
well within it.

4.1.1. Global gravity model for 25143 Itokawa

In order to train a SLFN to learn the functional relationship between posi-
tions about 25143 Itokawa and the corresponding gravitational acceleration, a
dataset of N = 107 input-response

{
ri, g(ri))

}
, i = 1, . . . , N pairs has been

assembled. The field points ri have been sampled from a uniform distribution
within a sphere containing the entire asteroid, with radius Rsphere = 670m.
The general process of evaluating the k-th sample consist of three steps:

Step 1: The k-th field point position r is randomly sampled within the men-
tioned sphere.

Step 2: The constant density polyhderon gravity g(r) is obtained by solving
Equation 2

Step 3: Using all the necessary quantities already calculated in the previous
step, a test criterion is employed to discard the samples if its location is
inside the asteroid surface.
This is executed by evaluating the Laplacian of the gravity potential U(r):

∇2U(r) = −σG
∑

f∈faces

ωf (41)
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As discussed in Werner and Scheeres (1996b) and reported in reference
Werner and Scheeres (1996b), whenever the field point lies within the poly-
hedron, summation in Equation 41 is equal to 4π, whereas on the outside
region of the polyhedron, the Laplace’s equation holds, and ∇2U(r) = 0.
Therefore, the following cases can occur:

∇2U(r) =

{
−4πσG, if r inside

0, if r outside
(42)

The shape is initially approximated by a low resolution polyhedron model
(Gaskell et al. (2008)). The density of the body is assumed uniform and equal
to be ρ = 1.9 × 103 kg/m3 (Ostro et al. (2004)). Using a single computational
node of the University of Arizona Ocelote cluster, with 28 core processors Intel R©

Xeon R© E5-2695, with a speed of 2.3 GHz and 6 GB RAM each, the mean time
to get a single sample is Tmean ≈ 3.5 s. Overall, the CPU time required to
build the entire dataset is approximatively TCPU,dataset ≈ 9800h. The obser-
vations are randomly partitioned into a training set and a test set, containing
respectively 90% and 10% of the whole amount of data.

Figure 3: Training points selected for the global modeling of Itokawa gravitational acceleration.
The rightmost panel shown the partition strategy employed to implement sequential training
via OSELM

Because of the huge number of training points (i.e. 10 million), the SLFN
training via regularized ELM batch learning would be extremely expensive both
in terms of training time and in terms of required computational resources. Con-
sequently, we developed a strategy to make the computational time manageable.
Such strategy consists of a sequential training approach using the OSELM al-
gorithm, for a SLFN with sigmoid hidden nodes. The whole amount of field
points in the training set is sub-sequentially partitioned according to their po-
sition in concentric spherical shells, each one containing the same number of
Nshell = 500, 000 points and with the same data density (see Figure 3). The
initial training is performed using 100, 000 samples in the inner shell, which
contains points closest to the asteroid surface. Once the initial training is com-
pleted, the next chunk of data rendered available to the learner is taken from
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the outer shell. This sequential shells strategy continues as more samples are
provided, moving outward until the last field points in the outermost shell are
used. The network architecture has been chosen according to the best esti-
mated testing accuracy reachable after the initial training set, returned by the
Bayesian optimization routine. This choice has been guided by the assumption
that generalization capability in the region closest to the surface, where the
functional relation g(r) show the most irregular behavior (Figure 5), has the
strongest impact on the performances over the whole spherical region described
above. The bounded variables of the optimization are:

• The number of nodes in the hidden layer: L ∈
[
104; 5× 104

]
∈ N

• The regularization factor: C ∈
[
104; 5× 105

]
∈ R

Among the many performance indices to express the goodness of a regression
performed by a learning machine, the objective function of the Bayesian opti-
mization has been set to be the 10-fold cross-validation loss in terms of Nor-
malized Root Mean Square Error (NRMSE), defined in Section 3.4. Since the
supervisor response to an input position r in this case is a vector g ∈ R3, the
definition of NRMSE given in Equation 32, returns three values NRMSEtest,j ,
with j = 1to3, one for the regression of each of the components. Without favor-
ing the minimization of mispredictions of any of these components, the objective
function b(C,L) is considered to be simply the mean of these three values:

b(C,L) = NRMSEtest =
1

3

3∑
j=1

NRMSEtest,j (43)

The stopping criterion is fixed in terms of maximum of function evaluations
Nmax, with Nmax = 30. This is shown to be a safe value since the minimum
objective function estimation doesn’t change significantly after the tenth sam-
pling, as it is possible to observe in Figure 20.
Once the optimizer returns its recommended x̄ and the SLFN is trained with
the whole dataset, the actual generalization capability can be checked on the
test set, which is unseen during the entire optimization process.

Figure 20 also shows that the actual minimum test NRMSE is found for
values of C̄ = 5× 105 and L̄ = 5× 104 at the very edge of the searching inter-
val. This suggests that further increasing the maximum number of nodes would
lead to better performances of the net, without the occurrence of overfitting.
However, this would result in a very complex learning machine, whose training
would be extremely expensive both in terms of time and in terms of computa-
tional resources required, without a significant or worthy improvement on the
objective function estimated minimum. Results of training and test regression
performed with the SLFN trained with OSELM are reported in Figures 6 and
7, respectively. It can be seen that the learner is able to predict accurately
the gravitational acceleration both on the training data and on the never-seen
field points of the test set. It can be seen that the learner is able to predict
accurately the gravitational acceleration on the training data, with an achieved
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(a) Objective model (b) Minimum observed and estimated objective

Figure 4: 25143 Itokawa: Bayesian optimization results. Results of Bayesian optimization
of the SLFN for the global gravity modeling of Itokawa. Figure (a): NRMSEtest mean
prediction returned by the optimizer after 30 evaluations as a function of the regularized
ELM hyperparameters, along with the observations and the recommended x̄ =

[
C̄, L̄

]
. Figure

(b): the observed and estimated minimum objective function as the number of observations
increases.

NRMSEtrain = 0.0434 and RMSEtrain = 1.994 × 10−7m/s2. Good perfor-
mances are also observed on the test set samples, with values of
NRMSEtest = 0.0440 and RMSEtest = 2.007× 10−7m/s2, as indicating that
the SLFN is able to efficiently generalize.

(a) (b) (c)

Figure 5: Gravity attraction field about 25143 Itokawa, Figures (a),(b) and (c) represent the
gravity acceleration components gx, gy and gz respectively, in the x-y plane. The value of
the gravity attraction is evaluated using the low resolution polyhedron model Gaskell et al.
(2008)

4.1.2. Local gravity model for 25143 Itokawa

In this section, we employ a SLFN to accurately model a local gravita-
tional field in a cylindrical region near the surface based on a high resolution
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(a) (b) (c)

Figure 6: 25143 Itokawa Low resolution. Regression plots: training set, Linear regression
plot of samples used to train sequentially the learning machine, reporting the target constant
density low resolution polyhedron gravity attraction of Itokawa compared with the output of
the SLFN with L̄ = 5×104 and C̄ = 5×105. Training samples have been presented in chunks
of size Nchunk = 5000.

(a) (b) (c)

Figure 7: 25143 Itokawa Low resolution. Regression plots: test set, Regression plots on test
field points, reporting the target gravity attraction of the constant density low resolution
polyhedron compared with the one predicted by the SLFN on Itokawa.

polyhedron and show how the SLFN can be employed in a feedback guid-
ance algorithm for a soft landing operation on 25143 Itokawa. Expressed in
principal axes frame, the landing site is chosen as a point with coordinates
r = [10.0m, −40.0m, 112.5m]T on the northern side of the surface of the as-
teroid. We selected a cylindrical region as the region of interest. The radius
and the height of the cylinder, depicted in Figure 4.1.3, are rcyl = 150m and
hcyl = 800m, as measured from the x− y plane. A dataset with N = 106 field
points randomly sampled, according to a uniform distribution, inside a cylin-
drical region is obtained using a high-resolution constant density polyhedron
model with Nplates = 3145728, and a density ρ = 1.9 × 103 kg/m3. The local
attraction g(r) is computed executing the routine presented in Section 4.1.1,
using MATLAB R© parallel pool toolbox in order to reduce the time required
to perform the huge number of basic operations involved in Equation 2. Using
the same computational resources employed for the global gravity field modeling
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case of Section 4.1.1, the mean time to obtain a single sample is Tsample ≈ 168 s.
Comparing the computational efforts to evaluate the gravity fields of the

same target in these two scenarios, it is evident that the accuracy of the shape
model strongly affects the complexity of the computation, making on-board,
real-time, feed-back guidance requiring the knowledge of the exact polyhedron
gravity contribute unfeasible. The total amount of required CPU time for the
generation of the entire dataset is TCPU,dataset ≈ 46872h. Note that this par-
ticular implementation of the polyhedron model has been done using a legacy
platform such as MATLAB coupled with a set of parallel processors. We believe
that the training set generation computational time may be further reduced by
one order of magnitude if a different coding language is employed (e.g. C++).

(a) (b)

Figure 8: Local field points in a cylinder on 25143 Itokawa. Some of the field points in the
region of interest for the modeling of the local gravity field of 25143 Itokawa. Top view of the
cylindrical volume on the left.

The learning machine is a SLFN with L = 50, 000 sigmoid hidden nodes that
has been trained using OSELM, which has been designed to learn the relation
g = g(r) on sequentially presented training data chunks. Similarly to the global
gravity modeling case, according to a random partition, 90% of the samples have
been chosen to compose the training set, the remaining constituting the set of
”never-seen points”, or test set. The initial learning phase has been realized
with a chunk of randomly selected N0 = 50, 000 data among the training set,
using the common practice of OSELM to have an initial chunk size equal to
the number of hidden units, as reported in Section 3.3. Sequential small chunks
presented to the learner had size of Nchunk = 10, 000. Training of the SLFN on
the entire training set required Ttrain ≈ 40.34h. Regression performances are
reported in Figures 10 and 11, in which are represented the absolute errors in
gravity components prediction on the training and test sets.

Accuracy on training set data is achieved with NRMSEtrain = 0.0184 and a
RMSEtrain = 1.731× 10−7m/s2. Good performances have also been obtained
on test set samples, with a NRMSEtest = 0.0183 and RMSEtrain = 1.729 ×
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(a) (b)

(c)

Figure 9: 25143 Itokawa: Absolute prediction errors. Absolute errors on the prediction of the
local gravity attraction components, expressed in principal axes frame.

10−7m/s2. Results in terms of accuracy are coherent to what observed in the
global modeling scenario discussed in Section 4.1.1, showing that the SLFN
learned the mapping from r to g(r), with satisfying capability to generalize.

4.1.3. Soft Landing on 25143 Itokawa

As a practical application of the trained SLFN, we report the results of a
simulated soft landing on 25143 Itokawa using an on-line guidance algorithm
which exploits the modeling of the local gravitational field performed by the
trained SLFN. The motion of the lander is described in a body fixed frame
with the axis x, y, z oriented as the minimum, intermediate and maximum axes
of inertia, respectively. Because of the short period of time during which the
landing takes place, it is assumed that the asteroid spins about a constant axis
of rotation, aligned with z.
The equations of motion expressed in the above mentioned asteroid frame can
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(a) (b) (c)

Figure 10: 25143 Itokawa High resolution. Regression plots: training set. Linear regression
plot of samples used to train sequentially the learning machine, reporting the actual constant
density high resolution polyhedron gravity attraction of Itokawa compared with the output of
the SLFN.

(a) (b) (c)

Figure 11: 25143 Itokawa High resolution. Regression plots: test set. Linear regression plot
on test field points ”never seen” during the training, reporting the actual constant density
high resolution polyhedron gravity attraction of Itokawa compared with the one predicted by
the SLFN.

be written as: {
ṙ = v

v̇ = −2ω × v + ω × ω × r + g(r) + ac + d
(44)

where r, and v are the lander position and velocity in asteroid centered frame,
ω is the asteroid rotation rate. The gravitational acceleration term g is modeled
using the constant density polyhedron, while ac is the control acceleration.
The rotation period of the asteroid, as derived by Kaasalainen et al.(Kaasalainen
et al. (2003)) , is assumed to be Trot = 12.1h.
After neglecting the disturbance term d, the Coriolis acceleration 2ω × v, the
centripetal term ω×ω× r and the local gravity field are grouped into a gener-
alized acceleration term gg(r,v,ω). The equations of motions are then written
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as: {
ṙ = v

v̇ = ac + gg(r,v,ω)
(45)

Figure 12: Body frame and relevant quantities of Equation 45 depicted.

A Zero-Effort-Miss/ Zero-Effort-Velocity (ZEM/ZEV) guidance algorithm is
adopted to generate in real time the acceleration command that delivers the
lander to the desired landing site, in an energy efficient way. As discussed
in Hawkins et al. (2012), when the gravity field is not uniform or an explicit
function of time, ZEM/ZEV does not represent an optimal guidance solution.
When the dynamical environment is highly nonlinear, a modified ZEM/ZEV
that directly compensates for the non linear terms at all time instants can
be preferable to the usual predictive strategy, as suggested by Battin(Battin
(1999)). This sub-optimal guidance algorithm approaches feedback linearization
behaviour by using the estimation of the current state and the current gravity
attraction to generate the acceleration command ac:

ac =
6[rf − (r − tgov)]

t2go
− 2(vf − v)

tgo
− gg,p(r,v,ω) (46)

where tgo represents the time-to-go, which is simply the difference between the
current instant and the final time; rf and vf are the desired final position and
velocity respectively. The term gg,p is the predicted generalized acceleration:

gg,p = −2ω × v + ω × ω × r + gp(r) (47)

where gp is the local gravity attraction predicted by the SLFN. It is assumed
that r, v and body the spin rate ω are known. In the particular case in which
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the target terminal velocity is zero in the body reference frame, this expression
becomes just:

ac = −6
r − rf
t2go

− 4
v

tgo
− gg,p(r,v,ω) (48)

The time of flight for the descent on Itokawa has been fixed to T = 1800 s.
The lander, initially located at x0 = {10m, 20m, 500m} with a velocity v0 =
{0.04m/s, 0.1m/s, 0m/s} had a wet mass of m0 = 400 kg, and a propulsive
system characterized by a specific impulse Isp = 1500 s.

The trajectory has been evaluated using a fixed time step (Tstep = 0.5 s)
fourth-order Runge-Kutta integrator. Figure 13 shows the guided trajectory to
the asteroid surface as computed using the polyhedron model as compared with
the trajectory computed using the trained SLFN. Figure 14 shows the compo-
nent of the gravitational acceleration as computed using both methods during
the descent phase. Figure 15 reports the histories of the thrust and acceleration
components. Gravity acceleration predictions are accurate, especially consider-
ing the low absolute values. As expected, the largest deviations occur near the
asteroid surface. Importantly, the guided trajectory overlaps and the accuracy
of the guided approach is comparable. However, the use of trained SLFN is
compatible with on-board implementation. It is estimated that on average, it
took on 0.01sec to compute each individual instance of the local gravity field
during descent using SLFN, versus 168sec of CPU time required by the poly-
hedron model. Indeed, it took about 26hrs of CPU time to simulate a single
descent trajectory.

4.2. ELM-based SLFN for Comet 67P/Churyumov-Gerasimenko

For the sake of repeatability of the previous approach, a further analysis of
gravity modeling and its application in feedback guidance algorithms is reported
on the comet 67P/Churyumov-Gerasimenko. For the same reasons cited in the
previous section, this case-study is aimed at the modeling an approximation
of the gravity field in a localized area. The Hapi region narrow neck between
the two lobes of the comet nucleus is designated as one of the most interesting
regions to be investigated. This decision does not come from any particular
practical mission requirement, but it has been chosen since identified as the
region in which the most peculiar gravity field will be experienced, mostly due
to the proximity of the two big irregular lobes on the sides. This is also a region
in which, because of its morphology, the polyhedron approach is most suitable
for gravity modeling. The source of the shape model, built based on images from
Rosetta NAVCAM using stereophotoclinometry techniques, is the ESA Rosetta
Mission Operation Centre (RMOC, Jorda et al. (2015)).

4.2.1. Local Gravity Model for 67P/Churyumov-Gerasimeko

The body fixed frame used for this study is the Cheops mapping scheme,
defined in Jorda (2015). Similarly to the previously reported 25143 Itokawa
case, a high resolution polyhedron with Nplates = 4, 000, 512 is considered in
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Figure 13: Landing on asteroid 25143 Itokawa: Representation of the descent path. The solid
line represents the landing trajectory when the guidance algorithm with compensation of the
generalized acceleration is implemented. It can be observed that it is almost coincident with
the one computed using the exact constant polyhedron model.

order to generate the 768, 000 samples comprising the training and test sets.
These field points are evaluated inside a cylindrical area that encloses the valley
above mentioned, as illustrated in Figure 16.

The MATLAB R© code deployed on on node of Oceleote cluster as part of
the University of Arizona HPC system, takes about Tsample = 200 s to gener-
ate a single sample. Employing the same cluster node used for the previous
reported study cases, the CPU time needed for the entire dataset generation is
TCPU,dataset ≈ 42, 560h.

In order to learn the functional map between the position and the corre-
spondent gravitational acceleration, a SLFN with L = 50, 000 nodes is trained
and tested using the computed 768, 000 examples. The choice of the number
of sigmoid hidden nodes L and regularization factor C is assigned to an auto-
matic Bayesian optimization routine, explained in Section 4.1.1. Similarly to
the results obtained for the global modeling of the gravity field of Itokawa, it is
found that the best results in terms of generalization performances are obtained
for values of hyperparameters at the boundary of the search interval. Even if
lower losses can be reached increasing the number of hidden nodes, it is chosen
to limit the search to this case because any improvement would be paid with a
drastic increase in the computational effort requested. The SLFN is trained on
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(a) (b)

(c)

Figure 14: Soft Landing on 25143 Itokawa: gravity acceleration components. Figures (a),(b)
and (c) represent the gravity acceleration components experienced during the descent on
Itokawa, comparing the ones evaluated using the constant density polyhedron (dotted line)
and the prediction from the SLFN (solid line).

90% of the total observations available, using the remaining 10% for testing in
order to ensure that the machine is able to generalize. Obtained performances
in terms of RMSE and NRMSE are the following:

• Accuracy on training data prediction:
NRMSEtrain = 0.057, RMSEtrain = 2.2029× 10−6m/s2.

• Accuracy on ”never-seen” data prediction:
NRMSEtest = 0.0662,RMSEtrain = 4.0605× 10−6m/s2.

The total training time has been Ttrain = 37.25h. Regression analysis reported
in Figures 18 and 19 shows that the mapping from the position vector to the
gravity acceleration has been efficiently learned.

4.2.2. Soft landing on 67P/Churyumov-Gerasimenko

This section reports the results of the case study about a guided soft landing
on a 67P/ Churyumov-Gerasimenko where a trained SLFN is employed in the
guidance routine. For this kind of operation, the ZEM/ZEV guidance algorithm
compensating for the generalized acceleration, briefly presented in Section 4.1.3,
is analyzed. The time of flight is fixed to be T = 2600 s, and the simulation
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is conducted using a fourth-order Runge-Kutta fixed time step integrator with
Tstep = 1.3 s. The lander mass at the beginning of the landing is considered
as m0 = 400 kg, and the lander is equipped with a propulsive system charac-
terized by a specific impulse Isp = 1500s. The landing site is set on a plateau
in the Hapi region, with coordinates in the comet nucleus fixed frame set as
rf = [500m, −100m, 390.89m]. The initial position and velocity of the lan-
der are x0 = [−250m, −10m, 2000m] and v0 = [0.8m/s, 0.6m/s, 0.04m/s]
respectively. The equations of motion are Equations 44, and it is still assumed
that during the brief landing time interval, nutation and precession of the spin
axis are negligible. The comet’s spin rate is ω = 12.40h and assumed to be
constant (Jorda (2015)). Figure 21 shows the guided trajectory to the comet
surface as computed using the polyhedron model as compared with the trajec-
tory computed using the trained SLFN. Figure 22 shows the component of the
gravitational acceleration as computed using both methods during the descent
phase. Figure 23 reports the histories of the thrust and acceleration compo-
nents. Gravity acceleration predictions are accurate, especially considering the
low absolute values. As expected, the largest deviations occur near the comet
surface. Deviations are also experienced in modeling the z-component of the
comet gravitational acceleration during the descent. Importantly, guided tra-
jectory overlaps and accuracy of the guided approach is comparable. However,
the use of trained SLFN is compatible with on-board implementation. As can
be observed by Figure 24, which reports the computational time required to
compute the gravitational acceleration from the SLFN given the input position,
an approach based on the prediction of the gravity field by a learning machine is
computationally cheap enough to be considered viable for an on-board, real-time
guidance algorithm.
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(a)

- - -

(b)

Figure 15: Soft Landing on 25143 Itokawa: commanded thrust comparison. Comet 67P land-
ing: On the top figure is reported the comparison between the magnitude of the commanded
thrust. On the bottom one are reported the components, in comet frame, of the thrust vector.
The dotted line represents the solution related to the gravity acceleration evaluated using the
polyhedron model; the solid one corresponds to the guidance using the SLFN prediction of
the gravity components.
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Figure 16: Some of the training set points in the neck region between the lobes of the comet
67P.

(a) (b)

(c)

Figure 17: 67P/C-G: Absolute prediction errors. 67P/ Churyumov-Gerasimenko: Absolute
errors on the prediction of the local gravity attraction components, expressed in principal axes
frame.
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(a) (b) (c)

Figure 18: 67P/C-G High resolution. Regression plots: Training set. 67P/ Churyumov-
Gerasimenko: Regression plots for the local 67P gravity acceleration training set.

(a) (b) (c)

Figure 19: 67P/C-G High resolution. Regression plots: Test set. 67P/ Churyumov-
Gerasimenko: Regression plot for the local 67P gravity acceleration testing set.
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(a) Objective model (b) Minimum observed and estimated ob-
jective

Figure 20: 67P/C-G: Bayesian optimization results. Figure (a): objective model mean pre-
diction returned by the optimizer after 30 evaluations as a function of the regularized ELM

hyperparameters, along with the observations and the recommended x̃ =
[
C̃, L̃

]
. Figure

(b): the observed and estimated minimum objective function as the number of query points
increases.

(a) (b)

Figure 21: Soft landing on 67P/ C-G: trajectory. Comet 67P landing trajectory compari-
son, using ZEM/ZEV guidance algorithm compensating for the local generalized acceleration,
comprising the effects due to the comet spinning and the local gravity. The solid line repre-
sents the path resulting from the guidance algorithm using the SLFN prediction of the gravity
attraction. The dotted line is obtained by compensating for the exact polyhedron gravity
acceleration. A more detailed visuaization of the landing site and trajectory is reported in
picture on the right.
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(a) (b)

(c)

Figure 22: Soft landing on 67P/ C-G: gravity acceleration components. Figures (a),(b) and
(c) represent the gravity acceleration components experienced during the descent on 67P,
comparing the ones evaluated using the constant density polyhedron (dotted line) and the
prediction from the SLFN (solid line). gx, gy and gz respectively,in the x-y plane.
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(a)

- - -

(b)

Figure 23: Soft landing on 67P/ C-G: commanded thrust comparison. Comet 67P landing: On
the top figure is reported the comparison between the magnitude of the commanded thrust.
On the bottom one are reported the components, in comet frame, of the thrust vector. As
usual, the dotted line represents the solution related to the gravity acceleration evaluated
using the polyhedron model, while the solid one is corresponds to the guidance using the
SLFN prediction of the gravity component.
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Figure 24: Comet 67P landing: Time required by the SLFN to predict the local gravity, given
the input position. The computational effort lies in the normalization of the lander position
and the SLFN response evaluation, according to equation 6
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5. Conclusions

In this paper, we developed and analyzed a new model-based, data-driven
methodology to compute the gravity field of an irregular small body for a fast,
accurate and efficient calculation of the gravitational acceleration as function
of the relative position around the small body of interest. The proposed ap-
proach is based on a recently developed machine learning approach called Ex-
treme Learning Machines (ELM) which employs a Single Layer Feedforward
Network (SLFN) to model the non-linear relationship between inputs and out-
puts. Additionaly, the ELM approach has been embedded in a Bayesian Op-
timization framework necessary to fine-tune the networks and determine the
optimal hyper-parameters. Here, the specific goal is to train, both in batch
and sequential fashion, a SLFN to represent the relationship between space-
craft position around the small body of interest and the value of the gravi-
tational acceleration. The approach has been applied to two scenarios com-
prising the well-known asteroid 25143 Itokawa and the recently explored comet
67/P Churyumov-Gerasimenko. The gravitational field has been computed us-
ing computationally expensive polyhedron models. Such models have been em-
ployed to generate the training sets necessary to execute the SLFN learning
phase. Regression analysis shows that the proposed approach can capture the
functional relationship between spacecraft position and gravitational accelera-
tion accurately and efficiently. Overall, we believe we demonstrated that SLFN
trained using ELM theories and the Bayesian optimization framework can be
successfully employed to accurately approximate the computationally expensive
polyhedron gravitational field for small bodies, even when complex and very
high resolution models are considered. As shown in the case of gravity mod-
eling about 25143 Itokawa and 67P/ Churyumov-Gerasimenko, the algorithm
devised to get the exact polyhedron attraction is computationally expensive and
it is neither suitable for on board and real time guidance algorithms nor suit-
able for applications in the early stage of the mission design to perform Monte
Carlo analysis. We have shown that the proposed methodology can obtain fairly
accurate results especially considering the low absolute magnitude of the gravi-
tational field encountered around asteroids and comets. Results of the two case
studies for guided soft landing on the surface of both asteroid Itokawa and comet
67/P Churyumov-Gerasimenko demonstrated that the trained SLFN are able
to quickly and efficiently estimate the gravity field and that, given the input,
the time required to calculate the output is in the order of a hundredth of a
second. This is an impressive result considering that the time required to solve
the exact polyhedron model is thousands of times higher. Consequently, ELM-
based SLFN are suitable for on-board implementation thus enabling autonomy
for future missions to small bodies.
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Simpĺıcio, P., Marcos, A., Joffre, E., Zamaro, M., Silva, N., 2018. Review of
guidance techniques for landing on small bodies. Progress in Aerospace Sci-
ences.

Strange, N., Landau, D., McElrath, T., Lantoine, G., Lam, T., 2013. Overview
of mission design for nasa asteroid redirect robotic mission concept. et Propul-
sion Laboratory Report.

Takahashi, Y., Scheeres, D. J., Werner., R. A., 2013a. Surface gravity fields for
asteroids and comets. Journal of Guidance, Control, and Dynamics 36 (2),
362–374.

Takahashi, Y., Scheeres, D. J., Werner, R. A., 2013b. Surface gravity fields
for asteroids and comets. Journal of guidance, control, and dynamics 36 (2),
362–374.

Vapnik, V., 1992. Principles of risk minimization for learning theory. In: Ad-
vances in neural information processing systems. pp. 831–838.

Weightman, J., 1967. Gravity, geodesy and artificial satellites. a unified analyt-
ical approach. In: The use of artificial satellites for geodesy. p. 467.

Werner, R. A., Scheeres, D. J., 1996a. Exterior gravitation of a polyhedron de-
rived and compared with harmonic and mascon gravitation representations of
asteroid 4769 castalia. Celestial Mechanics and Dynamical Astronomy 65 (3),
313–344.

Werner, R. A., Scheeres, D. J., 1996b. Exterior gravitation of a polyhedron de-
rived and compared with harmonic and mascon gravitation representations of
asteroid 4769 castalia. Celestial Mechanics and Dynamical Astronomy 65 (3),
313–344.

Williams, C. K., Rasmussen, C. E., 2006. Gaussian processes for machine learn-
ing. Vol. 2. MIT Press Cambridge, MA.

Yang, H., Li, S., Bai, X., 2019. Fast homotopy method for asteroid landing tra-
jectory optimization using approximate initial costates. Journal of Guidance,
Control, and Dynamics 42 (3), 585–597.

42



Yang, H., Li, S., Sun, J., 2020. A fast chebyshev polynomial method for calculat-
ing asteroid gravitational fields using space partitioning and cosine sampling.
Advances in Space Research 65 (4), 1105–1124.

43


	Introduction
	Review of Methods for Modeling the Gravity Field in Small Bodies
	Spherical harmonics expansion
	Mass concentrations
	Polyhedron model

	Machine Learning Methodology
	Extreme Learning Machines
	Regularized Extreme Learning Machines
	Large Dataset Management: Online Sequential ELM
	Performance indices
	Bayesian Optimization

	Results: Gravity field modeling
	ELM-based SLFN for Asteroid Itokawa
	Global gravity model for 25143 Itokawa
	Local gravity model for 25143 Itokawa
	Soft Landing on 25143 Itokawa 

	ELM-based SLFN for Comet 67P/Churyumov-Gerasimenko
	Local Gravity Model for 67P/Churyumov-Gerasimeko
	Soft landing on 67P/Churyumov-Gerasimenko


	Conclusions

