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Abstract
Important distinctions are made between two related wave control mechanisms that act to spatially
separate frequency components; these so-called rainbow mechanisms either slow or reverse guided
waves propagating along a graded line array. We demonstrate an important nuance distinguishing
rainbow reflection from genuine rainbow trapping and show the implications of this distinction
for energy harvesting designs, through inspection of the interaction time between slowed zero
group velocity waves and the array. The difference between these related mechanisms is
highlighted using a design methodology, applied to flexural waves on mass loaded thin
Kirchhoff–Love elastic plates, and emphasised through simulations for energy harvesting in the
setting of elasticity, by elastic metasurfaces of graded line arrays of resonant rods atop a beam. The
delineation of these two effects, reflection and trapping, allows us to characterise the behaviour of
forced line array systems and predict their capabilities for trapping, conversion and focussing of
energy.

1. Introduction

Graded line arrays capable of supporting array guided waves have recently been theorised, designed, and
manufactured with energy harvesting capabilities at the forefront of the proposed applications [1, 2]. These
simple devices are often based around gradually varying periodic arrays to take advantage of local
band-gaps, or of waveguides of varying thicknesses, to control wave propagation; array guided waves slow
down as they transverse the array with different frequency components localising at specific spatial
positions, resulting in a so-called ‘trapped rainbow’. This effect originated in electromagnetism being
predicted and observed using axially non-uniform, linearly tapered, planar waveguides with cores of
negative index material [3]. Subsequently, this effect has been achieved in a host of wave regimes, without
explicit analogue to a negative index, where a surface is structured by discrete, often subwavelength, unit
cells comprising resonant elements. Such metamaterials and metasurfaces have achieved so-called trapping
and enhancement effects for spoof surface plasmon polaritons [4, 5], acoustics and phononics [6–8], water
waves [9], elastic beams [10] and fluid loaded elastic plates [11], with particular advances in elastic
metawedge devices using arrays of resonant rods, for both thin elastic plates and deep elastic substrates [1,
2, 12–14].

The underlying physics, fundamental to the design of graded structures capable of spatial segregation of
frequency components, for either trapping or mode conversion applications, relies on the ability to isolate
the dispersion curves of the locally periodic structures which make up such an array. A graded array is
formed by gently, i.e. adiabatically, varying a particular parameter, or set of parameters of neighbouring
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elements in subsequent unit cells. Defining an adiabatic transition, or taper, of array parameters which then
defines locally periodic cells can be done mathematically by considering asymptotic expansions on multiple
length scales. This is done elegantly in [15] which marries Wentzel–Kramers–Brillouin (WKB) theory,
giving the form of adiabatically propagating Bloch waves, and high frequency homogenization (HFH) [16]
which describes spatially localised solutions about dispersion singularities. Alternatively, continuous
coupled-mode theory has been used the develop an adiabatic theorem in the setting of photonic crystals
[17]. Provided the grading is gentle enough, this physically enables the global behaviour of the whole array
to be deduced from the knowledge obtained from the local dispersion curves of the constituent elements
[12]; the desired spatial selection by frequency properties, the rainbow behaviour, of the device is
determined from the locally periodic structure at a given position. For example, in the case of conventional
elastic metawedge devices, resonant rods are fixed atop a thin elastic plate or deep substrate such as a
half-space; when local band gaps are reached at say, a certain rod height, the inability of the wave to
propagate beyond this position can be leveraged to produce a variety of effects, depending on the operating
frequency [18].

In adiabatically graded arrays, the interpretation of the locally periodic dispersion curves has led to a
conflation between rainbow trapping phenomena and other related slow wave effects. Ultimately, ‘trapping’
of array guided waves has been accounted for via the drastic reductions in the group velocity of the waves
which transit the array, eventually reaching a region with zero group velocity. We shall highlight throughout
this article that there are different regions in which zero group velocity modes can be reached, and that they
have strong implications on reflections and trapping effects; many graded systems ignore any reflections
from these regions, with certain exceptions in acoustic analogues which discuss ‘soft reflections’ [6, 7] and
photonic counterparts discussing finite reflection times [23]. These reflections have been realised to not
permit ‘true’ rainbow trapping due to intermodal coupling [24, 25]. Our purpose here is to draw out the
nuanced difference between simply slowing down the waves and genuinely trapping them, by examining the
different ways zero group velocity modes can be reached.

These rainbow devices emerged from concepts of slow light materials, that exploit resonances in
dispersive materials [26]. Similar effects were realised using (line-defect) photonic crystal waveguides
[27–29], which exactly exploit unique dispersive properties resulting in zero group velocity modes. The
introduction of negative index materials and tapering of the waveguide in [3] achieved a similar broadband
result and first introduced the term ‘trapped rainbow’, focussing on regions of zero effective thickness, as
opposed to zero group velocity modes. Subsequent translations of this effect to other graded wave systems,
which do not use negative index materials, have attributed all zero group velocity modes with the ability to
perform rainbow trapping, despite there being several avenues in engineering the dispersion to reach such a
mode [30, 31]. We investigate zero group velocity modes in detail and show that they are not all the same,
and that some reflect energy albeit slowly and others genuinely trap energy. We analyse an elastic system, in
the frequency domain, taking into account reflections by local standing wave modes where these zero group
velocity modes arise. We show that in the long time limit the origin of these zero group velocity modes
becomes important in delineating trapping and reflecting phenomena.

Zero group velocity modes used to infer the rainbow trapping phenomenon in discrete graded systems,
can arise through a number of avenues. Shown in figure 1 are the typical dispersion curves for three model
systems were zero group velocity modes exist. Figure 1(a) shows a flat dispersion branch, typical of slow
sound or slow light in periodic systems composed of resonant elements, where over a large region in
wavenumber space the group velocity is very low. Such a system is analogous to original slow light devices
where, over a narrow frequency range, the group velocity can be greatly reduced compared to a free space
wave. Slow sound acoustic analogues have utilised this effect in systems of Helmholtz resonators, whereby
including losses into the system ‘trapping’ occurs via absorption [32, 33]. Figure 1(b) shows the dispersion
for a (potentially non-resonant) periodic array, where a zero group velocity mode is achieved purely due to
the Bragg condition being met at the band edge; in a perfectly periodic medium standing waves form at this
frequency due to reflections. These reflections prove key to delineating between true rainbow trapping and
what we will term ‘rainbow reflection’ phenomena. In figure 1(c) we show the dispersion curves for a
symmetry broken array, where an accidental degeneracy is lifted, resulting in zero group velocity modes
within the first Brillouin zone. We will focus on geometries capable of supporting such modes, which offer
larger trapping potential due to the lack of coupling with reflected modes.

Whilst the positions of the zero group velocity modes in reciprocal space may seem a technicality, we
show these nuances and their effect on the resulting wave phenomena have strong influences on energy
harvesting applications for such arrays. We first focus on a model of graded line arrays of point masses on
thin Kirchhoff–Love (KL) elastic plates, to delineate between true rainbow trapping, and the related
rainbow reflection which have, until now, been used interchangeably. This KL model is attractive due to the
fast, accurate spectral methods available to identify the local dispersion curves of the singly periodic
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Figure 1. Dispersion curves for differing periodic systems, with zero group velocity modes shown with dotted black lines. (a)
Typical resonant system with zero group velocity mode induced by resonance (dashed blue line). Figure (d) shows a resonant
structure with such a characteristic curve. These C-shaped resonators are used in water wave systems [9] and have analogues to
split-ring resonators in electromagnetism, or mass-spring models analogous to rods atop an elastic halfspace [13]. (b) A
(potentially non-resonant) system where zero group velocity modes are induced by the Bragg condition only, i.e. due to the
periodicity. Figure (e) shows a conventional periodic device with such a dispersion branch, so called photonic/phononic crystals,
depending on the regime being investigated. In acoustics this would be an array acoustically rigid inclusions [6], or materials of
varying dielectric constants in electromagnetism [19]. Throughout this article, Kirchhoff–Love point mass loaded plates
represent this system (so called platonic crystals [20]). (c) Symmetry broken system, where accidental degeneracies are lifted
resulting in zero group velocity modes inside the Brillouin zone. Figure (f) shows a symmetry broken array with such a
characteristic dispersion relation. Such arrays are normally considered in identifying protected edge states within topological
insulators [21, 22]. These structures have been realised in all imaginable wave systems, but here we focus on Kirchhoff–Love mass
loaded plates and resonant rods atop an elastic beam.

structures [14] which support Rayleigh–Bloch modes. The KL model is popular in elastic wave physics in
part for technical reasons, the Green’s function is non-singular [34] allowing for fast and accurate
numerical simulation [35], also because in its range of applicability it captures experimental behaviour
accurately [36], and furthermore as it allows for the insightful exploration of topological wave physics and
edge states [37, 38]. The Rayleigh–Bloch modes are array guided waves that propagate along the direction
of the array, and decay exponentially perpendicular to the array [34]. An example of a line array capable of
exhibiting both rainbow trapping and reflection (among other effects) is outlined in section 2, along with
the general design paradigm to achieve true rainbow trapping. To further illustrate the importance of the
difference between these two effects, we propose a new piezo-augmented array for harvesting electric energy
from elastic substrates, and compare its functionalities for ungraded arrays and graded arrays capable of
employing rainbow trapping and rainbow reflection.

2. Graded line arrays

Recent studies of ungraded line arrays created using clusters of resonators placed on thin elastic plates [39]
have illustrated the power of using array systems in terms of manipulating the transmission of flexural
elastic waves. We use similar arrays, although we can illustrate the concepts required here using simpler
mass-loaded line arrays ultimately with the added ingredient of grading their properties along the
array.

To demonstrate the key difference between rainbow trapping and rainbow reflection, we first analyse a
line array of point masses clustered into triangular arrangements placed atop a thin KL elastic plate and
ignore grading in order to understand the perfectly periodic system. The line array is one-dimensional in
the sense that it is singly periodic, relative to the array axis (figure 2). To generate the dispersion curves of
this system, and of the subsequent graded systems, we partition the array into infinite unit strips, so that the

3



New J. Phys. 22 (2020) 063024 G J Chaplain et al

Figure 2. (a) Unit strip (solid red lines) that periodically repeats and which has a cluster point masses, arranged to form a
triangle, represented by blue half spheres and with the array axis shown as dashed red line. (b) Unit cell with a cluster of resonant
rods placed atop an elastic beam with boundary conditions as shown. A piezopatch (red material) attached to a single rod is
shown for harvesting applications. (c, d) Show ungraded arrays of masses on a KL plate and rods atop a beam respectively, with
corresponding examples of graded arrays, where the grading is introduced by rotation of the triangular geometries, shown in
(e, f).

governing equation for the out-of-plane flexural wave displacement, w (x), is [14]

∇4w (x) − Ω2w (x) = Ω2
J∑

N ,j=1

M(j)
N w (x) δ

(
x − x(j)

N

)
, (1)

where we utilise a nondimensionalised frequency such that Ω2 = ρhω2/D, where ρ is the mass density of
the plate and h is the plate thickness, with ω being the dimensional angular frequency. D is the flexural
rigidity, which encodes the Young’s modulus, E, and Poisson’s ratio, ν, of the plate through
D = Eh3/12(1 − ν2). The unit strips are labelled N, with there being J masses within each strip at a position
x(j)

N . An example unit strip schematic with 6 masses arranged in a triangular geometry is shown in
figure 2(a), with a section of a perfectly periodic line array shown in figure 2(c).

The spectral method employed, as in [14], rapidly and accurately characterizes the dispersion curves of
this structure. For a particular value of mass loading, M = 10, such curves are shown in blue in figure 3(a).
In order to differentiate between the two effects, the symmetry of the inclusions within the unit cell is of
paramount importance; rainbow reflection effects can be achieved with any inclusion geometry, since
ultimately they leverage only the Bragg condition by virtue of the periodicity. For true rainbow trapping
effects, trapping must be located at wavevectors within the first Brillouin zone (BZ), and hence rely on the
decoupling of orthogonal eigensolutions, or symmetry breaking of the array geometry [21, 40–42] so to lift
accidental degeneracies within the first BZ.

Central to designing rainbow trapping and reflecting line arrays, is to adiabatically grade the array with
respect to some set of parameters, thereby altering the local dispersion curves of the structure. The choice of
grading parameter can be any combination of the inclusion geometry, mass values, unit cell or loading
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Figure 3. (a) Dispersion curves for array with symmetry of axis (blue) showing accidental degeneracy, highlighted by blue star.
Red curves show band gap opening due to reflectional symmetry with respect to array axis being broken. Insets show
antisymmetric (odd) and symmetric (even) solutions at the degeneracy for the blue bands marked (−,+) respectively, with
a = 1, M = 10. (b) Symmetry broken curves by mass loading such that M1 = 10, M2 = 5M1. Insets show wavefields at minima
of band III and maxima of band II respectively (marked by green stars). The mixing of odd and even states can be seen through
the varying amplitudes and decay lengths either side of the array axis. (c, d) Shows streamline plots of the time-averaged flux (2),
which can be used to infer the coupling, or lack thereof, between incident and reflected waves. The left panels of (c) and (d) show
the flux for a forward propagating mode (κ > 0), evaluated near the band edge on the lowest dispersion branch (marked by blue
triangle) for the symmetrically mass loaded case in (c), and at the minima of band III for (d) (green star). The right panels in
each case show the same calculation, but at the negative reversed wavevectors (κ→−κ); for the symmetry broken case in (d)
there is a chiral pattern of the flux which inhibits back-coupling into the reversed waves. Such chiral modes are often present in
topological systems (not considered here) [41, 43]. There is no such rotational motion preventing backscattering in the
symmetrical case.

element (for KL plates these can be pins, masses or resonators [34]). By altering such parameters, the
dispersion curves of subsequent unit strips are pushed up or down in frequency, or indeed completely
change their shape. For a given frequency, there will then be regions were a wave is either supported or
prohibited from propagating; local band gaps are then reached at different spatial positions for different
frequency components. Conventional elastic, acoustic and water wave systems have focussed on how the
lowest dispersion branch is changed via the grading parameter, maintaining the symmetry properties of the
array. Most of these systems can then only exhibit reflective effects; higher order modes need to be present
in the presence of a symmetry broken system for true trapping for discrete arrays. This insight motivated
the choice of the triangular mass loading geometry since it supports both purely odd and even modes with
respect to the array axis in the symmetric configuration, and modes which are neither odd nor even when
symmetry is broken. The analysis presented is completely general and holds so long as accidental
degeneracies within the BZ can be exploited. When analysing the changes of the lowest dispersion branch, it
is possible to engineer a local band gap where, at some unit cell for a given frequency, the resultant graded
wavevector corresponds to the band edge, that is the boundary of the first Brillouin zone (figure 4). At this
position in a conventional perfectly periodic system standing waves form through subsequent Bragg
reflections due to the periodicity. In graded systems, this has been labelled as rainbow trapping, since there
is no forward propagating mode to couple into beyond this position, due to the encountered band gap.
However, particularly in systems where no resonance effects are encountered [14], this mode is quickly
reflected and couples to a counter propagating wave which travels along the array in the opposite direction.
Indeed the reflected wave after this ‘trapping’ can be used for applications other than energy harvesting,
such as flat lenses by passive self-phased effects [18]. The misnomer of rainbow trapping has been attributed
to this effect in almost all graded systems where locally periodic dispersion curves are analysed, as the wave
is seen to be prohibited from propagating further along the array. Due to the reduced speed of the wave, it
can appear to stay localised for a considerable length of time [4], however unlike a truly trapped wave, this
wave will ultimately reflect due to the position where the group velocity vanished (at the BZB). This
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Figure 4. Effect of rotating asymmetric mass loaded structure, showing zoom on bands I, II and III. Horizontal dashed lines
show the frequencies stopped at inclusion angles of θ = 40◦. Whether trapping or reflection subsequently occurs depends on the
wavevector at which vg = 0 is achieved; Ω = 0.923 lies on band I and exhibits rainbow reflection at this angle, whilst
Ω = 1.528, 1.867 lie on bands II and III which exhibit rainbow trapping.

interpretation is corrected here, where we identify the apparent trapping of such a guided mode to be
reflected via frequency domain analysis. The position of the reflection is frequency dependent through the
grading parameter, and as such we term this corrected effect ‘rainbow reflection’.

To distinguish between this reflection phenomenon and desired true rainbow trapping, we now utilise
symmetry broken arrays. Degenerate eigensolutions of the dispersion relation, or accidental degeneracies
(band crossings) within the Brillouin zone (figure 3(a)) correspond to orthogonal modes and can exist if
there is reflectional symmetry of the inclusion geometry about the array axis [42]. These more complex
geometries are not normally analysed in graded systems, but the extension to such geometries is trivial.
Upon the breaking of the reflectional symmetry of the array, the degeneracy is lifted giving rise to solutions
which are neither symmetric (even) or antisymmetric (odd) with respect to the array axis. For the array of
triangular point masses, this symmetry breaking is achieved by simple rotations of the array or by altering
mass values [21] in figure 3(a) and in figure 3(b), such that the reflectional array symmetry is broken. We
will utilise these symmetry broken arrays to exploit the change in wavevector at which zero group velocity is
achieved. A close up of an asymmetric arrangement of masses is shown in figure 4. Here the grading
parameter along the array will be the rotation of the array by an angle Δθ = 2π/N, where N is the number
of unit cells within the graded region. In this way we can control the rate of grading and how quickly the
dispersion curves change; figure 4 shows the effect of this rotation on the locally periodic dispersion curves
labelled I, II, III in figure 3(b). Rainbow reflection devices focus on manipulations similar to that of curve I;
the wavevector with zero group velocity occurs at the band edge κ = π/a, where a is the periodicity of the
array. To prevent potentially undesirable reflection at the trapping position, we need to negate coupling into
a backwards propagating mode. This is achieved by grading the symmetry broken arrays to create a zero
group velocity mode that is encountered within the centre of the first BZ, as shown by the curves II and III
in figure 4 (for a given frequency). Comparing the mode shapes and flux patterns for two zero group
velocity modes highlight differences in coupling capabilities; akin to helical modes in topological plate
systems [22, 41], the symmetry breaking here introduces chiral nature to the flux, as shown in
figure 3(c–d). If the grading is chosen such that the local band gap is encountered for a zero group velocity
wavevector lying within the first BZ, then due to this lack of coupling to the reversed wavevector, true
rainbow trapping can occur, resulting in vast field enhancement.
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Figure 5. (a) Normalised power for asymmetric mass loaded array of figure 4, graded with respect to Δθ = 2π/N, normalised
with respect to maximum power along each array, I/I0, for Ω = 1.867, corresponding to trapping along band III of figure 4. This
demonstrates the stronger confinement with decreasing grading parameter for rainbow trapping. (b) Similar to (a), but
normalised to the finest array grading (N = 800), displaying the increase in localised amplitude with respect to grading
parameter. (c) Similar plot to (a) but for Ω = 0.923 for varying grading profile Δθ. Here rainbow reflection can clearly be seen
as almost zero power remains localised to the array; energy leaves the array, as can be seen by the negative power at the source
position, corresponding to the rainbow reflection effect.

To characterize the differences between these two effects in this non-resonant system, we calculate the
time averaged flux on a KL thin elastic plate through [44]

〈F〉 = Ω

2
Im

(
w (x)∇3w∗ (x) −∇2w∗ (x)∇w (x)

)
, (2)

for an array in which neighbouring cells have geometries rotated by Δθ. To determine the power radiated
across each unit cell we integrate this quantity along the boundaries of each unit strip x = ma with m ∈ Z

such that

I =

∫ ∞

−∞

(
〈F〉 · x̂

)
dy. (3)

These quantities are easily obtained from the frequency domain displacement fields calculated using a
Green’s function approach; this is one of the advantages of working with KL elastic plates since the Green’s
function is nonsingular and remains bounded [34].

Shown in figure 5 is the integrated flux, I, for bands I and III, for which rainbow reflection and trapping
are clearly distinguished. In these simulations the array starts with θ = 30◦ and is graded with varying
values of N. Figures 5(a) and (b) show that for trapping at a wavevector within the BZ, i.e. on band III,
there is a large field enhancement near the trapping region, since the mode cannot couple into a reverse
propagating mode. The effect of the rate of grading is pronounced; as N is increased, the grading becomes
more gradual, and as such the position of the grading is more localised, as shown in figure 5(a) which
shows the normalised power with respect to each array. Further to this localisation, the amplitude of the
trapped wave is also increased with decreasing Δθ, as shown in figure 5(b) which shows the power
normalised with respect to the largest N, and hence slowest grading. This confirms that true rainbow
trapping is possible by trapping within the BZ, ensuring that there is minimal coupling to a reflected mode.
In stark contrast to this, figure 5(c) shows the same calculations for the first band I as in figure 4. For
frequencies supported by this lowest branch, the grading parameter is almost irrelevant. Independently of
where along the array the local band gap occurs, in the long time limit (as obtained by calculation of the
fields in the frequency domain), all the energy is reflected; there is no field enhancement at the position of
what has previously been referred to as ‘trapping’. The total power in this case is seen to be negative, i.e. in
the opposite direction of the array origin (starting at 30◦) indicating that all the energy leaks off the array
after reflection for this non-resonant array.

Having exemplified the differences between trapping and reflection, by the analysis of where the zero
group velocity wave vector lies within the first BZ, we turn to a practical application of both these effects in
the setting of energy harvesting in elastic media.

3. Piezoelectric applications

Harvesting or scavenging vibrational energy is particularly attractive for the self-powering of small
electronic components, such as for the sensors used for structural health monitoring or medical implants
[45]. In order to increase the efficiency of these devices, it is important to locally increase the vibrational
energy that is already present in their immediate environment. This can be achieved by focussing, or
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Figure 6. Dispersion spectra for array of constant height (a) a metawedge (b) and rotated cell array (c), corresponding to total
scattering, rainbow reflection and rainbow trapping at time 10 ms. Right panel shows spectra for the input wave, at position
highlighted by purple rectangle in array schematics above, whilst the left panel shows the reflected wave spectra due to the
bandgap opening, at cell positions matching green boxes. For (a, b) the bandgap opens via Bragg scattering, whilst in (c) due to
the lifting of the accidental degeneracy. Overlaid on the spectra are the dispersion curves for highlighted cells; scatter points
colours represent the wave polarization (purple corresponding to vertical motion, i.e. axial elongation). The arrays are excited
through an A0 Lamb wave at 13.5 kHz. Below each plot is an aerial view of the array.

trapping, waves from a larger region outside the device into a confined region in the near vicinity of the
sensor; once the wave is localized, by using electromagnetic, electrostatic or piezoelectric [46] effects,
efficient conversion from elastic to electric energy can be achieved. When compared with other conversion
methods, piezoelectricity has the advantage of large power densities and ease of application [47, 48],
making it one of the most applicable energy harvesting methods. Several approaches have been employed in
order to enhance harvesting efficiency, with properly designed structured materials or phononic crystals
[49, 50], lenses [51] and resonant metamaterials [52] also based on graded array designs
[2, 53].

Motivated by our analysis, in section 2, on point mass loaded arrays, we adopt similar line arrays to
compare the advantages of energy harvesting via true rainbow trapping and conventional rainbow reflective
devices [2]. We compare two graded line arrays composed of clusters of aluminium rods (E = 70 GPa,
ν = 0.33 and ρ = 2710 kg m−3) atop a beam, each with different gradings. The first exhibits conventional
rainbow reflection; inspired by metawedge [12, 54] structures we design a one dimensional array of rods,
with a single rod per unit cell, each increasing in height in subsequent cells (figure 6(b)). No symmetry
induced accidental degeneracies arise in this setting, and as such to reach a zero group velocity mode, we
must utilise the grading at the band edge by virtue of the Bragg condition. The second grading, incorporates
the lifting of accidental degeneracies through breaking inversion symmetry through smoothly rotating a
triangular array of rods within a unit cell from 0◦ (i.e. symmetric about array axis) to 30◦, similarly to the
mass loaded plate analogy (figures 2(b) and 6(c)). Both arrays are composed of 21 cells with 30 mm size
and 10 mm thickness. To quantify the reflection and trapping in the graded arrays, we analyse the
dispersion spectra and compare both arrays with an ungraded periodic array of rods with equal number of
unit cells. The ungraded array is composed of resonators of 80 mm height and 6 mm of diameter, similarly
to the array with rotated cells (see figures 6(a) and (c)). The metawedge (figure 6(b)) is obtained by a
linearly grading defined by a 16◦ slope angle, ranging in height from 2 mm to 175 mm. Comparison is
performed through a time domain simulation in Abaqus, exciting the line array for 30 ms with an
antisymmetric (A0) Lamb wave with a central frequency of 13.5 kHz, corresponding to the bandgap
opening for rods of height 80 mm and diameter 6 mm. Absorbing boundaries are imposed at the beam
edges using the ALID method [55]. Dispersion curves are computed in Abaqus with a user defined code
capable of imposing Bloch–Floquet boundary conditions. The input and reflected waves are obtained by
applying a spatiotemporal Fourier transform on the wavefield before the array. The reflected wave, as a
percentage of the incident radiation, at 10 ms (figure 6) is 71% for the ungraded array (a), 57% for the
rainbow reflective device (b) and 21% for the symmetry broken rainbow trapping configuration (c). There
is then a clear difference in mechanism for the slowing down and reflecting/trapping for the respective
arrays; the energy is stored for longer in the trapping device.

This difference is emphasised when increasing the observation temporal window from 10 to 30 ms (total
input duration), we see the portion of reflected wave increases, reaching (figure 7), 91% (a), 83% (b) and
21% (c) of the input signal for the scattering, reflection and trapping cases respectively. Considering
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Figure 7. Similar to figure 6, but at time of 30 ms (total input duration).

Figure 8. Percentage of reflected to input wave from polynomial interpolation for an 80 ms input (shown in inset), for the three
arrays in figure 6. There is a clear reduction in reflection in the symmetry broken rainbow trapping array.

reference to the case with equal rods (no grading), the metawedge reduces the reflections to almost 20% at
10 ms and 9% at 30 ms, while the rotating cell grading of 70% at 10 ms and 77% at 30 ms.

The reduction of reflection in the array with rotated cells is due to the bandgap opening in a position far
from the edge of the Brillouin zone, as outlined in section 2; this provides a longer interaction of the wave
with the resonators, since the coupling to a reversed wave is less than in the case where the grading
introduces reflection from the band edge. We emphasise this by plotting the percentage of reflected wave as
a function of time for a longer 80 ms input, shown in figure 8. Here the stark difference in intermodal
coupling can be seen by the drastic reduction in the reflected wave for the symmetry broken trapping array,
even for a long input source duration. As is common when dealing with low loss, high Q-factor, aluminium
structures, damping effects were neglected [56] throughout these simulations. Realistically we expect
dissipation from the position of ‘trapping’ in all cases; the key difference for trapping devices, opposed to
those which purely reflect, is that the time scale over which these effects dampen the slowed wave is much
larger. As such trapping devices have a larger ‘interaction time’ with the device at the trapping position than
their reflective counterparts.

In order to quantify the degree of trapping and the piezoelectric energy harvesting benefit, we consider a
piezoelectric disk, of 6 mm diameter and 2 mm thickness, at the base of each resonator for each cases of the
ungraded array and the rainbow reflective metawedge configuration. To ensure a fair comparison between
the symmetry broken triangular configuration, only one piezoelectric disk is considered per cell
(highlighted by red piezopatch in figure 2 and in aerial views in figures 6 and 7). This ensures for the three
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Figure 9. Spatiotemporal power for the ungraded array (a) the metawedge (b) and rotated cell array (c), corresponding to total
scattering, rainbow reflection and rainbow trapping (input stops at 30 ms). The arrays are excited through an A0 Lamb mode at
13.5 kHz. Each piezo disk is connected to a resistive load R = 100 kΩ.

Figure 10. Displacement field along the arrays at time 35 ms for the ungraded (a) and the graded (b), (c) cases. Total electric
energy stored in the arrays for increasing time (input stops at 30 ms). See supplementary videos
(http://stacks.iop.org/NJP/22/063024/mmedia) for a visualisation of the reflection and trapping.

cases, the amount of piezoelectric material is exactly the same. We then look at the spatiotemporal voltage
output per base acceleration normalized with respect to the gravitational acceleration g. As shown by the
dispersion bands in figures 6 and 7, the unit cell for cases (a)–(c) have been properly designed to obtain
axial elongation of the rod with the piezo disk at the base at the frequency corresponding to the bandgaps
opening (13.5 kHz). Thus, we have a dominant d33 component of the piezoelectric tensor. The piezoelectric
material is PZT-5H with piezoelectric coefficients d31 = −274 pm V−1, d33 = 593 pm V−1,
d15 = 741 pm V−1 and constant-stress dielectric constants εT

11/ε0 = 3130 and εT
33/ε0 = 3400 with

ε0 = 8.854 pF m−1 the free space permittivity [47]. In order to estimate the electric power producible by the
piezo-augmented arrays, each piezoelectric disk is attached to a resistive load R = 100 kΩ. Piezo disks are
electrically independent (no series or parallel connections) in order to avoid possible charge cancellation
due to out of phase responses. This is numerically modelled using Abaqus complemented with a customised
Fortran subroutine as in [2]. Computing the electrical power, we see the maximum local value is obtained
by the rainbow reflection array (figure 9(b)) with values approximately up to 300nW. However, inspecting
the time duration of the electric power production reveals that rainbow trapping has the longest period of
power output (figure 9(c)). The scattering array, i.e. the ungraded case has the worst performance as
expected in both power produced and time duration (figure 9(a)).

We then quantify the total energy trapped in the arrays, integrating along time the power produced by
each piezo disk and summing all the obtained values. It can be seen that for the trapping case, the energy
remains inside the array for a longer period of time (figure 10), resulting in the highest trapped energy after
approximately 28 ms (figure 10). The total trapped energy at 40 ms is 1.79 nJ, 8.74 nJ and 11.03 nJ for the
ungraded, metawedge and rotated cells respectively.
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Therefore, by utilising rainbow trapping over rainbow reflection, it is possible to harvest more energy
along the array, even though the largest local power was achieved by the reflective array; the simplicity of
this structure allows the input mode shapes to match the modes of the single rods more effectively than in
the symmetry broken arrays. The trapping arrays overcome this apparent downfall through the length of
time the energy is trapped along the array, due to the lack of coupling to the reversed waves. Further to this,
since the unit cells are more complex (i.e. more rods per cell) there is further scope for including larger
amounts of piezoelectric material without compromising the resonances of the rods, e.g. at the base of every
rod.

4. Conclusions and perspectives

We have delineated rainbow trapping and rainbow reflection effects for graded systems based on discrete
unit cell structures, both with and without resonant elements. The distinction is not limited to elastic wave
systems and applies to all areas of wave physics where the slowing of wave propagation along a graded array
is designed through locally periodic dispersion curves, be it in elasticity, electromagnetism, acoustics or
water waves systems. As such, the term rainbow trapping should be limited for the original negative index
materials [3], or for describing systems which contain zero group velocity modes within the first BZ, often
achieved by breaking the array symmetry, resulting in the lifting of accidental degeneracies in the dispersion
relation. All other devices which manipulate the lowest dispersion curves achieve a rainbow reflection effect
due to local Bragg scattering along the array; this can be achieved through the grading of any periodic
structure although it is most efficient when resonant structures are used.

The implications of designing structures with these capabilities has been shown through the avenue of
energy harvesting; ultimately true rainbow trapping devices gather more energy along the array due to the
larger time period in which the array is localised at the trapping position. Coupled with this is the ability to
include larger volumes of piezoelectric material due to the more complex geometries required. However, the
simplicity of metawedge structures is not to be overlooked when designing energy harvesters. Due to their
simplicity large local amplification of electrical power is achievable due to strong coupling with the incident
radiation. In all real cases, the interaction time for each array and strength of each of the wave slowing
mechanisms will be affected by dissipation and losses. The relative differences between the two different
types of zero group velocity modes (those encountered at the band edge and those within the first Brillouin
zone) will however still persist, enabling distinguish between rainbow trapping and reflection even in
systems with loss.

Due to the simplistic design paradigm for each effect, optimisation of the array parameters can be
achieved enabling a broadband energy harvesting device; utilising both effects over a range of frequencies
permits robust energy harvesting, over all areas of wave physics, which we envisage will lead to experimental
verification.
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