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Abstract: In Operating Theatres (OT), the ventilation system plays an important role in controlling
airborne contamination and reducing the risks of Surgical Site Infections (SSIs). The air cleanliness is
really crucial in this field and different measurements are used in order to characterize the situation in
terms of both airborne microbiological pollutants and particle size and concentration. Although the
ventilation systems and airborne contamination are strictly linked, different air diffusion schemes
(in particular, the Partial Unidirectional Airflow, P-UDAF, and the Mixing Airflow, MAF) and various
design parameters are used, and there is still no consensus on real performance and optimum
solutions. This study presents measurements procedures and results obtained during Inspection
and Periodic Performance Testing (1228 observations) in a large sample of Italian OTs (175 OTs in
31 Italian hospitals) in their operative life (period from 2010 to 2018). The inspections were made
after a cleaning procedure, both in “at-rest” conditions and “in operation” state. Inert and microbial
contamination data (in air and on surfaces) are analyzed and commented according to four relevant
air diffusion schemes and design classes. Related data on Recovery Time (RT) and personnel presence
were picked up and are commented. The results confirm that the ventilation systems are able to
maintain the targeted performance levels in the OT operative life. However, they attest that significant
differences in real OT contamination control capabilities do exist and could be ascribed to various
design choices and to different operation and maintenance practices. The study shows and confirms
that the air diffusion scheme and the design airflow rate are critical factors. Beside large variations
in measurements, the performance values, in terms of control of airborne particle and microbial
contamination (in air and on surfaces), for P-UDAF systems are better than those that were assessed
for the MAF air diffusion solution. The average performances do increase with increasing airflows,
and the results offer a better insight on this relationship leading to some possible optimization.

Keywords: operating theatres; ventilation systems; particle contamination; microbiological
contamination; unidirectional airflow; mixing airflow

1. Introduction

Surgery operations are one of the most vulnerable procedures for infections in operating theatres.
It is known that patients with low immune protection are prone to infections. Air is considered to
be a vector of pathogens and an important cause of surgical site infections (SSI) [1]. The latter refer
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to infections that are located on the patient’s wound after surgical activity. They are associated with
increased morbidity, longer hospital stays, and increased costs for communities [2–7]. Contamination in
the surgical field occurs directly from human contamination and indirectly through instruments, gloves,
and components. However, both direct and indirect contamination depend on air quality and ventilation
system, as well as on medical team behaviors, patients’ health, surgical procedures, etc. [8–10]. A good
level of air cleanliness inside the operating theatre (OT) can prevent the number of SSIs by controlling
the level of total airborne contamination (inert and microbiological) through proper air ventilation.
In 2017 in 12 EU Member States and 1 EEA country, the percentage of SSIs varied from 0.5% to 10.1%,
depending on the type of surgical procedure, based on a work done by the ECDC for nine different
types of surgical procedures [11].

The relationship between wound infection and airborne contamination has been studied since
the 1940s [12–16], with increasing interest on the analysis of operating theatres with different types
of ventilation systems, on the effect on cross-contamination, and on viable airborne reduction [17].
Based on those studies, two main types of ventilation for OT environments have been identified:
mixing ventilation airflow (MAF) and partial unidirectional airflow (P-UDAF). The mixing system
dilutes airborne contamination by turbulent mixing between supplied clean sterile air and contaminated
room air. By contrast, the P-UDAF system, due to its low turbulence flow generally directed downwards,
moves contaminants away from the OT protected area (around the surgical table) and reduces the risk
of cross-contamination from the outer zone where airflow conditions are not unidirectional. The MAF
system with terminal mixing diffusers and the P-UDAF system with unidirectional ceiling systems
supply sterile air cleaned by high efficiency HEPA air filters. Types of ventilation systems other than
those described are not commonly used.

Establishing which of the two systems was the best has been a controversial and contradictory issue
for many years [18]. In several studies where viable contamination was measured, P-UDAF appears
to have lower contamination values than the MAF system [19–26]. However, some clinical registry
studies conducted in recent years suggested that the risk of SSIs after surgery in P-UDAF systems is
equal or even higher than in MAF [1,27–30]. The World Health Organization (WHO) suggests the use
of MAF systems for specific type of surgery [9]. According to many studies, conclusions based on
ventilation data from national registries and epidemiological studies should not be interpreted without
considering data inaccuracy [16]. In this regard, the study that was carried out by Popp et al. [31]
confirmed that inaccuracies and a lack of information in compiling the SSI national registry may
significantly diverge the final results from reality. The conclusions of this paper show that P-UDAF
systems perform better in terms of airborne contamination and SSIs protection in OT environments.

The efficiency of a ventilation system is influenced by multiple factors, such as the position of
the operating table, the operating team, the surgical lamps, the type of personnel clothing systems,
the surgical equipment [18,32–35], and the frequency of door opening. The surgical procedures [8] and
the local risk assessment adopted for preventing SSI [18] also present particular relevance, as confirmed
by recent studies on MAF [1,12,36,37] and P-UDAF systems [1,8,12,38–42]. A comprehensive overview
of the SSI prevention guidelines has been carried out [43] in order to give holistic tentative indications
on risks and factors (e.g., patient, medical team, surgeries, procedures, HVAC systems, etc.) that may
cause SSIs through contamination.

In addition to the numerous studies conducted on ventilation efficiency, OT performance is often
evaluated in terms of microbiological and inert contamination of air and surfaces [44,45] according to
the guidelines and to the limit values used in cleanroom environments for pharmaceutical production.
These environments conform to Good Manufacturing Practice Guidelines (GMPs) and ISO 14644:1
standards or national guidelines [46–48] and they are classified “at-rest” and “in operation” occupancy
states. A similar approach is also used by the Italian guideline for environmental monitoring of
operating theaters, as issued by INAIL [49].

These guidelines and standards specify the air cleanliness level in terms of total and biological
airborne particles. The total particles are generally classified in the range from 0.5 to 20 microns,
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bio particles (known as bacteria-carrying particles) are mostly in the range from five to 60 microns,
while bacteria are in the range from one to 15 microns [9]. The main source of contamination within
OTs are human activities, clothing, and equipment.

Previous studies reported here concerned the interaction between type of ventilation system and
SSI events occurring after surgical operations in the “operational” state of an OT, with the data and
results mainly based on epidemiological studies and national infection databases, and not on actual
“on- site” measurements in OTs during surgical activities.

At the moment, there is a lack of studies on OT contamination cleanliness levels in “at-rest” and in
“operational” not simulated state: few studies have been conducted in those conditions giving much
attention to the Total Viable Count (TVC) [50,51] or Total Bacterial Count (TBC) [26] in the OTs that
were equipped with different ventilations systems more than assessing the technical HVAC parameters
that may influence the OT contamination. Usually, an operating theater is cleaned before each surgery
in order to keep the total and microbial particle concentration levels below a fixed threshold before each
operation begins. Compliance with these limits under all occupational states can be considered to be a
key parameter in assessing and maintaining the contaminant concentration below the prescribed limits.

An eight-year on-site measurement campaign has been conducted in 175 OTs of 31 Italian hospitals
in order to quantify the cleanliness level and the performance of operating theaters depending on the
ventilation systems, leading to a database of 1228 complete inspections.

Two type of ventilations systems, P-UDAF and MAF, have been monitored in “at-rest” and
“operational” occupational states according to the inspection protocols that were suggested by INAIL
(Istituto Nazionale per l’Assicurazione contro gli Infortuni sul Lavoro, “National Institute for Insurance
agains Accidents at Work”) guidelines [49] and EU-GMP (European Union’s Good Manufacturing
Practice) [52] for total and microbiological contamination in air and on surfaces. In addition,
technical parameters, such as airflow rate, recovery time, and number of people, were monitored.
A further aim is to analyze which ventilation system can guarantee the compliance with the imposed
cleanliness limits. To our best knowledge, this is the first inspection study in hospital, planned and
carried out with this objective in Italy, due to the large sample set and long-time span. The knowledge
gained by this study on contamination control in OTs can help hospitals and engineers to select and
operate OT ventilation systems and OT procedures properly, ensuring low contamination levels,
low infection rates, and safer working conditions.

2. Materials and Methods

The monitoring campaign of this study encompasses the whole Inspection and Periodic
Performance Testing (IPPT) process, includes measurements of airborne particle and microbiological
pollutant concentrations, and has been carried out in a large sample of Italian operating theatres.
The measurements were periodically repeated over a long period extending from 2010 to 2018. The total
number of complete IPPTs is equal to 1228; the inspections were made in 175 OTs that were situated in
31 hospitals throughout the Italian peninsula. The periodic inspections had the role of assessing the
status of air cleanliness and of ventilation system, and proving continued compliance to the classification
of the Italian INAIL Guidelines OT performance requirements [49]. The IPPT procedure has been based
on INAIL GL Guidelines [49], and on pertinent ISO 14644-1 [46], ISO 14698-1 [53], and EU-GMP [52]
for particle and microbiological contamination in air and on surfaces. Each inspection included a full
set of measurements. The classification of air cleanliness in terms of airborne particles concentration
was carried out under “at-rest” conditions. Microbiological air sampling was made under “at-rest” and
“in operation” (real surgery) conditions. Recovery time, airflow rates, air velocities, and differential
pressures were measured under “at-rest” conditions, and other data (e.g., number of people in OT)
were monitored “in operation”. It is worth highlighting that the methodology, the procedures, and the
instruments applied to all IPPTs during the entire measurement campaign has been maintained
unchanged, thus assuring accurate, consistent, and comparable results. In “at-rest conditions”
measurements have been carried out after a complete OT cleaning procedure, which is carried out
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before and after each real surgery. The evaluation of the OT cleaning procedure was out of the scope of
this research work.

The measurements are presented by distinguishing between OTs adopting the P-UDAF or MAF
scheme and dividing these two main categories according to relevant differences in the ventilation
system required performance and in air diffusion design choices. Therefore, the four categories of OT
ventilation are here listed:

• Type A—Partial UniDirectional AirFlow (P-UDAF)—designed (airflow rate and ceiling area) to
achieve an ISO 5 air cleanliness class in “at-rest” condition;

• Type B—Partial UniDirectional AirFlow (P-UDAF)—designed (airflow rate and ceiling area) to
achieve an ISO 7 air cleanliness class in “at-rest” condition;

• Type C—Mixing Air Flow (MAF)—designed to achieve an ISO 7 air cleanliness class in “at-rest”
condition and adopting high-wall supply grilles; and,

• Type D—Mixing Air Flow (MAF)—designed to ISO 7 air cleanliness in “at-rest” condition and
adopting ceiling air diffusers.

ISO air cleanliness classes are evaluated according to ISO 14644-1:2001-2015 [46]. Table 1 describes
the type of measurements and sampling points chosen for the environmental monitoring campaign.

Table 1. Type of measurements and sampling locations according to the occupational state.

Qualification Test Occupancy State Positions

Microbiological air sampling At-rest Center of surgical table
Surface microbiological sampling At-rest 4 surfaces in OT a

Airborne particles sampling At-rest Protected zone for P-UDAF and everywhere
for MAF systems b

Recovery time At-rest Center of surgical table for MAF, dirtiest point
outside ceiling filter for P-UDAF systems

Microbiological air sampling Operational Close to the surgical wound
a surgical table, scialytic lamp, surgical instruments table, anesthesia tower. b sampling points under ceiling HEPA
filter for ISO Class 5 OTs (P-UDAF) according to ISO 14644-1:2015 [46]; sampling points evenly distributed according
to ISO 14644-1:2015 [46] for ISO Class 7 OTs (P-UDAF and MAF).

Recovery Time (RT) and ISO class have been measured and calculated according to ISO
14644-3:2005 [47] and ISO 14644-1:2001-2015 [46], respectively. Microbiological air sampling was
conducted using an active air sampler (mod. SAS Super ISO 180, VWR International srl, Milano, Italy)
with an airflow rate of 180 L per minute (LPM)± 9 LPM. Sterile TSA (Triptic Soy Agar; VWR International
Srl, Milan, Italy) petri dishes with a diameter of 55 mm were used. Under “at-rest” conditions, a total
air volume of 1.05 m3 was sampled in three separate and sequential series of 350 L each, while,
under operating conditions, 200 L were sampled each time, with a hold time before measuring of 5 min.
between each consecutive sample, for a minimum of seven series. A new Petri dish was used at each
sample run, and the results were averaged per each measurement. Surface microbiological sampling
has been made by means of sterile TSA RODAC (Replicate Organism Detection and Counting) plate,
55 mm in diameter, one plate per each of the chosen locations.

The airflow rate, RT, air velocity, temperature, and OT differential pressure were measured
under “at-rest” conditions according to ISO 14644-3:2005 [47]. The frequency of staff attendance was
monitored during normal surgical operations. The contamination threshold limits were taken from
INAIL Guidelines, as shown in Table 2. Measurements in both of the occupational states have been
always carried out maintaining the OTs’ doors and windows closed unless emergency events.
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Table 2. Bio-contaminants threshold value for Operating Theatres (OTs) according INAIL GL [49].

Microbiological Air Contamination Limits

At-Rest Operational

MAF UDAF MAF UDAF
≤35 CFU m−3 NA ≤180 CFU m−3

≤20 CFU m−3

Microbiological Surface Contamination Limits

≤5 CFU plate−1
≤5 CFU plate−1 NA NA

Airborne particle threshold limits for OTs, as indicated in INAIL and ISO 14644-1, are 3520 and
352,000 particles/m3 (pp/m3) for particle diameter ≥0.5 µm (cumulative value) for ISO 5 and ISO 7
Class, respectively. These values are consistent with the threshold limit values imposed by EU-GMP
Annex 1 [52]. Table 3 shows EU-GMP limit values for airborne particle and microbial contamination
in cleanrooms.

Table 3. Particle and microbial threshold limit for clean area during operation according to Annex 1,
EU-GMP [52].

EU-GMP
Grade

ISO
Class

Particle Concentration Limit (≥0.5 µm) Microbial Concentration Limit

In Air, At-Rest
[pp m−3]

In Air, Operational
[pp m−3]

In Air,
Operational
[CFU m−3]

On Surface,
Operational

[CFU Plate−1]

A 5 3520 3520 <1 <1
B 5 3520 352,000 10 5
C 7 352,000 3,520,000 100 25
D 8 3,520,000 Not Defined 200 50

Airborne particle contamination was measured with an optical particle counter (OPC, Lasair III,
mod. 350 L, PMS, Boulder, CO, USA). The airflow rate is 50 LPM ± 5%, the detectable particle
size channels used were 0.3, 0.5, 1, 5, and 10 µm, with particle counting efficiency equal to 50% for
particles ≤0.3 µm, and 100% for particle ≥0.5 µm The calibration of the instrumentation was performed
according to ISO 21501-4:2007-2018 [45]. The sampling time and volumes were chosen according to
ISO 14644-1:2001-2015.

3. Results and Discussion

The monitoring measurements, 1228 complete IPTTs, have been carried out with the aim of
assessing the cleanliness performances of the OTs in relation to ventilation systems and other key
parameters. The “at-rest” and “operational” occupancy states have been studied in order to better
characterize the influence of the ventilation systems. The main results of the experimental campaign
are explained in the following paragraphs. The collected data were analyzed with descriptive statistics,
resulting in mean, standard deviation, and range for the same OT over time or for each type of OT
ventilation system. Continuous variables were compared while using the student’s t-test with 95%
confidence level (assuming unknown but equal variances). Multiple population means were compared
by analysis of variance (ANOVA) and p-values were reported. A low p-value indicates a high likelihood
of rejecting the null hypothesis of equal means across the populations. A p-value < 0.05 is considered
to indicate significance. The statistical analysis was performed while using Matlab® (The MathWorks,
Natick, MA, USA).

Among the 175 operating theaters under analysis, 58 (33% of the total) OTs had partial vertical
unidirectional airflow ventilation (P-UDAF), of which 27 were Type A and 31 Type B, and 117 (67%)
had mixing turbulent airflow ventilation (MAF), of which 16 were Type C and 101 Type D. Table 4
shows the average values of the key parameters for OTs by the type of ventilation system.
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Table 4. Overview of the OTs and descriptive statistics of the measurement results.

System P-UDAF MAF

OT Type Type A Type B Type C Type D

ISO Class 5 7 7 7

Number of OTs 27 31 16 101

Ambient Volume [m3]
Mean 136.9 126.0 120.0 105.4

Standard deviation 13.3 16.0 22.6 22.5

ACH
Mean 51.2 19.0 15.1 18.4

Standard deviation 5.5 3.8 5.0 5.2

Airborne particle
concentration [pp m−3],

(≥0.5 µm) in at-rest
conditions

Mean 326 25,970 28,878 56,400

Standard deviation 235 31,525 14,479 85,332

Min 0 0 2027 437

Max 2641 193,313 229,613 556,904

Microbiological air
contamination

[CFU m−3] in at-rest
conditions

Mean 0.9 3.3 9.9 11.8

Standard deviation 1.0 3.5 4.4 12.7

Min 0.0 0.0 0.0 0.0

Max 13.3 30.5 86.7 392.5

Microbiological air
contamination

[CFU m−3] in operational
conditions

Mean 5.5 20.7 72.8 55.2

Standard deviation 7.0 20.2 18.7 32.0

Min 0.0 0.0 13.6 4.2

Max 125.0 167.9 327.5 339.4

Recovery time [min]

Mean 7.2 14.0 28.5 23.0

Standard deviation 0.6 4.1 11.9 8.4

Min 6.2 8.5 18.3 11.0

Max 7.7 20.8 66.7 40.8

Inspections non-compliant with INAIL [49] particle
concentrations threshold values at-rest [%] 0 0 0 0

Inspections non-compliant with INAIL [49] airborne
CFU threshold values at-rest [%] NA NA 2.6 6.1

Inspections non-compliant with INAIL [49] airborne
CFU threshold values in operation [%] 1.3 23.2 3.1 2.4

Inspections non-compliant with EU-GMP [52]
airborne CFU threshold values in operation [%]

10.8 1.8 20.3 10.1

(Grade B) (Grade C) (Grade C) (Grade C)

The OT sizes ranged from 19 to 53.7 m2, with a mean of 38.2 m2 and volume of 114.1 m3.
The mean number of air changes per hour (ACH) was 51.2 for Type A, 19 for Type B, 15.1 for Type C,
and 18.4 Type D. In all of the OTs, the ventilation systems were equipped with HEPA (High Efficiency
Particulate Filters) with a particle filtration efficiency of ≥99.97% for Most Penetrating Particle Size
(MPPS) particles. Over the evaluated period, the key performance parameters have shown stable
values with some outliers due to occurrences unrelated to standard cleaning and surgical procedures.
These data have not been accounted for in this work. Differential pressure between the evaluated OTs
and the ancillary areas was always positive, average value of 10 Pa for both typology of ventilation
scheme adopted, guaranteeing a correct and safe OTs’ contamination protection from external dirty
air infiltration.



Int. J. Environ. Res. Public Health 2020, 17, 7275 7 of 16

3.1. OT Contamination Performances in “At-Rest” Conditions

An influential performance parameter for contamination control in OTs is the level of total airborne
particles in “at-rest” condition after the cleaning procedure. This value, besides the quality and the
reproducibility of cleaning procedure, could be a useful indication of the ventilation system ability to
control airborne contamination below the desired threshold limit. Figure 1 shows the airborne particle
concentration values for the OTs under evaluation, being grouped by ventilation type and ISO Class in
function of Air Changes per Hour (ACH).

Figure 1. Average airborne particle concentration vs. ACH in “at-rest” conditions for the 175 investigated
OTs. Cumulated values for particles ≥0.5 µm.

The Type A OTs (P-UDAF–ISO 5 design) are offering the best performance in terms of
particle concentration control. They process a large air volume uniformly distributed downwards;
the concentration of particles ≥0.5 µm in “at-rest” conditions is always far below the limit set for ISO
5 class, with an average values of 326 pp/m3, and a highest value that remains below the limit of
3520 pp/m3. The P-UDAF Type B OTs, which are designed to obtain an ISO 7 class, are still offering
good performance, always below the ISO 7 class limits, and, in comparison to Type A, they significantly
decrease the supply airflows. The Type C and D mixing airflow ventilation systems (MAF) show an
average concentration below the ISO 7 limit and a quite large performance dispersion. The Type C
and D performance in particle concentration control is much lower than the Type A and it could be
considered, as can be seen from Table 4 and Figure 1, also worse than the Type B. When comparing
Type C with Type D, it appears a better performance of the ceiling air diffusion solution. The p-values
of the comparison of concentration means are reported in Table 5. It’s observed that MAF and P-UDAF
means in ISO class 7 are not significantly different. In particular, P-UDAF Type B and MAF Type C
results in p-value = 0.997, which implies that, also in this case, the means are not statistically different
from each other. In clean and controlled environments, the level of bio-contaminants is related to the
total airborne particle concentrations and, in fact, microbes are generally carried by bacteria carrying
particles i.e., larger particles that are released by pollutant sources (e.g., skin flakes and respiratory
fluid droplets released by humans). Figure 2 shows the level of microbiological airborne contamination
under “at-rest” conditions.
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Table 5. Results of comparison between multiple OTs samples. The comparisons are referred to the
175 investigated OTs in terms of particle concentration “at-rest” and microbiological air contamination
“at-rest” and “operational”.

Comparison p-Value

Sample 1 Sample 2
Particle

Concentration
“At-Rest” (Figure 1)

Microbiological Air
Contamination

“At Rest” (Figure 2)

Microbiological Air
Contamination

“Operational” (Figure 4)

Type A Type B 0.568 0.795 0.133
Type A Type C 0.522 0.016 0.000
Type A Type D 0.001 0.000 0.000
Type B Type C 0.997 0.105 0.000
Type B Type D 0.225 0.000 0.000
Type C Type D 0.513 0.968 0.030

Figure 2. Average microbiological air contamination vs. air changes per hour (ACH) in “at-rest”
conditions for the 175 investigated OTs.

The results highlight that the Type A OTs (P-UDAF–ISO 5 design) are also offering the best
performance in terms of airborne microbiological concentration control, i.e., an average value of
0.9 CFU/m3. Type B OTs, designed to obtain an ISO 7 class, are offering lesser (average concentration
3.3 CFU/m3) but quite similar performances. The Type C and D mixing airflow ventilation systems
(MAF) show average concentration of 9.9 CFU/m3 and 11.8 CFU/m3. Once again, it is worth noting
both average values and the wide dispersion of results. The comparison of population means presented
in Table 5 shows high p-values between air distribution patterns of the same type: Type A and Type
B have p-value = 0.795; Type C and Type D show p-value = 0.968. Moreover, although the p-value
between Type B and Type C is low, it is not possible to reject the null hypothesis. The obtained results
are in disagreement with a recent study conducted on the air contamination in orthopedic OTs [51],
while well agree with those of similar works conducted in Italian hospitals [8,26] where OTs equipped
with unidirectional ventilation schemes always got better air quality than mixing one.

The performance of the ventilation system in controlled environments, such as OT, can also be
measured by the Recovery Time (RT). This test, generally carried out in “at-rest” conditions and in
non-unidirectional ventilation system, indicates the time interval that is needed for a clean environment
to recover the target cleanliness threshold level from a high challenging particle concentration.
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The effect of ACH on RT is crucial for P-UDAF (Type A and Type B) systems in ISO 5 and ISO 7
classes (see Figure 3). The influence of ACH on RT, although existent, is little marked for OTs that are
equipped with turbulent systems, where the results are widespread. The average RT values span from
7.2 min. to 14 min. for OT ISO 5 Type A and Type B, respectively, and from 28.5 to 23 min. for ISO 7
class Type C and Type D.

Figure 3. Recovery Time vs. ACH in “at-rest” conditions. Values of the 175 investigated OTs.

3.2. OT Contamination Performances in “Operational” Conditions

The influence of the ventilation system in operation conditions is shown in Table 4 and in Figure 4,
just with reference to microbiological contaminants. The maximum performance of the P-UDAF system
and of its downward piston-like effect are more evident when looking at microbiological contamination
level and considering “in operation” instead of “at-rest” conditions. Let us quote from Table 4 that the
P-UDAF average values (Type A—5.5 CFU/m3; Type B—20.7 CFU/m3) are always better than those of
MAF systems (Type C—72.8 CFU/m3; Type D—55.2 CFU/m3).

Figure 4. Average microbiological air contamination vs. ACH in “operational” conditions for the
175 investigated OTs.
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Let us point out that larger airflows (i.e., larger ACH) could contribute to obtaining a better mixing
(ventilation efficiency) in a MAF system and it could maintain optimum velocities in the P-UDAF
case, both possibly bringing an indoor air quality improvement. In the studied OTs, as a matter of
fact, P-UDAF systems, on average, have 51.2 ACH for ISO Class 5 and 19 ACH for ISO Class 7 classes,
and these values are higher than the average ACH of MAF systems, Type C (15.1 ACH) and Type D
(18.4 ACH); quite obviously, larger airflows lead towards higher energy consumptions and increased
economic costs. It is interesting to look more deeply to the data dispersion (Figure 4); Table 5 presents
the comparison of the data samples means in terms of the statistical p-values that confirm that the
microbiological concentration values between P-UDAF and MAF diffusion schemes are statistically
different (p-values < 0.05).

In OTs with P-UDAF (Type A—ISO 5; Type B—ISO 7) and, with the highest ACH values,
the threshold limits of biological contamination imposed by Italian guidelines in “at-rest” condition
(see Table 2) are always met. As the number of ACH decreases and observing the MAF Type C
and Type D ventilation systems, the concentration of airborne microbial contaminants in “at-rest”
conditions increases and the studied OTs exceed the required limit in 2.6% and 6.1% of the observations,
respectively. Under “operational” conditions, the systems respond as in “at-rest” conditions: the lower
the ACH, the higher the microbial contamination. EU-GMP Annex 1 for the microbial contamination
limits in the “operational” state has strict limits, distinguishing in Grade B (Type A) and Grade C
(Type B) air cleanliness level without any distinction among ventilation schemes, on the contrary
of INAIL GL, which has larger CFUs concentration limit values for different ventilation schemes.
Therefore, according to EU-GMP, it results that the P-UDAF systems meet the threshold limit values
89.2% of the times in ISO 5 Type A class (Grade B) and 98.2% in ISO 7 class Type B (grade C), while MAF
diffusion systems meet the EU-GMP threshold limits of 79.7 % and 89.9 % of the times for Type C and
Type D (Grade C), respectively. The obtained results agree well with a similar recent work [51], as well
as the idea that the actual microbial limit imposed by INAIL GL are too high for mixing airflow OTs.

The personnel crown index is another performance parameter that can be related to air
contamination in OT environments. Figure 5 shows the microbiological air contamination in
“operational” condition as a function of personnel crowd index for OTs equipped with different
ventilation systems.

Figure 5. Average microbiological air contamination vs. personnel crowd index in “operational”
conditions for different ventilation systems. Values for 175 investigated OTs.

The average concentration of aerial CFUs in relation to the personnel crowd index in “operational”
condition varies between 5.5 and 20.7 from ISO 5 class to ISO 7 class in Type A and Type B OTs. In OTs
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with P-UDAF systems, microbiological contamination varies less than in MAF systems, which is also
due to a high ACH and a low variation of the personnel crowd index. In contrast, the low ACHs and
the wide variation in the crowd index for MAF OTs (from 0.1 to 0.3) contribute to an increase in CFUs
values during surgery agrees with similar multi-year inspection campaigns that were conducted in
Italy [8,26], while disagreeing with another similar work in which there was no correlation between
crowd index and microbial contamination [51]. Despite the great variability of the crowd index
and CFU values, the results shown may also be influenced by other factors, such as type of surgery,
technical clothing systems, and patients’ health conditions [26,43,50]

3.3. Ancillary Data-Surface Contamination in “At-Rest” Conditions

The monitoring of surface microbial contamination in “at-rest” conditions is important for
interpreting OT cleanliness performance. However, the expected results are more related to the
quality of the cleaning process performed before measurements than to the ventilation system itself.
The final results of a cleaning procedure are susceptible to human operators, the type of cleaning agents,
adopted procedures, and superficial quality of the OTs components and equipment. The high number
of variables on which the final cleaning results may depend, in addition to the differences between
the procedures in the different hospitals and OTs under study, allows for the authors to consider the
surface microbial results as ancillary data, which do not influence the final conclusions. Figure 6 shows
the results of all the surface measurements (with sterile TSA RODAC plates) taken on the surgical
table and around the critical area.

Figure 6. Average microbiological surface contamination in different OT locations under “at rest”
conditions after cleaning procedures. Position 1 = surgical table, Position 2 = scialytic lamp, Position 3
= surgical instruments table, Position 4 = anesthesia tower.

The results do not show significant differences in averages and variances, even for different
ventilation systems. For P-UDAF ISO 5 class, there is a significant difference between the average of the
measurements in Position 1 (operating table) and other positions. The variance of the measurements in
Position 4 (anesthesia tower) is very high and it does not justify a significant difference in the average
as compared to the other positions.

The surface bio-contamination values are very similar for both different ventilation types and for
ISO classifications (ISO 5 and ISO 7) with a significant difference near the surgical table. At sampling
points that are outside the surgical table, the values do not differ much between the ventilation systems.
When comparing same ISO class OTs, e.g., ISO 7, the surface bio-contamination in Type C and Type D
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OTs is, on average, similar or lower than in OTs with Type A and Type B systems. Notwithstanding,
surface contamination found in OTs with P-UDAF systems (Type A) ISO 5 class, with the exception of
anesthesia tower (position 4), was well below the threshold values. In contrast, P-UDAF (Type B) ISO 7
class systems in this study always have values comparable to MAF (Type C and Type D) systems.

4. Limitations

The study has been conducted by monitoring some important environmental parameters in OTs
by the same teams throughout a long inspection period. Although the measurements rely on INAIL,
EU-GMP, and ISO methodologies, the differences encountered in the evaluated hospitals may set some
limitations of this experimental study.

In “at-rest” conditions, the main limitation is the uncertainty about the cleaning procedure [26]
and the unknown type and quality of the surface materials which may affect the final results [50].
In “operational” condition, limitations may arise due to the different influence of medical teams and
patients. Humans, even if well gowned, may have different contamination emission rates. The fabric
quality of the medical team gowning systems and the covering of equipment and surgical tools
(e.g., cotton vs. polyester/TNT) can deeply influence the contamination emission rate [33], and affect
the final contaminant concentrations. A further limitation may result from the different type of surgical
operations monitored and the use of electrosurgical tools during operations [34,35,43].

5. Conclusions

The study presents the measurement results (both in “at-rest” conditions and “in operation)
obtained in a large sample of Italian OTs and from inspections made during their operative life.
The results confirm that, in general, the ventilation systems are able to obtain and maintain in their
lifetime the intended cleanliness performance levels (classes). They attest that significant differences
in real OT contamination control capabilities do exist and they could be ascribed to many design
choices and different operation and maintenance practices. The study put forward and confirms that
the type of air diffusion scheme and the design airflow rate are crucial determinants. Besides large
variations in measurements, the average performance values, in terms of airborne particle and microbial
contamination (in air and on surfaces), for P-UDAF systems (Type A and B), are better than the ones that
represent the MAF air diffusion scheme that was evaluated in this campaign. Moreover, the average
performances do increase with increasing airflows as shown by the Type A data vs. Type B, Type C,
and Type D. The study suggests that the P-UDAF scheme is performing better, even when used
with airflows (Type B), which are quite similar to the MAF (Type C and type D) ones. The MAF
results are also showing that Type C (ceiling air diffusers) and Type D (high-wall diffusers) have quite
similar performances; Type C solution have a slight advantage over Type D. The adopted design
airflows (e.g., ACH) for all of the ventilation systems have relevant effects on energy consumptions,
system complexity, and economic costs, but the analysis of obtained data shows that, in Type A systems,
above a certain ACH level, the benefits of a further increase in airflow tend to be insignificant in terms
of contamination reduction.

Microbial surface contamination in ventilation systems in “at-rest” conditions show that there is
no inherent and univocal solution to limit contamination in OT fields, even though P-UDAF class ISO 5
OT have lower contamination value in the most protected (critical) area where it matters. The personnel
crowd index and RT are useful performance indicators for evaluating the efficiency of a ventilation
system to keep airborne contamination below a fixed limit in function of time, ventilation system,
and personnel. From the point of view of the airborne particle contamination limit values, OTs with
P-UDAF (Type A-ISO 5 and Type B-ISO 7) ventilation systems were compliant with the limit values
imposed by Italian INAIL GL and Annex 1 EU-GMP 100% of the time; MAF systems, Type C and
Type D, as well, reported 100% compliance rate, even if with less demanding limits.

OTs in Class ISO 5 that were equipped with P-UDAF systems had a non-compliance rate equal to
1.3% for the airborne microbial contamination limits in “operational conditions” according to INAIL
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GL. By applying the strict airborne microbial limits that were adopted by the Annex 1 of EU-GMP,
P-UDAF systems had a non-compliance rate sensibly lower than MAF systems, 10.8% and 1.8% for
ISO 5 Class (Grade B) and ISO 7 Class (Grade C), respectively, while MAF systems, which are ranked
in Grade C, achieved a non-compliance rate equal to 20.3% and 10.1% for Class ISO 7 Type C and Type
D, respectively.

In the scenario of a future increased presence of antibiotic resistant bacteria in OT, with a potential
increase of SSIs, medical staff, HVAC designers, and healthcare management should pay more attention
to the selection of the type of ventilation system and of the performance optimization in terms of
contamination control and of energy and economic costs. In this contest, OTs equipped with P-UDAF
system in ISO 5 class seem to be a more effective and stable solution for guarantying a low airborne
bio-burden contamination during surgical activities for both patients and medical team. However,
future investigation should further account for all of the variables, also the ones not explicitly accounted
in this study.
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