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Abstract

Modal models from operational modal analysis (OMA) lack information about

the modal scaling (or, modal mass). Many times, this is not a limitation. How-

ever, in some engineering applications, e.g. for structural health monitoring

or computational model validation, a scaled modal model may be important.

The authors of this paper recently presented a new approach for scaling modal

models using harmonic excitation. The method was named the OMAH method,

and it was shown that the approach is robust and reliable. However, the pro-

posed technique relied on the measurement of the structural response between

two arbitrary degrees of freedom (DOFs) for each mode. In the present paper,
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the method is extended to the case in which several excitation and response

DOFs may be taken into account for the scaling. This is analogue to using

global parameter estimation methods in classical experimental modal analysis.

The proposed multiple-reference technique includes the capability of estimating

residual terms to account for modes outside the frequency range of interest.

The method is validated on two sets of data from real full scale structures, and

the accuracy of the scaling using several response DOFs is shown to improve

compared to using only a single excitation and response DOF. The proposed

formulation, furthermore, allows one or more excitation DOFs as well as one

or more response DOFs to be used for the scaling of the modal model. Thus,

one single formulation can be used regardless of whether multiple-references are

necessary, or not.

Keywords: operational modal analysis; mode scaling; modal mass;

harmonic excitation; OMAH

1. Introduction

Modal analysis is a powerful tool to estimate modal parameters of mechanical

structures and systems. The knowledge of eigenfrequencies and mode shapes

is crucial for many purposes: e.g., model validation and calibration, response

estimation, and structural health monitoring. In many cases, the modal model

must be properly scaled. This is one of the main limitations of operational

modal analysis (OMA), which only provides unscaled modal models, because

the loads acting on the structure are not known (e.g. [1, 2, 3, 4, 5, 6]).

There are different approaches available in the literature for scaling the

modal model provided by OMA. Some of them require to repeat the OMA

tests with different configurations of the structure. This means to change, in a

controlled way, the distribution/amount of the mass or stiffness of the structure

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Another approach is the technique

called operational modal analysis with exogenous inputs (OMAX). This method

is based on the excitation of the structure being partly provided by natural en-
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vironmental excitation (e.g. traffic, wind) and partly by one or more actuators

providing measured broadband excitation [20, 21]. Further techniques couple

known dynamic systems (e.g. people, tuned mass dampers) to the structure

under investigation. This enables to estimate the modal masses and thus to

scale the mode shapes [22, 23, 24]. Using cepstrum analysis to find the poles

and zeros of the system is another approach, although this method relies on a

priori knowledge of at least one system frequency response [25]. Finally, the

mass matrix of a finite element model may be used, together with expanded

experimental mode shapes, to find the modal masses [26].

All the approaches mentioned above require accurate knowledge of the dy-

namics of additional systems, or require to employ potentially large actuators

(on large structures) capable of producing broadband excitation signals (e.g.,

multi-harmonic, chirp), or rely on relatively complicated experimental proce-

dures (e.g. changes of distribution/amount of the mass of the structure), or,

again, rely on the accuracy of a computational model, which latter must be

based on an assumption. Recently, the authors of the present paper proposed a

new approach to scale modes estimated by means of OMA by employing mono-

harmonic excitation [27, 28]. This approach, named OMAH, was shown to be

robust and reliable. Furthermore, the estimation of the harmonic responses

under different signal-to-noise ratios (SNR) using the three-parameter sine fit

method was investigated in [29]. Here it was shown that it is a particular advan-

tage with harmonic excitation, that it can provide high accuracy also in cases

with poor SNRs. This means the method can be employed using relatively small

actuators.

The present paper explains how to improve the accuracy of the scaling pro-

cedure. This is accomplished by increasing the number of degrees-of-freedom

(DOFs) in which the response to the mono-harmonic excitation is measured.

Moreover, this extension of the method also allows data from additional excita-

tion DOFs to be used, which may be necessary when a single excitation DOF

cannot be used to excite all modes of interest.

The layout of the paper is as follows: Section 2 first presents the theory
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related to this work as well as the OMAH method introduced in [27, 28]; then

it introduces the method for global scaling of the modal model, to improve

the accuracy of the scaling procedure, including residual terms, if so desired;

Section 3 presents experimental tests carried out and discusses the validation of

the proposed global scaling of OMA modes.

2. Theoretical background

In this section we first discuss the theory behind the OMAH method (see

Section 2.1), which is the base for the new approach proposed here for the global

scaling. Then, the new, global approach is presented and discussed in detail (see

Section 2.2).

2.1. The OMAH method

A scaled frequency response function (FRF) of a structure can be formulated

generally in receptance form (displacement over force) as:

Hp,q(jω) =

N∑
r=1

ψp
rψ

q
rQr

(jω − sr)
+

(ψp
rψ

q
rQr)∗

(jω − s∗r)
(1)

where ω is the angular frequency, p is the DOF where the structural response is

measured while q is the DOF where excitation is provided. Furthermore, sr is

the pole of mode r and the superscript ∗ denotes complex conjugation. ψp
r and

ψq
r are the mode shape coefficients of mode r at points p and q, respectively. N

is the number of modes considered, j is the imaginary unit and, finally, Qr is

the modal scaling constant of mode r. The expression of sr is:

sr = −ζrωr + jωr

√
1− ζ2r (2)

where ωr and ζr are the eigenfrequency and non-dimensional damping ratio of

mode r, respectively. The expression of Qr is:

Qr =
1

2jmrωr

√
1− ζ2r

(3)
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where mr is the modal mass of mode r.

Often (for example in the case of proportional damping), the expression

provided in Equation (1) can alternatively be written as:

Hp,q(jω) =

N∑
r=1

ψq
rψ

p
r

mr(jω − sr)(jω − s∗r)
(4)

In OMA, the poles and the values of ψq
r and ψp

r are obtained by the parameter

extraction, and, according to Equation (4), scaling the modal model thus reduces

to finding the modal mass, mr, of the modes to be scaled.

OMAH allows to scale the modal model components by applying a measured

mono-harmonic force in one DOF, at (or close to) each natural frequency of the

modes to be scaled, and measuring the response in the same/another DOF. This

single frequency measurement can then be used to obtain the scaling of the mode

by assuming that a single mode is dominating at the excitation frequency con-

sidered, which will be equivalent to a single-degree-of-freedom (SDOF) approach

[27]. However, also multi-degrees-of-freedom (MDOF) problems can be solved

with an extension of the same approach [28].

The first part of OMAH is thus to carry out an OMA, finding the sr values

and the corresponding unscaled mode shape components ψp
r , where p indicates

generic DOFs of the structure where its response has been measured during the

OMA test. Then, the second part of the method consists of providing a measured

mono-harmonic excitation (at one or more frequencies ωex close to the natural

frequency or frequencies ωr) to the structure in DOF q. It is essential that q is

a point where the structural vibration was acquired during the OMA test.

If a SDOF approximation of the structural dynamics is considered, the FRF

of Equation (4) at ωex can be approximated as:

Hp,q(jωex) ' ψq
rψ

p
r

mr(jωex − sr)(jωex − s∗r)
(5)

If Hp,q(jωex) is measured, the value of mr can be estimated as:

mr =
ψq
rψ

p
r

Hp,q(jωex)(jωex − sr)(jωex − s∗r)
(6)

5



If higher accuracy is required, or if there is high modal density so that several

modes are contributing to the FRF at frequency ωex, then Hp,q(jωex) evaluated

at several different frequencies ωex can be used; at least as many frequencies as

the number of modes to be scaled.

At least two more frequencies than the number of modes in the frequency

range of interest should be excited to increase the accuracy. This allows for

residual terms, accounting for the out-of-band modes, to be computed. The

requested modal masses can then be computed by using a least squares solution.

Even in the case of using several values of ωex, we propose using frequencies

close to each eigenfrequency because this will require lower force excitation, and

thus require a smaller, less expensive actuator. More details about OMAH are

available in [27, 28, 30].

2.2. Global scaling with the OMAH method

Figure 1: A generic structure where structural response in OMAH tests is measured in 5

DOFs (m=5) and excitation is provided in 3 DOFs (v=3), illustrating that the indeces for

the response and excitation DOFs do not necessarily agree. In this example, the two first

excitation DOFs agree with the two first response DOFs, whereas the third excitation DOF,

q3, corresponds to response DOF p5
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The estimation of the modal masses with the original method described in

Section 2.1 requires to use the values of ψp
r and ψq

r defined by the two DOFs of

the FRF, p and q. The OMA estimates of these two values are, of course, af-

fected by uncertainty due to random errors in the correlation function estimates

propagating through the OMA parameter extraction. Errors in the estimated

values of ψp
r and ψq

r in turn affect the estimation of the modal mass mr. The

OMA estimates of the poles will, of course, also affect the estimation of modal

mass, but will lead to a bias error which is not easily averaged away. The OMAH

method, however, gives an easy opportunity to see if the natural frequency is

accurately determined, by observing the phase relationship between force and

response in the driving point. Thus, any errors in the pole estimate can be

readily found and, if desired, corrected.

To reduce the variance in the estimates of modal masses, in the present paper

we therefore propose to increase the number of DOFs used for the scaling. The

driving idea is to measure the structural response in more than one DOF (i.e.

p1, p2, ..., pm) when applying the mono-harmonic excitation. All these DOFs

must correspond to DOFs where the structural response was measured during

the OMA test, so that there exists a mode shape coefficient for each DOF. We

will also include the possibility of using FRFs from more than one excitation

DOF (i.e. q1, q2, ..., qv) (note that, with this notation, DOFs pn and qn are

not necessarily the same DOFs: the number n just indicates the nth DOF

considered for the responses and the nth DOF considered for the inputs; see,

as an example, Fig. 1), where DOFs p1 and p2 are the same as q1 and q2,

respectively, but DOF p5 is the same as q3. Using more than one excitation

DOF is necessary if a single excitation DOF cannot be found, which is not

on a node line for any of the modes. In many OMA cases, all DOFs are not

simultaneously measured, but rather acquired in batches. In such cases it may

be natural to use the DOFs from one set of response DOFs that were used for

the OMA test (most conveniently the last set, since these sensors are connected

to the measurement system at the end of the OMA test, prior to scaling the

modal model). In some cases, once the mode shapes are known, it may, however,
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be desirable to optimize which DOFs to use for the scaling, by using only those

DOFs with the largest mode shape coefficients.

We refer to the scaling method described here as global scaling, with refer-

ence to experimental modal analysis, where global modal parameter estimation

methods are methods taking many DOFs into account for the parameter esti-

mation.

We will formulate an equation system which can be solved by a least squares

approach. Assuming we wish to scale a number g of modes, starting from mode

number h, the starting point is an arbitrary FRF, between the force in DOF q

and the response in DOF p, which can be written as:

Hp,q(jω) ≈
h+g−1∑
r=h

ψp
rψ

q
r

mr(jω − sr)(jω − s∗r)
+
Cpq

ω2
+Dpq (7)

where Cpq and Dpq are residual terms accounting for the out-of-band modes.

We now assume that we have measured a number of FRFs, where p =

p1, p2, ..., pm, and q = q1, q2, ..., qv. Furthermore, we have measured each indi-

vidual FRF, Hp,q(jω), at one or more frequencies ωex,1, ωex,2, . . . , ωex,k. We put

all those individual FRF values in a column vector:

Hl = [Hp1,q1(jωex,1) Hp1,q1(jωex,2) . . . Hp2,q1(jωex,1) Hp2,q1(jωex,2) . . .

Hpm,q1(jωex,1) Hpm,q1(jωex,2) . . . Hp1,q2(jωex,1) Hp1,q2(jωex,2) . . .

Hpm,qv (jωex,1) Hpm,qv (jωex,2) . . .]
T

(8)

where the superscript [ ]T denotes vector transpose.

We then define a column vector xl including the unknown modal masses and

residual terms by:

xl =

[
1

mh
. . .

1

mh+g−1
. . .

Cp1q1 Dp1q1 Cp2q1 Dp2q1 . . .

Cpmq1 Dpmq1 Cp1q2 Dp1q2 . . .

Cpmqv Dpmqv ]
T

(9)
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For simplicity, we now introduce the function Γ(p, q, r, ωex), defined by:

Γ(p, q, r, ωex) =
ψp
rψ

q
r

(jωex − sr)(jωex − s∗r)
(10)

Using this function, we define the matrix Al, containing the mode contribu-

tions, and the coefficients 1/ω2
ex and 1 in the positions for the residual terms:

Al =



Γ(p1,q1,h,ωex,1) Γ(p1,q1,h+1,ωex,1) . . . Γ(p1,q1,h+g−1,ωex,1) 1/ω2
ex,1 1 0 0 . . .

Γ(p1,q1,h,ωex,2) Γ(p1,q1,h+1,ωex,2) . . . Γ(p1,q1,h+g−1,ωex,2) 1/ω2
ex,2 1 0 0 . . .

...
...

...
...

...
...

...
...

...

Γ(p2,q1,h,ωex,1) Γ(p2,q1,h+1,ωex,1) . . . Γ(p2,q1,h+g−1,ωex,1) 0 0 1/ω2
ex,1 1 . . .

Γ(p2,q1,h,ωex,2) Γ(p2,q1,h+1,ωex,2) . . . Γ(p2,q1,h+g−1,ωex,2) 0 0 1/ω2
ex,2 1 . . .

...
...

...
...

...
...

...
...

...

Γ(pm,q1,h,ωex,1) Γ(pm,q1,h+1,ωex,1) . . . Γ(pm,q1,h+g−1,ωex,1) . . .

Γ(pm,q1,h,ωex,2) Γ(pm,q1,h+1,ωex,2) . . . Γ(pm,q1,h+g−1,ωex,2) . . .

...
...

...
...

...
...

...
...

...

Γ(p1,q2,h,ωex,1) Γ(p1,q2,h+1,ωex,1) . . . Γ(p1,q2,h+g−1,ωex,1) . . .

Γ(p1,q2,h,ωex,2) Γ(p1,q2,h+1,ωex,2) . . . Γ(p1,q2,h+g−1,ωex,2) . . .

...
...

...
...

...
...

...
...

...

Γ(pm,qv,h,ωex,1) Γ(pm,qv,h+1,ωex,1) . . . Γ(pm,qv,h+g−1,ωex,1) . . .

Γ(pm,qv,h,ωex,2) Γ(pm,qv,h+1,ωex,2) . . . Γ(pm,qv,h+g−1,ωex,2) . . .

...
...

...
...

...
...

...
...

...


(11)

It is important to note that each row in Al, although indicated as the same

frequencies ωex,1, ωex,2 etc., may actually have unique frequencies, since each row

is an independent equation at an arbitrary frequency. Each row also contains

one term 1/ω2
ex, and one unity term, positioned for the appropriate residual

terms, although they are not shown in the lowest rows of Equation (11).

Using the vectors and the matrix thus defined, the entire equation system

with all the measured FRFs Hp,q(jω) can be written as:

Hl = Alxl (12)

which can be solved by a least squares solution or a pseudo inverse.
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In order to be able to solve Equation (12), first of all it needs to have more

rows than the number of unknown modal masses plus residual terms, in order

to be overdetermined. This will in general easily be accomplished if each mode

is excited near its natural frequency, and several response points are used for

each excitation frequency.

It should be noted that xl ∈ R(g+2(m×v))×1 and thus we need at least (g +

2(m× v)) equations to solve the system. If we measure the structural response

in all the response DOFs synchronously (i.e. we acquire m responses for each

excitation frequency ωex and input DOF q), then the required value of k (i.e.

the number of the considered excitation frequencies) is k ≥ (g + 2(m × v))/m.

Obviously, if (g+ 2(m× v))/m is not an integer number, it must be rounded to

the nearest higher integer number.

Furthermore, we need to make sure the matrix Al is well conditioned. In

general many of the values of the functions Γ() are small numbers, since they

are the contributions at frequency ωex of each mode. As we assume each ωex

is a frequency close to one of the natural frequencies, then all coefficients Γ()

related to the modes considered, except the one related to the mode close to

the excitation frequency, will, in most cases, be small. However, for the ma-

trix Al to be well conditioned, it is sufficient that each row and each column

contains at least one large value, and that each row or column is unique. The

condition for the columns is satisfied if each mode is well excited by at least one

excitation DOF, q, in one of the rows, and measured by at least one response

DOF with high mode shape coefficient, which is readily accomplished. For the

rows, however, there is no guarantee that there is a high Γ() value, since at one

frequency, if the response DOF is on a node line for the corresponding mode at

that frequency, all function values of Γ() may be small, even if the excitation

DOF is in a position exciting the mode well. The condition of the matrix is

not affected by this, however, as there is a unity number in the position for the

upper residual term. So, provided that each mode is well excited in at least one

column of the matrix, then the matrix will be well conditioned. For this to be

ensured, it is important that the residual terms are included in the definition
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Table 1: Modal data of the staircase identified by means of OMA

Mode ωr/(2π) [Hz] ξr [%]

1 7.84 0.22

2 8.88 0.39

of Al. We have not observed any significant difference in the accuracy by using

different number of rows in the matrix Al, but as will be shown in Section 3.1,

adding more rows with DOFs with a high response for the mode excited at the

frequency in question, should add to the accuracy of the scaling.

It should also be mentioned that, in many cases where each mode is excited

well by using one excitation DOF, it may be enough to use such an excitation

DOF, and only a few response DOFs. These can then often be measured simul-

taneously at each frequency, and thus it may be sufficient to excite all modes at

one frequency each, to provide enough rows so that the matrix is overdetermined

and well conditioned.

The next section discusses the experiments carried out to validate what has

been presented so far.

3. Experimental tests

Figure 2: The tested structures: the staircase (a) and the helipad (credits: Wikimedia Com-

mons) (b).

Two structures were used to validate the methods presented in Section 2.2.

The first one is a staircase (12.03 m long, 1.80 m wide, and 5.22 m tall; made
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Figure 3: Accelerometer mesh for the staircase: original mesh (a) and extended mesh for the

tests related to the multi-reference approach (b).

up by steel and marble) in the Bovisa campus of Politecnico di Milano (see

Figure 2a). The second one is the helipad of Palazzo Regione Lombardia, one

of the tallest high-rise buildings in Milan [31, 32, 33]. This latter structure is

circularly shaped, with a diameter of approximatively 30 m (see Figure 2b).

The layout of the accelerometers used to collect the dynamic response of the

two structures are presented in Figures 3a and 4. These accelerometer layouts

were employed both in OMA and OMAH tests. The structures were excited in

OMAH tests by using the inertial principle: the force was applied by moving a
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Figure 4: Accelerometer mesh for the helipad.

Table 2: Modal data of the helipad identified by means of OMA

Mode ωr/(2π) [Hz] ξr [%]

1 3.32 0.90

2 3.54 0.60

3 3.57 1.70

4 3.85 0.32

5 3.86 0.40

6 4.73 0.54

7 4.75 0.43

8 6.79 0.20

mass with an actuator laid down on the structure. The actuator was a small

electro-dynamic shaker in the case of the staircase and a hydraulic actuator in

the case of the helipad. The force exerted was calculated by multiplying the

measured value of the mass (3.1 kg for the staircase and 120 kg for the helipad)

by its acceleration. The acceleration was measured by using an accelerometer

located on the mass (the mass of the accelerometer was in both cases included

in the mass used). The amplitudes of the harmonic forces exerted were in the

order of 1 N for the staircase and 100 N for the helipad.

The modes excited with such an approach where those having a significant

deflection in the vertical direction, which was the working direction of the ac-

tuators. Therefore, all the accelerometers depicted in Figures 3a and 4 measure

in the vertical direction. As for the helipad, the accelerometers were placed on
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the outer edge because the helipad is connected to the ground at its centre;

therefore, the vertical mode shapes have their largest components on the outer

edge, as also evidenced by the OMA results.

All the signals were acquired by means of a 24 bit analog-to-digital acquisi-

tion board with anti-aliasing filters on board. The sampling frequency used was

256 Hz in all the tests. The accelerometers used for acquiring the structural re-

sponse were low-noise high-sensitivity seismic piezoelectric accelerometers with

full scale equal to 4.9 m/s2 and sensitivity equal to 1019.4 mV/(m/s2) (types

PCB Piezotronics 393B12 and 393B31). The accelerometers used to measure

the acceleration of the mass moved by the actuator were again piezoelectric,

but with a higher full scale (49 m/s2) to prevent saturation (PCB Piezotronics

393A03). All the signals were acquired synchronously in a single data set in

each test.

In the OMAH tests the structural response was measured during 100 s (in

steady state) for the staircase. Indeed, due to the low force provided, the ac-

quisition time was increased in order to improve the accuracy associated to the

estimation of the FRFs at ωex [28]. Conversely, data were recorded during 20 s

(in steady state) in the case of the helipad thanks to the higher SNRs.

It is noted that the FRFs measured at ωex in OMAH tests are in acceleration

over force, and not in displacement over force as those used in Sections 2.1 and

2.2. However, it is trivial to find the FRF in terms of displacement over force

by dividing the accelerance FRF by −ω2
ex.

For the OMA tests, signals were recorded during 1800 s in the case of the

staircase and during more than 7200 s in the case of the helipad. The results

in terms of eigenfrequencies and non-dimensional damping ratios (identified by

means of the polyreference least squares frequency domain method [34]) of the

OMA are reported in Table 1 for the staircase and in Table 2 for the helipad. It

is noticed that the OMA tests were also useful to find where the mode shapes

considered were characterized by significant modal components. This allowed

to place the actuator during the OMAH tests in DOFs far from nodes of the

modes considered in the given test. More details on the choice of the actuator
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location will be provided in Section 3.2.

Subsection 3.1 shows that an enhancement of the accuracy of the scaling

can be obtained by increasing the number of response DOFs used for scaling.

Subsection 3.2 treats the results related to the multi-reference approach with

residual terms (see Section 2.2).

3.1. Enhancement of accuracy by increasing the number of degrees-of-freedom

used for scaling

1 2 3 4 5 6 7 8

1.2
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1.5
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x 10

−4
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Test C
Test D

Test A
Test B

(a) (b)

Figure 5: Plot of the error RE as function of the number of DOFs used for scaling: tests for

the staircase (a) and for the helipad (b). The difference in the size of the error between the

two structures is due to the difference in SNR

This section aims at demonstrating that an increase of the number of re-

sponse DOFs used for scaling results in an improvement of the accuracy of the

estimated modal masses.

The OMAH tests carried out are reported in Table 3 for both structures.

The column related to the order of DOFs used for scaling in the table refers to
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Table 3: Tests carried out for the staircase and the helipad. Refer to Figure 3a and Table 1

for the DOFs and the modes of the staircase, respectively. Refer to Figure 4 and Table 2 for

the DOFs and the modes of the helipad, respectively.

Test ID
structure

tested

actuator

position (DOF)
ωex/(2π) [Hz]

mode

excited

order of the DOFs

used for scaling

A staircase 4 8.77 2 4, 5, 3, 6, 2, 7,1, 8

B staircase 9 7.75 1 5, 4, 3, 6, 2, 7,1, 8

C helipad 3 3.32 1 3, 4, 5, 6, 7

D helipad 6 6.53 8 3, 4, 5, 6, 7

the fact that the number of DOFs used for scaling was increased step by step

for each test. The DOFs used for scaling the modal model of the staircase were

selected in descending mode shape coefficient size. As an example, referring to

test A in the table, the scaling was carried out firstly using only DOF 4, then

DOFs 4 and 5, then DOFs 4, 5 and 3, and so on. It should be noted that for

these tests we did not include the residual terms in Equation (12), as it was

found that it was not necessary in this case (the results of the analysis showed

negligible changes when considering the residual terms).

In the next step, the acceleration response of each DOF, for a force equal to

that applied experimentally, was reconstructed by means of Eq. (5) (multiplied

by a term equal to −ω2
ex to obtain accelerance format), where the poles and the

unscaled eigenvector components came from OMA, while the modal masses from

OMAH scaling. This recalculated response will be referred to as reconstructed

response from here on. The calculation of this reconstructed response allows to

calculate an error Ei between the experimental and reconstructed responses for

each DOF:

Ei = Ai
rec −Ai

meas (13)

where Ai
rec is the amplitude of the reconstructed response in the ith DOF and

Ai
meas is the amplitude of the measured response in the ith DOF. The amplitude
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of the mono-harmonic force applied experimentally and Ai
meas can be estimated

with different approaches in either time or frequency domain. In this case a

sine-fit procedure in time domain was employed [28].

Then, an error RE is calculated as:

RE =

√∑z
i=1E

2
i

z
(14)

where z is the total number of DOFs where the structural response was

measured, which can be different from (i.e. higher than) the number of DOFs

used for scaling, m.

Figure 5 shows RE as a function of the number of DOFs used for scaling,

for the tests presented in Table 3. It is evident that when the number of DOFs

used for scaling is increased, the accuracy of the whole response estimation

improves, even if DOFs with low eigenvector components (e.g. DOFs 1, 7 and

8 of the staircase) are added in the scaling procedure. Therefore, this figure

confirms that the increase of the number of DOFs employed for scaling has

positive effects. Such an improvement is achieved at a very small additional

computational cost and complication of the test procedure.

Interestingly, the results in Figure 5 also indicate that the first few added

response DOFs significantly reduce the errors in the modal mass estimates,

whereas adding more DOFs contribute less. The results are similar for both

structures. A plausible explanation for this may be that, after adding a few

DOFs, the statistical errors in the modal mass estimates, that stem from noise

in the FRF estimates, are already essentially removed. The remaining errors

are then due to (small) errors in the modal parameter estimates.

3.2. Validation of the multi-reference approach

This section presents the tests carried out to validate the multi-reference

approach, including residual terms. The accelerometer mesh for the staircase

was extended compared to the previously mentioned tests. This was necessary

for the multi-reference approach. Indeed, an excitation DOF where at least

one mode cannot be properly excited is necessary to prove the efficiency of the
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Figure 6: |Ha| for the staircase for some DOFs (see Figure 3b) chosen as example: input in

DOF 1 and response in DOF 18 (a), input in DOF 1 and response in DOF 3 (b), input in DOF

9 and response in DOF 16 (c), input in DOF 9 and response in DOF 17 (d). Red solid lines for

experimental modal analysis results, green dash-dotted lines for the FRFs reconstructed using

the method of Section 2.2 (i.e. global scaling), blue dashed lines for the FRFs reconstructed

by scaling with a single response DOF.

approach. Cappellini et al. analysed the same staircase [35] and showed that

the second mode is characterized by a torsion. This means that the DOFs in

the middle of the staircase have low eigenvector components (not perfectly null

because the mode is not perfectly symmetric with respect to the longitudinal

axis of the staircase). Therefore, a new accelerometer mesh was designed (see

Figure 3b) and a new OMA was carried out (see Table 4) before performing the

OMAH tests.

As for the helipad, modes 6 and 7 were considered (see Table 2) because they

are close to each other in frequency which is a challenging situation appropriate

for testing the multiple-reference approach. As for the excitation locations,

DOFs 3 and 6 were considered because the OMA results showed that in DOF
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Figure 7: |Ha| for the helipad for some DOFs (see Figure 4) chosen as example: input in DOF

3 and response in DOF 3 (a), input in DOF 3 and response in DOF 2 (b), input in DOF 6

and response in DOF 3 (c), input in DOF 6 and response in DOF 7 (d). Red solid lines for

experimental modal analysis results, green dash-dotted lines for the FRFs reconstructed using

the method of Section 2.2 (i.e. global scaling)

6 the mode shape component of mode 6 is high, while that of mode 7 is lower.

The OMAH tests carried out are reported in Table 5 for both the structures.

Since several modes are taken into account in these tests, the index RE

defined previously cannot be used to describe the accuracy of the scaling proce-

dure. Therefore, experimental and reconstructed FRFs will be used for assessing

the accuracy of the scaling procedure. Reconstructed FRFs are those recalcu-

lated in the frequency range of the modes considered after finding the modal

Table 4: Modal data of the staircase identified by means of the new OMA with the accelerom-

eter mesh of Figure 3b.

Mode ωr/(2π) [Hz] ξr [%]

1 7.81 0.36

2 8.87 0.24
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Table 5: Tests carried out for the staircase and the helipad. Refer to Figure 3b and Table 4

for the DOFs and the modes of the stair, respectively. Refer to Figure 4 and Table 2 for the

DOFs and the modes of the helipad, respectively.

Structure

tested

Actuator

positions (DOFs)

Modes

considered
ωex/(2π) [Hz]

DOFs used

for scaling

Staircase 1 and 9 1 and 2
7.75, 7.80, 7.86,

8.85, 8.90, 8.95

1, 2, 3, 4, 5, 9, 10, 11,

12, 16, 17, 18, 19, 20

Helipad 3 and 6 6 and 7
4.65, 4.69, 4.73,

4.74, 4.77, 4.80

all

(i.e., from 1 to 7)

masses with multi-reference OMAH, taking into account the residual terms due

to out-of-band modes. This required to have experimental FRFs to be used as

reference. For the staircase, the shaker used for OMAH tests was employed to

provide random excitation to the structure and estimate its FRFs. The actuator

was able to provide excitation by moving a mass, as described previously. The

shaker was placed in the DOFs taken into account to provide excitation during

OMAH. Random noise was then used to excite the structure, and the FRFs

were estimated with the H1 estimator [36]. The coherence was close to unity

in the frequency range around the two first natural frequencies of the staircase.

For the helipad, a similar approach was employed. Here, a hydraulic actuator

was used in place of the electro-dynamic shaker, as mentioned above. Further-

more, stepped-sine excitation [36] was preferred to random excitation in order

to improve the accuracy of the experimental FRFs.

Figures 6 and 7 show some comparisons between experimental (red solid

lines) and reconstructed (green dash-dotted lines) FRFs for the staircase and

the helipad, respectively. These FRFs are expressed in terms of acceleration

over force (indicated as Ha) in order to directly show the measured reference

FRFs. The proposed method is evidently able to properly scale the modes and

to reconstruct the FRFs. Indeed, the reconstructed FRFs satisfactorily match

the reference experimental FRFs. Sometimes, differences between experimental

and reconstructed FRFs can be noticed far from the resonances (e.g. plot (b) of
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Fig. 6 and plot (a) of Fig. 7). These differences are mainly due to biased OMA

results (both poles and unscaled mode shape coefficients). As an example, the

damping of the second mode in Fig. 6 is slightly underestimated.

Tables 6 and 7 show the modal mass values estimated by means of three

different approaches: (i) with experimental modal analysis (EMA) using the

measured FRFs, (ii) employing the OMAH method with global scaling, and

also (iii) using the OMAH method with the scaling carried out using a single

response DOF. Considering this last approach, for the helipad response DOF 3

was used (employing the co-located FRF); as for the staircase, response DOF

3 was used (employing the FRF obtained by exciting in DOF 1). The modal

masses are calculated so that the same mode shape coefficient is scaled to 1

for all the three methods in order to have a straightforward comparison. It is

evident that moving from a scaling procedure using a single DOF to the global

scaling, the estimated modal masses become closer to those found with EMA.

Furthermore, Figs. 6c and d show that the use of a single response DOF for

scaling leads to overestimation in the first resonance peak, while the global

scaling does not cause such a problem because it works on many DOFs.

The accuracy of the OMAH method is difficult to accurately deduct, since

the size of the contributions to errors are largely unknown. The following causes

may contribute to the inaccuracy of the modal mass estimates:

• errors in the estimates of the complex amplitudes of force and responses

used to compute the FRF values, which include sensor inaccuracies plus

the uncertainty in the three-parameter sine fit,

• errors in the mode shape coefficients from the OMA, also affected by the

sensor inaccuracies plus errors in parameter estimation, and

• errors in the pole estimates from the OMA, largely originating from the

parameter estimation process and less affected by errors in sensors.

An additional cause of error in the comparisons between EMA and OMA in

the present Section, could furthermore be a difference in the measurement lo-
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cations, since we compare results from different measurement occasions. Since

the errors in mode shape coefficients are unknown and depend on the quality

of the measurements and the OMA parameter estimation, it is very difficult

to estimate any absolute uncertainty of the modal masses. We attribute the

differences between the modal masses from EMA and OMAH (global scaling)

observed in Tables 6 and 7 mainly to biased OMA results, since the synthesized

FRFs based on the EMA model agreed very well with the measured FRFs. It

should be noted that each accelerometer in the EMA measurements as well as

in the OMA measurements has an inaccuracy of minimum ±5 % (perhaps more,

since the IEPE sensors we used have larger error in the low frequency range).

Adding errors from the OMA parameter estimation, a total error of ±20 % is

likely. Comparing the results between EMA and OMAH with global scaling in

Tables 6 and 7, shows that the difference in modal mass estimates for the stair-

case are 8 % and 40 % for the two modes, respectively, and for the helipad the

differences are approx. 20 % for both modes. Statistically, the values are thus

consistent with approximately ±20 % error in the modal mass estimates in the

worst case for mode two of the staircase, and half of that for the helipad. By

looking closely at the results, it turns out that the damping of the OMA analysis

of the second mode of the staircase is unreliable and most likely too small, which

may be the cause of the larger error for this mode. Finally, it should be noted

that a desirable feature of the OMAH method is that it allows the obtained

accuracy of the scaling of the modal model to be assessed by comparing the

measured harmonic response in the different response DOFs with computated

values of the response using the excitation force and the FRF between the two

points computed from the modal model, as discussed in Section 3.1. This is an

advantage of the OMAH method over other methods such as using a FE model

mass matrix or repeated OMA analyses with different mass configurations, for

which no such assessment can be made.
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Table 6: Values of the modal mass mr for the three different ways used to estimate them

(staircase).

mode number mr with EMA
mr with OMAH

(global scaling)

mr with OMAH

(just 1 DOF used for scaling)

1 (at 7.81 Hz) 1.67·103 1.54·103 1.28 ·103

2 (at 8.87 Hz) 1.31·103 1.85·103 1.83·103

Table 7: Values of the modal mass mr for the three different ways used to estimate them

(helipad).

mode number mr with EMA
mr with OMAH

(global scaling)

mr with OMAH

(just 1 DOF used for scaling)

6 (at 4.73 Hz) 2.03·105 1.64·105 2.87·105

7 (at 4.75 Hz) 2.32·105 1.89·105 1.60·105

4. Conclusions

This paper has dealt with further development of the OMAH method for

scaling the unscaled mode shapes obtained by means of operational modal anal-

ysis. The method requires to carry out tests with mono-harmonic excitation at

(or close to) eigenfrequencies of the structure.

Particularly, the paper treats two different topics. First, it explains how to

increase the accuracy of the scaling procedure. This is accomplished by increas-

ing the number of response degrees-of-freedom used in the scaling procedure.

The optimal amount of DOFs to be added for increasing the accuracy of the

scaling is not straightforward to calculate. Indeed, it depends on many factors,

such as: error on each modal component used, value of each modal component,

and so on. However, even the use of two or three DOFs for scaling allows to

improve accuracy, as demonstrated in the paper. The experimental results also

suggests that the first few added response DOFs contribute most to the reduced

variance in the modal mass estimates, adding more DOFs then results in less

improvement. It is plausible that this is due to the fact that a few additional

DOFs are enough to eliminate the random error due to noise in the measure-
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ments. After this is accomplished, the remaining error is a bias error, due to

the errors in the modal parameters.

Second, the OMAH method is extended to the case of multiple references,

thus making OMAH as general as possible and applicable to any possible prac-

tical case. The global scaling formulation, developed in the paper, has the

particular advantage of being able to handle cases where one single DOF can-

not be found, in which the mode shape coefficients, for all modes to be scaled,

are high. Excitation can then instead be applied in different locations for the

different modes to be scaled. The procedure proposed also allows to take into

account residual terms accounting for modes outside of the range of modes to

be scaled. It is recommended to always include these parameters, to ensure that

the matrix built up of mode contributions is well conditioned.

The presented approach can be considered as the analogue of global param-

eter estimation in the classical experimental modal analysis.

The analytical procedures described in the paper were validated by means of

experimental tests on two different structures: a staircase and a helipad. In both

cases, the results of the tests were satisfactory, demonstrating the reliability of

the global scaling method proposed in the paper.
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