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Finite Element Modeling of residual stress and geometrical
error formations in SLM of metals

Claire Bruna-Rossoa, Julia Mergheimb, Barbara Previtalia.

Abstract

Recent works, both numerical and experimental, on residual stress and geometrical errors

in SLM-produced parts highlighted the preponderance of these phenomena. However their

mechanisms of appearance are not yet fully explained. An in-house finite element model

(FEM) was developed and implemented to reproduce their formations. The consistence of

the model with existing simulation results and with respect to experimental observations was

checked. Simulations were then performed using a computational design of experiments to

better comprehend the underlying phenomena and the influence of the laser speed and power.

Relationships between process parameters and residual stress, plastic strain and geometrical

errors formations have been put into evidence which can support optimization procedures at

design stage.

Keywords: Selective Laser Melting, Finite Element Modeling, Thermo-mechanical model, Resid-
ual stress, Geometrical errors

1 Introduction

Despite the recent interest in the Selective Laser Melting (SLM) technology and the growing number
of studies published on this topic, defects of thermo-mechanical nature are still not fully addressed
[1]. One of these defects, distortions, i.e. the deformation of the part due thermal stress release, is
still being intensely discussed, [2, 3, 4, 5, 6]. These macro-scale distortions are related to the stresses
that develop between layers and grow throughout the part build-up [7]. However, having remaining
compressive stress after the part is separated from its substrate may as well have desirable e↵ects
such as increasing the part life [8]. It is thus of interest to investigate the formation of these stresses
in order to become able to control them at design stage and maintain them at non-detrimental
levels and orientations [9].
Another typical defect observed in SLM-built part, and more specifically in small structure, is the
discrepancy between nominal and as-built geometries. Demir & Previtali [10] reported that SLM-
processed stent struts were consistently thicker than their designed dimensions which can prove to
be very detrimental on their functionality [11]. That is why the final dimensions of the processed
area were studied to characterize the discrepancies between nominal and actual final geometries.
The classical approach to deal with the SLM mechanical modeling at macro-scale is based on
the small-strain assumption, i.e. the strains are considered small enough to neglect the e↵ects of
the geometry deformation during the process. This assumption simplifies the mechanical problem
zeroing quantities that represents the stress dependence on the configuration. To the authors’
knowledge, a large majority mechanical solvers previously developed for SLM simulations used this
small strain approach. Indeed, these references include part-scale models, i.e. of dimensions of
few centimeters. The displacements involved being of few hundreds microns (see for example [2] &
[12]), considering them as infinitesimal is adapted and allows considerable computational savings.
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However, Ganeriwala et al. recently utilized a finite deformation algorithm for part-scale additive
manufacturing of Ti-6Al-4V simulation [13]. It shows encouraging results in terms of residual stress
predictions. Moreover considering the size of the present models (few millimeters), the small strain
assumption did not appear valid anymore. Indeed, these deformations can hardly be considered as
infinitesimal at mm-scale. That is why, unlike most of the previously developed mechanical solver
for SLM simulation, a finite strain approach was adopted, that did not neglect the geometrical
nonlinearities.
Considering its relative novelty, the model development technology is thoroughly described in a
first section. Then the model numerical validation and consistency verification with respect to
experimentally observed phenomena are introduced. It is followed by the model utilization to
characterize the influence of two major process parameters (laser power P and laser speed v)
on the thermo-mechanical behavior of SLM-process metals. This characterization was performed
using AISI316L stainless steel, since the thermal part of the solver was experimentally validated
for this material [14]. Moreover, being a widely used metal, its mechanical property are rather
well documented. Finally, the computational design of experiment that was put into use and the
related parametric analysis are presented together with the main results they brought.

2 Methods

2.1 Modeling approach

The thermo-mechanical model is weakly coupled, meaning that the temperature influences the
mechanical variables, but the displacements do not have an impact on the thermal field. This
translates into a staggered resolution that is illustrated figure 1. More specifically, the mechanical
solver uses at each time step the thermal field and levels of fusion that are computed by the thermal
one, presented in a previous publication [14]. For that reason, solely the mechanical aspect of the
model will be introduced here.

Figure 1: Thermo-mechanical simulation flowchart

Two phenomena were assumed to have a significant e↵ect on the part mechanical behavior and
will thus be represented in the model:

1. The powder shrinkage to consolidated material

2. The stress produced by the thermal gradients

The first one was included for three main motives:



• address the “mass creation” issue in the thermal model. Indeed during the phase change
powder ! consolidated material, the density at a node evolves from the one of the powder
to the one of the bulk material. However the volume is kept constant since the mesh is fixed
which lead to artificial and not-physical mass creation.

• Quantify the real dimensions of the part with respect to the input file specifications.

• Consider the deformed element geometry to compute the stress.

The second phenomenon was modeled because the stresses induced by the thermal deformations
are the main responsible of the distortions observed at macro level. It is thus of great interest to
study how the process creates and influences them.

2.2 Kinematic and Kinetic approaches

This subsection will explain the kinematic and kinetic approaches adopted for the description of
the phenomena experienced by the material during the SLM process.

2.2.1 Multiplicative split of the deformation gradient

The approach chosen to tackle the finite strain FE simulation of the SLM process is the multiplica-
tive split of the deformation gradient. It was put into use to derive a model that takes into account
the major phenomena creating stress and strain in SLM-processed metals. The decomposition that
was adopted is developed in equation 1 and is illustrated in red in figure 2.

Figure 2: Mechanical model kinematics (red path) and formulation (blue path)

F = FpFeFsF✓ (1)

Where each term F• represents a component of the total deformation gradient F = @x
@X

produced by the various mechanical phenomena to which the material is subjected to. The compu-
tation of the di↵erent components of this decomposition will be detailed in the following sections.

2.2.2 Elasto-viscoplastic deformations

As explained in [15] the viscous phenomena begin to arise at roughly one third of the material
melting temperature. Considering that in the SLM process the metal is fully melted, these e↵ects
have to be taken into account. Moreover, from a more computational point of view, using a
viscoplasticity scheme is more general, numerically more stable, and the rate-independent case can
be dealt with as a limit case [16]. SLM-processed metals endure elevated thermal gradients due to
the local heating of the laser, as well as extreme heating/cooling rates due to the laser high energy
density. It is substantially probable that these phenomena would lead to stress levels that will
exceed the material yield stress. Plasticity thus has to be included in the stress state computations.



In line with these considerations, the metal behavior will be modeled using a visco-hyperelastic-
plastic constitutive model. To fully define such model, three functions have to be specified: the
strain energy density  , the flow rule (also called yield criterion) fY and a viscoplastic function
gvp. These functions will be defined in the next sections and are followed by a brief presentation
of the numerical method implemented to solve the elasto-viscoplastic problem.

Governing equations The specific free energy  per unit volume is assumed to depend on two
variables: the elastic left Cauchy-Green strain tensor be = FeFeT , and a scalar internal variable ⇠
that describes the isotropic hardening of the material. It is assumed that the material is isotropic
and remains so during the process, which is admissible for moderated strains [17].  is an isotropic
function of be.

Utilizing data defined in the principal space, it is possible and convenient to use a reduced
vector notation as introduced by Simo [18].
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The function that was chosen to model the free energy  ̂ and thus defines the constitutive
behavior of the 316 stainless steel is displayed in equation 3.
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The free energy is quadratic in the logarithmic principal elastic stretches, defined by "A =
ln(�A), A = 1, 2, 3. In this function, elastic and plastic e↵ects are uncoupled. The elastic part of
 ̂ corresponds to a stretch based hyperelastic material. It is similar to the strain energy function
used in small strain linear elasticity, except for the fact that logarithmic strain is used instead of
the infinitesimal one [19]. Assuming such a free energy function provides the following stress/strain
relationship:

� = a"e, where a = �1⌦ 1+ 2µI3 (4)

where � and µ are the Lamé coe�cients, � is the vector containing the eigenvalues of the
Kirchho↵ stress, "e is the vector of principal logarithmic elastic strains and a is the 3⇥3 matrix of
elastic moduli in principal space. I3 is the 3⇥ 3 identity matrix and K is a function describing the
isotropic hardening behavior of the material. The yield criterion fY was set to be the Von Mises
criterion, classically used for metal [17]. It is given by equation 5, using principal stress.

fY (�, ⇠) = kdev(�)k �
r

2

3
[�Y +K 0(⇠)] (5)

The model thus obtained by assuming these forms of free energy function and yield criterion
is the canonical J2-viscoplasticity, extensively discussed in the literature and classically used to
represent the elasto-plastic and elasto-viscoplastic behaviors of metals (see for example [20] and
[21]).

The next and last function to define to fully characterize the elasto-viscoplastic mechanical
problem is the viscoplastic function gvp. The widely used Norton’s power law [20] was selected. It
is defined by the following equation:

gvp(fY ) =
�Y
⌘

(
fY
�Y

)m (6)

where the exponent was set to m = 1, and ⌘ is a temperature-dependent “fluidity” coe�cient,
somewhat referring at the capacity that a solid has to behave like a fluid. To retrieve the rate-
independent case, one has to set ⌘ = 0.

The numerical method chosen to deal with elasto-viscoplasticity was adapted from the one first
introduced by Simo [18]. Its main component is a return-map algorithm in principal space. The
algorithm, performed at each quadrature point of each element, is formed of the following steps:



1. Computation of the local total deformation gradient increment dF = r(�u) + I

2. Removal of the shrinkage and thermal deformations from dF

3. Computation of an elastic trial state

4. Computation of the eigenvalues of the trial strain tensor be,tr

5. Return mapping algorithm in principal space

6. Update of the intermediate configuration

This algorithm needs as input the local displacement increment vector �u computed solving the
global equilibrium of equation 14. Then, based on the internal variables at previous time step, the
material state at the current one is computed. Details on the practical implementation of such
an algorithm are available in [22] and [21]. However, features specific to the problem at hand had
to be added. The original method considers a deformation gradient composed of two parts, Fe

and Fp. It can thus be applied directly in the current problem considering as deformed (spatial)
configuration ⌦e instead of the actual one, namely ⌦n+1 (see figure 2). Some manipulations were
thus necessary to not only compute the elasto-viscoplastic e↵ects using Simo’s method with the
appropriate input deformation gradient, but also to retrieve the output data expressed in the actual
reference configuration in order to solve the equilibrium of equation 14.

These additional steps are the following:

1. Removal of the thermal and shrinkage deformations
In order to properly use Simo’s algorithm, it is necessary to use a deformation gradient incre-
ment that does not include the deformations due to shrinkage and dilatation. Similarly to the
decomposition of the total deformation gradient of equation 1, the deformation gradient incre-
ment can be expressed as: dF = dFedFpdF✓dFs. From this formula, an elasto-viscoplastic
deformation gradient increment can be retrieved. It is the one that is used to compute the
elastic trial state and that enters the return map algorithm.

dFep = dFedFp = dF✓�1
dFs�1dF (7)

2. Push forward of the local tangent and Kirchho↵ stress tensor to the spatial configuration
The local tangent c and Kirchho↵ stress tensor ⌧ , that are the outputs of the viscoplastic
algorithm, are computed in the elastic configuration ⌦e of the figure 2. It is necessary to
transport them to the appropriate configuration using adequate pull-back and push-forward
operations (see for example [23]). The global equilibrium equation (see eq. 14) includes the
global tangent C and 2nd Piola-Kirchho↵ stress tensor S, that are assembled using integration
point data returned by the local elasto-plasticity algorithm. They are both material tensor
i.e. they are expressed in the initial configuration ⌦0. To transport c to this configuration, a

pull-back transformation is made using the deformation gradient tensor Fep = F✓�1
Fs�1F.

To assemble S, the Kirchho↵ stress tensor returned by the viscoplastic algorithm, which is a
spatial tensor, is first pushed-forward to the current configuration ⌦n+1 using the deforma-
tion gradient F✓s = F✓Fs. Then, using proper relationships, the 2nd Piola-Kirchho↵ stress
tensor is retrieved from the Kirchho↵ stress tensor. All the calculations related to those
transformations are regrouped equation 8.

CIP
IJKL = F�1

Ii F�1
Jj cijklF

�1
KkF

�1
Ll (8)

⌧⌦n+1 = F✓s⌧F✓sT

SIP = F�1⌧⌦n+1F
�T

The superscript [•]IP precises that the variable is considered at integration point level, where
an ambiguity is present.



2.2.3 Thermal deformations

The thermal strains are introduced through a deformation gradient F✓. Since isotropy is assumed,
F✓ is a spherical tensor1. As proposed by Vujosevic [24] the formula of equation 9 was used to
calculate the deformation gradient tensor variation due to the temperature evolution between times
tn and tn+1.

dF✓ =

Z Tn+1

Tn

#(T )dT I (9)

where #(T ) is the temperature dependent thermal expansion coe�cient.

2.2.4 Shrinkage deformations

The shrinkage deformations are computed using the powder fraction variable  returned by the
thermal model phase change algorithm. As for the thermal deformations, isotropy is assumed which
lead to a spherical tensor computed as in equation 10. This formula describes the deformation
gradient tensor variation relative to the volume reduction due to the transformation from powder
of porosity � to consolidated material between times tn and tn+1.

dFs = '( )I where : '( ) =
⇣ 1� n�

1� n+1�

⌘1/3
(10)

2.3 Mechanical properties

To fully characterize the elastic behavior of the 316L stainless steel, two parameters are needed.
Here the Poisson ratio and the Young modulus were chosen. The Poisson ratio ⌫ was kept at
a constant value of 0.29. The Young modulus E (GPa) is temperature-dependent according to
formulas obtained with interpolations and extrapolations based on experimental data from [25].

E(T ) =

8
>>>>><

>>>>>:

205, for T  830 K

205.91 � 2.6913e�2(T + 273.15)�
4.1876e�5(T + 273.15)2, for T  1125 K

�0.0169 ⇥ T + 27.89, for T  Tsol

2e � 2, for T > Tsol

(11)

The yield stress �Y and the thermal expansion coe�cient are considered temperature dependent
as well. Their thermal evolutions were inter- and extrapolated from experimental data retrieved
from [25].

The hardening behavior of the 316 stainless steel was assumed to be isotropic only. The main
motive for which the kinematic hardening was not represented is that the Bauschinger e↵ect is
not preponderant, which legitimates the use of an isotropic hardening function [26]. The isotropic
hardening function K was defined as a Voce-type function [27], given by equation 12.

K(⇠) = (�s � �1) (1� exp(nv⇠)) (12)

It can be interpreted as the evolution of the yield stress from an initial value �1 to a saturation
value �s. The constant nv determines the rate at which the initial stress tends to the saturation
value. This function was proved to best represent the hardening behavior of the 316L stainless
steel, especially at elevated temperatures, as shown by Singh [28]. The functions describing the
temperature-dependence of the three parameters �s, �1 and nv were obtained from inter and
extrapolation of the data reported in this article. The values that were used are the ones determined
for the smallest grain size available (i.e. 2.7 m). Indeed, considering the very high (> 105 Ks�1

[29, 30]) cooling rates to which the material is exposed during its SLM-processing, the grain sizes
are in the order of magnitude of few microns or less [31].

1A = k I, k 2 RRR



2.3.1 Fluidity coe�cient

The fluidity coe�cient ⌘ (Pa�1 s�1) in solid phase at high temperature is comparable to a viscos-
ity, i.e. it represents the ability that a solid has to behave like a fluid. It was modeled with a
temperature dependent function. Data on this parameter, especially in the solid phase tempera-
ture range, is scarce. A model was assumed, based on the Lemaitre recommendation [15] which
states that viscous e↵ects appears at roughly one-third of the melting temperature. Consequently,
a null viscosity was set for T  Tsol

3 , and the liquid steel viscosity, retrieved from [32], was used
when T = Tsol, i.e 6.7.10�3 Pa�1 s�1. A linear interpolation was then made between these two
temperatures.

2.3.2 Treatment of the liquid/mushy zone and the powder

The material that is modeled is present under three phases: bulk, liquid and powder. The bulk
material behavior does not apply for the two other phases, for which specific constitutive equations
had to be implemented. The method that was adopted is the one proposed by Koric & Thomas
[33] for molten metal modeling in casting simulations. The objective is to derive a constitutive
behavior that imposes negligible stress in these phases without introducing a di↵erent treatment
of the liquid/powder elements in the finite element assembling, which would be cumbersome from
a technical point of view. Among the two techniques suggested in this reference, the so-called
“elastic-perfectly plastic model” was selected. It consists in setting for elements with T � Tsol or
ypow > 0 a low yield stress (typically 0.02MPa), to enforce small stress values without giving birth
to numerical issues, with no hardening, and then use the regular radial-return algorithm.

2.4 Model formulation

The equation which governs the mechanical behavior of the part is the linear momentum equilib-
rium. Although the transient thermal field induces dynamic variations of stress and strain around
the laser beam heated area, the global domain remains static during the process. Consequently,
the problem was considered as quasi-static (similarly to [34, 12, 35] for example).
This translates into the following strong formulation:

8
<

:

r ·P+ b0 = 0 in ⌦0

u = u on �D

T = T on �N

(13)

Where the first line corresponds to the static linear momentum equilibrium expressed in terms
of the first Piola-Kirchho↵ stress P and where b0 is the body forces density inside the part (here,
gravity forces only) and u. The two subsequent lines correspond to the boundary conditions, where
u is a prescribed displacement and T is a prescribed force. In the present problem there are neither
imposed displacement nor force, so T = 0 and u = 0. An illustration of the domain and the surface
corresponding to �D and �N can be found in figure 3.

For later use, the 2nd Kirchho↵ stress tensor S = F�1 ·P is introduced.
The approach chosen to derive the linearized weak formulation is the so-called Updated La-

grange (UL) formulation. Its main characteristic is to take as reference configuration the last
converged one, ⌦n, instead of the initial ⌦0 [36]. The main advantage of this method for the
present problem is the possibility to compute the thermal problem on the “real” geometry. Indeed,
the mesh is updated at the end of every time step so the thermal transfers are computed on the
last converged configuration. Since the deformation map ' includes the volume reduction result-
ing from the transformation from powder to consolidated material, the issue of “mass creation”
introduced earlier is addressed leaving untouched the thermal problem formulation and implemen-
tation. This is of great interest from a practical point of view with respect to a Total Lagrange (TL)
formulation. The linearized UL formulation of the problem to be solved finally reads: (technical



Figure 3: Model and mechanical boundary conditions.
uN stands for the displacement component normal to the surface

details on the calculations are available in Leger et al. [37] )
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With:
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1

det(F0!n)
b0

C̃mnop =

1
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F0!n · S · FT
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The last two relationships correspond respectively to the push-forward of the tangent and the
Second Piola-Kirchho↵ stress from the initial configuration ⌦0 to the reference configuration ⌦n,
illustrated in figure 2.
�' is a test function, while �' is the unknown deformation map variation to be computed.

3 Numerical validation & consistency check of the model

3.1 Numerical validation

The mechanical solver was confronted with numerical results from the literature. For that purpose,
the uniaxial tension test of Auricchio & Taylor [38] was reproduced to verify the correct imple-
mentation of the mechanical solver and the material constitutive behavior. It consists in a single
cubic element loaded controlling the displacements. The two models were compared in term of
stress/strain response. The results are displayed in figure 4.

3.2 Physical consistency of the model

To partially address the lack of experimental validation of the mechanical model, its physical
consistency was checked in order to qualitatively verify its ability to represent the SLM process
millimeter-scale thermo-mechanical phenomena. Generally speaking, thermal stresses appear when
a volume cannot expand or shrink without impediment after a local temperature modification.



Figure 4: Numerical validation computational experiment results. a) Results from Auricchio &
Taylor b) Our results

More specifically, two phenomena were identified in the literature (see for example [39, 40] or [41])
as creating the residual stresses observed in the SLM-built parts:

• The Thermal Gradient Mechanism (TGM ): The thermal expansion of the laser heated mate-
rial is hindered by the surrounding colder material which results in compressive stress in the
heat a↵ected zone. Since the yield stress at high temperature is low, plastic strain appears to
limit the stress to admissible levels. When the laser moves away from the area, the material
cools down and shrinks. During this stage, tensile stress appears in the plastically deformed
area.

• The cool down: At the end of its processing, the top layer is at a higher temperature than
either the substrate or the previously built layers. Consequently, its contraction is larger
than in the underneath material. This contraction is thus restrained, which gives birth to
tensile stress in the top layer and compressive stress in the underlying ones.

Figure 5 shows a section of the part during the processing of the first track along a xz plane.
The areas of tension-compression characteristic of the TGM described earlier are clearly visible
and in accordance with the temperature and plastic strain fields. Indeed, the accumulated plastic
strain ⇠, that has non-zero values only where plastic deformation occurs, is significantly high close
to the surface, where the model predicts the appearance of tensile stress.

Figure 6 shows the same section at the end of the simulation. The superficial area of tensile
stress and the underneath area of compression typical of the cool down mechanism are distinctly
observable.

Finally, as experimentally evidenced by Simson et al [41], the through-thickness evolution of the
stress in the final state features an initial increase on a reduced height, followed by a monotonous
decrease. This behavior was reproduced by the model as illustrated in figure 7. This figure shows as
well that the stress in the building direction is significantly smaller than in the x and y directions.
This is in accordance with the fact that the upper surface has a free BC that allows the part to
expand freely in the z direction. All the preceding observations confirm that the simulation was
able to reproduce the main empirically evidenced phenomena that give birth to residual stress and
plastic strain. In absence of a full experimental validation, it nonetheless ensures the qualitative
correct thermo-mechanical behavior of the model.



Figure 5: Thermal gradient mechanism. The blue arrows indicates the area in compression in the
heat a↵ected zone. Yellow arrows indicate the area in tension after the laser moved away.

Figure 6: Cool down residual stresses. The blue arrows indicates the area in compression that
restrain the top surface contraction. Yellow arrows point out the superficial area in tension.

Figure 7: In depth stress tensor diagonal component evolutions



4 Analyses of residual stress, plastic strain and geometrical
error formation mechanisms

4.1 Computational experiments

The computational experiment that was run is illustrated in figure 8. It is a millimeter-scale,
three-track and single-layer simulation. A 2x2 full factorial design of experiment with a central
point was performed, the variable parameters being the laser speed and power. The corresponding
sets of variable parameters are regrouped table 1. The main fixed parameters in the computational
experiments are listed table 2. The processing time amounts to 28ms and extra 100ms of cooling
time were simulated. The time discretization was performed using a classic backward Euler scheme.
The time step size was set to 4.10�5s. The space discretization was done using standard Lagrange
linear elements. At the beginning of the simulation, the total number of element amounted to
26400 and fluctuated subsequently according to a mesh refinement algorithm. The model was
implemented using the open source finite element library deal.ii [42] (more details on the technical
aspects can be found in a previous article [14]). The simulations lasted approximately 8 hours
each on a desktop computer (4 cores (8 threads) at 3.6GHz with 24 Go of memory). The Newton
iterations were deemed to have converged when the normalized residual norm (norm of the residual
divided by the norm of the residual at the first iteration) was smaller than 10�5.

Figure 8: Computational experiment scheme

The outputs of the simulation that will be studied are the widths and lengths of the three
melted tracks, the Von Mises stress and the accumulated plastic strain values in the processed
material.

Table 1: Preliminary design of experiment for the mechanical solver validation

Set # Laser Speed (mm/s) Laser Power (W) Energy density (Jmm�3)

0 500 100 57

1 500 200 114

2 350 150 122

3 200 100 143

4 200 200 285

Preliminary thermal-only simulations showed that the couple (100,500) is outside the processing
window and will not be considered in the thermo-mechanical analysis.



(Pa)

t = 0s t = 0.004s t = 0.00864s

t = 0.0145s t = 0.0192s t = 0.0227s

t = 0.028s t = 0.06s t = 0.128s

Initial state Beginning of the first 
track

End of the first track, 
beginning of the second

Processing of the second track End of the second track, Processing of the third
track

End of the third track, 
beginning of the cooling

After 1/3 of the cooling 
time

Final state

Cauchy stress norm (Pa)

Figure 9: Cauchy stress evolution during the material processing and cooling time - Parameter set
#1

Figure 10: Plastic strain evolution during the material processing and cooling time - Parameter
set #1



Table 2: Simulation campaign fixed parameters

Parameter Value

Material AISI316L stainless steel

Powder granulometry 30 m

Hatching distance 70 m

Layer thickness 50 m

Convection coe�cient 20 Wm�2 K�1

Ambient temperature 298 K

t = 0.0283 s t = 0.0620s t = 0.0944 s t = 0.1284 s

298.1 306.7

0.68 1.48e3 0.68 1.48e3 0.68 1.48e3 0.68 1.48e3

0 6.93e-3 0 6.93e-3 0 6.93e-3 0 6.93e-3

298.1 329298.1 415.3298.1 1973

Figure 11: Temperature, Cauchy stress and plastic strain evolutions during the cooling phase -
Parameter set #1

4.2 Analyses of residual stress & plastic strain formations

The particularly high levels of stress in the final state are in accordance with previous works, both
experimental [6] and numerical [43, 44]. Indeed the elevated cooling rates give birth to high thermal
strains and as a consequence high stresses. These mechanisms explain as well the position of the
local maxima. They are positioned at the beginning and the end of each track. It corresponds
to the peak temperatures as well as the highest heating/cooling rate locations, due to the laser
ignitions and extinctions. This phenomenon was observed experimentally by Zhang et al. [45].
However the maximal values visible in figure 9 (1.5 ⇥ 103 MPa) may appear as disproportionate
in regard of the ultimate tensile stress of the AISI316L stainless steel, i.e. 500MPa at room
temperature [46]. This is most probably due to the Voce’s parameters temperature dependence.
The functions that were implemented are inter- and extrapolation from data retrieved from the
literature, and may thus contain imprecisions, especially at high temperatures where the empirical
information is scarce. It is probable that overestimation of the hardening saturation stress �s at
high temperature led to excessive yield stress values and as a consequence to oversize Von Mises
stress. This highlights the utility of a thorough experimental calibration procedure to feed the
model with accurate and reliable input data. As displayed in figure 13, local peaks of plastic
strains are located as well at the track extremities. Similarly to the residual stress, it can be



(a) Global maximal temperatures time evolution - Parameter set #1

(b) Temperature rates time evolution - Parameter set #1

Figure 12: Global maximal temperatures and temperature rate time evolution.
Top: Full simulation.
Bottom: Magnification of the processing time.

Figure 13: Final plastic strain field. Orange arrows indicate the strain peak value points - Param-
eter set #1



explained by the fact that the heating/cooling rates are the highest in these areas. More globally,
figure 10 discloses that the plastic strains tend to decrease with the number of processed track, i.e.
⇠track1 > ⇠track2 > ⇠track3. This is in accordance with the maximal temperature and temperature
rates time evolutions, illustrated in figure 12a and 12b. In fact, the time dependence of the global
temperature maximum is enlightening to explain the final stress and plastic strain fields. First, it
can be seen on this graph that the maximal temperature in the steady state of one track tends
to diminish when the number of track increases. Then, it shows peak values of both temperature
and temperature rates at the times corresponding to the first instants of each track processing.
Their localizations are at the beginning of the tracks, i.e. where the laser beam is being switched
on and the heating rates are the highest, as shown in figure 12b. These observations underline the
relationship between peak temperatures, cooling rates and plastic strain formation. This makes it
possible to use thermal data to anticipate the most critical areas in term of distortion defects, which
is of importance during the process design stage. It also highlights the importance of temperature
field control in the quality of the parts produced by SLM.
Figure 11 presents more specifically the time evolution during the cooling phase of the temperature,
stress and plastic strain. It can be seen that the major part of the residual stress develops during
the first instants after the end of the processing phase, i.e. right after the laser is being switched
o↵. This is consistent with the fact that it corresponds with the period in which cooling rates are
the highest, and in which the material is getting sti↵er, due to the thermal dependence of the 316L
stainless steel mechanical properties. Indeed, the global temperature decrease rapidly since no heat
input is provided to the part anymore. Figure 11 also discloses an increase in the plastic strain
values at constant stress (between t=0.0944 s and t=0.1284 s). While most of the thermal stress
develops in the first milliseconds after the heat source is being switched o↵, the plastic strains
continue to grow up until the end of the simulation. These deformations at constant stress in the
area where the material is at a high temperature reflects the viscoplastic behavior implemented.
Strategies to lower the residual stresses were already proposed in the literature. One of the most
popular and easy to implement is substrate preheating [47, 45]. In has two e↵ects in reducing the
stress: it diminishes the thermal gradients by increasing the material minimum temperature and
lowering the rigidity of the substrate since the Young modulus is reduced when the material is
heated.
All the previous observations lead to a conclusion similar to the one that was drawn by Bruna-Rosso
et al. [14] for the reduction of lack of fusion porosities, i.e. in-process variable parameters would be
beneficial to improve the quality of the part produced. While the lack of fusion defects reduction
suggested to modify the scanning strategy between the first tracks, the plastic strain and residual
stress creation mechanisms put forward the utility of varying the process parameters within the
track itself. In fact considering a gradual laser power at the beginning and the end of each track,
i.e. a progressive switch on/switch o↵ of the laser beam appeared as relevant in order to reduce
the heating/cooling rates. It would compensate the acceleration/deceleration of the beam when a
track starts or ends to keep the energy density constant. Empirical studies are investigating this
topic [48]. However, considering the current industrial hardware capacities, scanning strategies
with variable parameters cannot be implemented on commercial machines, and are thus for now
confined to the research field.
Then, the results of the four simulations of the parametric analysis were compared and analyzed
in terms of maximal and mean global Von Mises stress and residual strain at the last computed
time step. Their values for the four sets of parameters simulated are given in tables 3 and 4.

Table 3: Global thermo-mechanical simulations Von Mises stress mean values and maximal values

Speed (mm/s) Power (W) Energy density (Jmm�3) Max. stress (MPa) Mean stress (MPa)

500 200 114 923 1.15⇥ 103

350 150 122 899 1.13⇥ 103

200 100 143 865 1.12⇥ 103

200 200 285 978 1.45⇥ 103

As discussed in the previous section, the values of the Von Mises stress are excessive with respect
to the AISI stainless steel mechanical properties. Moreover, the lack of experimental validation



Table 4: Global thermo-mechanical simulations plastic strain mean values and maximal values

Laser speed (mm/s) Laser power (W) Energy density (Jmm�3) Max. strain Mean strain

500 200 114 0.030 0.35
350 150 122 0.029 0.18
200 100 143 0.028 0.082
200 200 285 0.051 0.23

prevents to consider the absolute values of the simulation outputs as fully reliable. However, the
model behavior is consistent with experimental observations. That is why it was deemed relevant
to investigate relative levels and tendency with respect to input parameters modifications.

Figure 14: Linear regression ⇠max = f(Tmax)

A close relationship between plastic strain and maximal temperature is disclosed when plotting
the curve ⇠max = f(Tmax), as displayed in figure 14. The linear regression has a good coe�cient
of determination R2 which supports the a�ne correlation between the maximal plastic strain and
the maximal temperature. It can be explained by the fact that high peak temperatures give birth
locally to elevated thermal gradients and cooling rates which then engender thermal deformations
and stress beyond the metal elastic limit. Table 4 shows that locally the plastic strains can
exceed 20%. As a consequence, one should keep in mind to adjust the process parameters and the
experimental setup to moderate peak temperatures, such as an e�cient gas flow when the laser is
working.
The mean of the Von Mises stress �VM seems to depend linearly on the laser power, but has a more
complicated behavior with respect to the laser velocity. Indeed when observing the curve of figure
15 a correlation can be found between �VM and the fraction P

v2 with an excellent coe�cient of
determination. This result is interesting from a process design point of view. Indeed, for now, one
of the main variables taken into account to determine whether a set of parameter was suitable or
not is the volumetric energy density. It was proven to be e�cient in determining the region where
the heat input in high enough to melt the required amount of powder. However, Scipioni Bertoli
et al. [49] demonstrated that this factor alone is not su�cient to determine the feasibility window.
Other criteria should be considered to further restrain this window to avoid the appearance of
other detrimental phenomena such as the keyhole e↵ect. For instance, King et al. [50] proposed
the normalized enthalpy  6 to determine adapted process parameters to remain in conduction
mode. The result correlating �VM to the fraction P

v2 suggests that an additional criteria could
be considered to avoid excessive residual stress, and consequently excessive thermal distortions.



Figure 15: Linear regression �VM = f( P
v2 )

This criterion would be directly related to P
v2 . However, a deeper and broader investigation to

determine a more reliable and widely valid relationship �VM = f( P
v2 ) is necessary, since only four

sets of parameters were tested to obtain the regression of figure 15.

4.2.1 Final geometry analyses

Performing thermo-mechanical simulations demonstrated that the local geometry does not depend
on mechanical phenomena but rather on thermal ones, i.e. on the molten pool dimensions. Table 5
regroups the final dimensions of the three tracks together for the four sets of parameters simulated.
The parametric analysis showed that the width is strongly related to the process parameters, and
more specifically to the energy input density. Indeed, simulation 3 shows an increase in the width
of 80 microns with respect to the others. It corresponds to an excess of 230 microns with respect
to the nominal width (140 microns) while the other simulations showed an excess of 150 microns.
This phenomena was shown experimentally by Demir and Previtali [10]. The authors report errors
of 50 to 250 m depending on the process parameters and scanning strategy, which is in the same
order of magnitude than the numerical results. Here appears the influence of the melt pool size
on the final local dimensional properties of the part. Indeed, increased dimensions of the molten
pool result in oversize consolidated material area, as illustrated in figure 16. However the rather
coarse spatial discretization did not allow to discriminate the set of parameters with similar energy
density.
The length appeared less sensitive to the process parameters. It can be explained as follow. First,
the heat source depends on the laser speed through its geometric parameters as described in Bruna-
Rosso et al. [14]. The extra length depends on the size of the melt pool solely at the beginning
and the end of each track, unlike the width that is influenced by its dimensions all along the track.
Second, the laser speed is position dependent, i.e. it accelerates at the beginning of each track and
decelerates at the end at a constant rate. Consequently, in the first instants of each track processing,
the speed is the same for all the set of parameters, which explains the similar melt pool dimensions
it these areas and the following similar lengths. However the error between nominal (5 mm) and
measured length (5.5-5.6 mm) is significant. This is most probably due to an overestimation of the
length by the simulations. In fact, the Goldak heat input model was developed and experimentally
calibrated in permanent regime. As a results, it provides reliable quantitative results in permanent
regime, i.e. when the melt pool reaches a stable size, as demonstrated by Bruna-Rosso et al. [14].
However, at the beginning and end of the tracks the transient regime is less well represented by the
heat input model that is implemented. These results suggest to better describe the laser source in



these regions to obtain more accurate track length estimations.

Table 5: Final melted area widths and lengths

Energy density (Jmm�3) Length (mm) Width (mm)

114 5.6 0.29
122 5.6 0.29
143 5.5 0.29
285 5.6 0.37

Figure 16: Mechanism of oversize dimensions due to the melt-pool

The results showed as well the importance of taking into account the extra thickness of molten
material brought by the melt pool dimensions in the part and process design to avoid the geomet-
rical errors beforehand, i.e. at design stage. Indeed, the discrepancy induced by this phenomenon
amounts from few dozen to few hundreds m. If this is acceptable for many applications where the
dimensions of the parts are few dozen mm or more, or where a post-processing stage can correct it,
this di↵erence between designed and actual geometry can be very detrimental for applications such
as cardiovascular stents [10] due to their geometrical specificities. Indeed, their minute dimensions,
with strut widths as small as few hundreds microns, render the error proportionally significant.
Moreover their intricate geometries make post-process corrections challenging while their function-
ality strongly depends on their size [11]. The model can provide an estimation of the downsizing of
the theoretical geometry to perform in order to compensate the extra molten material. The com-
putational experiment spatial discretization is rather coarse with respect to the geometry of the
molten metal area. This brings significant uncertainty and error to the dimension measurements.
However simulations with a finer mesh can be planned to have a better quantification of the e↵ect
of the melt-pool dimensions on the geometrical errors. Besides, a wider range of parameters could
be tested and an adapted computational DoE could be perform. A simple empirical model can be
derived linking the process parameters (P,v) and the scaling to apply to the nominal dimensions
in order to obtain a final geometry closer to the nominal one. Moreover, if a more localized and
precise correction is to be planned due to the space variations of the melt pool dimensions, the
model can provide quantitative information on the local process parameters modifications to make
to compensate them.

5 Conclusion

An original finite strain mechanical solver was developed for stress, plastic strain and final ge-
ometry computation at millimeter scale during the selective laser melting of AISI316L stainless
steel powder. It takes as input the temperature and powder fraction fields calculated using a pre-
viously developed thermal model. The residual stresses, plastic strains and distortions resulting
from the material temperature variations and phase transformations were computed in order to
better understand and predict the geometrical errors. This thermo-elasto-viscoplastic FEM was
first numerically validated since it was able to replicate data retrieved from the literature. Its
ability to represent the in-process thermo-mechanical behavior of the manufactured material was



then qualitatively checked. Comparisons of the computed data with empirical results from the
literature showed the ability of the model to reproduce two major phenomena, namely thermal
gradients and cooling down. Finally, a computational design of experiment was run to get insight
into the formation mechanisms of plastic strain and residual stress and the e↵ects of two of the
main SLM process parameters, namely powder P and laser speed v. Their e↵ects on the final
geometry of the final melted area dimensions were scrutinized. The results obtained from these
simulations led to the main following conclusions:

• Areas that are the most at risk of cracking due to excessive stress are located close to the
lateral surfaces of the built part

• The peak plastic strain values, reflecting the risk of cracking, are correlated to the maximal
temperatures

• Local geometrical errors are related to thermal phenomena only (excessive/too small melt
pool dimensions)

• The heat input model should be modified in the transient regime to have more accurate
estimations of the track lengths

• Global geometrical errors (distortions), consequence of residual stresses, can be tuned through
the fraction P

v2

• Local variation of the heat input volumetric density due to the laser speed variations should
be compensated by a varying power

• Excessive heating/cooling rates at laser ignition/extinction should be avoided gradually
switching on the beam

The thermo-mechanical model cannot be used as a stand-alone tool allowing for a complete
planning of the SLM strategy due to its limitations in terms of domains that can be simulated.
Besides, the model lacks a full experimental validation to ensure its capacity to provide reliable
quantitative results. Nevertheless, considering its ability to reproduce experimentally observed
main SLM mechanical phenomena, the thermo-mechanical model can be of use in a process pa-
rameter design procedure to orientate and thus speed up their optimization. Indeed, it gives
insight into the e↵ects of these parameter variations thus providing information on how they could
be modified to improve the final part quality.
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