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Abstract—In this paper, we present a modeling and simulation 

framework for conducting the adequacy assessment of a wind-

integrated power system accounting for the associated 

uncertainties.  A multi-perceptron artificial neural network (NN) 

is trained by a non-dominated sorting genetic algorithm–II 

(NSGA-II) to forecast point-values and prediction intervals (PIs) 

of the wind power and load. The output of the assessment is given 

in terms of point-valued and interval-valued Expected Energy 

Not Supplied (EENS). We consider different scenarios of wind 

power and load levels, to explore the influence of the uncertainty 

in wind and load predictions on the estimation of system 

adequacy. 

 

Index Terms—Adequacy assessment, multi-objective genetic-

algorithms, neural networks, prediction intervals. 

 

I. INTRODUCTION 

HE ADEQUACY assessment of a power system is 

challenging due to the many uncertainties associated, for 

example, to fluctuations in energy demand, to the prediction of 

future weather conditions (e.g. wind speed, solar irradiation, 

etc.), to possible equipment (e.g. generators, lines, etc.) 

unavailability, to failures in electric power transactions, to 

errors (operator errors, dispatcher and relay malfunctions), and 

to other relevant issues [1]-[3]. 

In this paper, we present a modeling and simulation 

framework for conducting the adequacy assessment of a wind-

integrated power system accounting for uncertainties in the 

data and prediction models. A widely used adequacy index, 

the Expected Energy Not Supplied (EENS), is evaluated as 

output of the assessment. EENS measures the failure of the 

system to meet the demand by the cumulative amount of 

energy that is not provided to the customers, over the time 

horizon of interest for the analysis [4], [5]. 

Several works in the literature calculate EENS for the 

adequacy assessment of a power network [6]-[8]. The 

originality of the present work lies in proposing not only 

point-valued results, like the works previously mentioned, but 

also interval-valued results to inform the decision makers on 

the uncertainty in the predictions. Uncertainties are here 

considered due to load fluctuations, wind variability, and 

component failures. 

A case study is considered in which hourly wind speed data 

from the region of Regina, Saskatchewan, Canada are taken,  

 

from a 9-year period (1 Jan. 2003 to 31 Dec. 2011) [9]. Hourly 

mean wind speed data are used to determine the time-

dependent wind power output of a wind turbine generator 

(WTG) using its power curve [7]. For load demand, the hourly 

load fluctuations are modeled using the chronological annual 

load curve of the IEEE Reliability Test System (RTS) [10] 

with the scaled annual peak load value. The inputs to estimate 

the EENS are the Prediction Interval (PIs) for 1-hour ahead 

wind power and load. These values are provided by the use of 

a multi- perceptron artificial neural networks (NNs) trained by 

the non-dominated sorting genetic algorithm–II (NSGA-II) 

[11]: the lower and upper bounds of the NN-based PIs are 

optimal both in terms of coverage probability (PICP) and of 

width (PIW). The NSGA-II training procedure generates 

Pareto-optimal solution sets, which include non-dominated 

solutions for the two objectives (PICP and PIW). One solution 

has, then, to be selected among the ones in the Pareto optimal 

set according to the preferences on the objectives. 

The generating units in the power system are represented by 

two-state models, describing operation and failure, and they 

are sampled by sequential Monte Carlo simulation. 

 

II. METHODOLOGY TO ESTIMATE LOAD AND WIND POWER 

PIS 

In the following sub-sections, the main phases of the 

methodology are described. The application of the framework 

is shown on a case study taken from literature [7]. In Fig. 1, a 

flowchart of the methodology for the adequacy assessment of 

wind-integrated power systems is depicted. 

 

A. Wind Power Generation 

Hourly wind speed data have been collected for the region of 

Regina, Saskatchewan, Canada for a 9-year period (1 Jan. 

2003 to 31 Dec. 2011) [9]. Since wind power is a function of 

wind speed, forecasts of power are generally derived from 

wind speed. In order to conduct the adequacy assessment over 

one-year time horizon, for each hour in the year (8736 h) the 

hourly means are calculated over 9 years of wind speed 

values. The so obtained one-year time series of wind speed 

 ( )               , are then transformed in wind power  ( ) 

values using a quadratic characteristic curve (power curve) of 
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literature [12], [13]. In the numerical case study, the 

parameters defining the power curve, i.e. cut-in speed, rated 

speed, cut-off speed and rated capacity, are set to 14.4 km/h, 

36 km/h, 80 km/h and 40 MW, respectively [7]. 

 

 

 
Fig. 1.  Flowchart of the proposed methodology. 

 

B. Load Modeling 

The load duration curve (LDC) on an annual basis (8736 h) 

is created by manipulating the hourly load values from the 

IEEE-RTS [10]. One year (8736 h) load data, i.e. a load value 

 ( ) for each hour              , have been generated with 

the following formula [14]: 

 

     ( )   ̅( )   ̅( ) (
 

   
)           (1) 

 

where  ̅( ) is the expected value of load for hour  , calculated 

using the following equation: 

 

 ̅( )    ( )    ( )    ( )          (2) 

 

where      is the peak load in a year,   ( ) is the weekly 

peak load as a percentage of the annual peak,   ( ) is the 

daily peak load as a percentage of the weekly peak and   ( ) 

is the hourly peak load as a percentage of the daily peak. The 

system peak load      is set to 185 MW [7].   is the load 

forecasting uncertainty error (standard deviation) expressed as 

a percentage of the hourly peak load, and       is defined as 

[14]: 

 

      √    (  )    (    )     (3) 

 

where    and    are two random numbers drawn from the 

standard uniform distribution on the open interval (0,1). The 

load forecasting error   is set to 5%.  

 

C. Estimation of NN-based PIs  

Based on the hourly wind power and load values over a 1-

year horizon, we define a data-driven strategy to perform short 

term (1-hour ahead) prediction, with uncertainty 

quantification, of both load and wind power. Not only a point 

estimate of the target, but also PIs are computed. In order to 

estimate PIs for 1-hour ahead wind power and load prediction, 

we use multi-perceptron artificial neural networks (NNs) [15], 

[16] which are a class of nonlinear statistical models inspired 

by brain architecture. NNs are capable of learning complex 

nonlinear relationships among variables from observed data by 

a process of parameter tuning called “training” [  ] – [18].  

A PI is comprised of upper and lower bounds in which a 

future unknown value of the target is expected to lie with a 

predetermined confidence level (   ) [18]. We evaluate the 

“goodness” of the PIs by estimating the empirical PIs 

coverage probability (PICP), which one wants to maximize, 

and the interval width (PIW), which one wants to minimize. 

The mathematical definition of the PICP and PIW used in this 

work is defined in [18], [19]. 

The PIs estimation problem is addressed by taking into 

account these two conflicting objectives within a multi-

objective framework. For this, we use NSGA-II, one of the 

most efficient multi-objective genetic algorithms (MOGAs) 

[11], [20] to optimize the parameters (i.e. the weights  ̂) of 

the NN with respect to both PICP and PIW objectives. More 

precisely, the NN is trained by NSGA-II to produce the lower 

and upper bounds of the PIs for short-term forecasting (1-hour 

ahead) of wind power and load. For the details of the practical 

implementation of NSGA-II for NN-based PIs estimation see 

[19]. 

III. METHODOLOGY TO ESTIMATE EENS 

In order to conduct the adequacy assessment of the wind-

integrated power system, we use the well-known adequacy 

index, EENS, which quantifies the capability of the system to 

meet the demand in the time horizon considered for the 

analysis. EENS measures the expected value of the energy not 

supplied due to the lack of available energy through the given 

time horizon (e.g. one year). It depends on the predicted 

values for both the system energy production and the power 

demand, and it is formulated as follows [21], [22]: 

 

     ∑    (  
 
      )  (     )       (4) 

 

where    is the equally sized time step (e.g. hour or day),   is 
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the total number of time steps in the considered time horizon, 

in our case          for a one year time horizon,     is the 

total power generation available at time step  ,    is the load 

demand at time step  ,   (     ) is the probability that the 

load demand exceeds the available power generation at time 

step  . 

In the classical definition of EENS given in (4), both the 

predicted value of the generation    and of the load    at each 

time step   are assumed to be point estimates, resulting in a 

point estimate of EENS. Our method is, instead, capable of 

providing PIs for both the power generation and the load at 

each time step, to take into account the possible uncertainties 

in the prediction arising from both the underlying physical 

processes (wind inherent uncertainty, variability in power 

demand, ...) and in the system stochastic behavior (equipment 

failures, approximations of the system complexities, ...). A 

proper adequacy assessment model should take these sources 

of uncertainty into account, since uncertainty quantification is 

crucial for a real understanding of the system behavior, and for 

obtaining reliable results useful for robust decision making. 

Hence, we aim at a generalization of the EENS formulation 

given in (4), in order to include interval estimates of both    

and    .  

Two different strategies are considered for interval-based 

EENS estimation: a point estimation and an interval 

estimation. They are both interval-based, in the sense that the 

inputs to the evaluation are the short-term PIs for load and for 

power generation, as obtained by the NN-based estimation 

procedure described in the previous section. 

 

 
Fig. 2.  Two different cases describing possible load and generation at time t. 

 

A. Interval-based Interval Estimation of EENSs 

One possible strategy for taking into account load and 

power generation PIs in EENS estimation consists in directly 

using (4) with interval-valued    and     thus obtaining as a 

result an interval evaluation of EENS by directly applying the 

principles of interval arithmetic [23]. In other words, all 

arithmetic calculations throughout the evaluation process of 

the interval-valued    and    are performed according to 

interval arithmetic (interval product, sum, intersection, etc.). 

Moreover, an assumption is made in the computation of 

  (     ) in the case of interval- valued    and   : due to 

lack of further information, a uniform probability is assumed 

for the actual (unknown) values of both load and power 

generation being anywhere inside the intervals of    and   , 

respectively.  

This way of proceeding seems the most natural for the 

generalization of the classical EENS index to take into account 

interval estimates of load and power generation. In fact, in this 

way the uncertainty quantification attained in the load and 

power PIs estimation process is directly propagated into the 

adequacy assessment index, without any strong probabilistic 

assumption. Moreover, since the EENS estimate is based on 

uncertain quantities, it is uncertain itself, and thus it is natural 

to quantify its uncertainty via an interval. Finally, an interval 

EENS carries richer information which can eventually be 

converted in a single value whenever needed.  

More specifically, total load and total generation at time t 

are defined as       
    

   and       
    

  , respectively, 

where   
  and   

  indicate the lower bounds, and   
  and   

  

indicate the upper bounds of the intervals of the two 

quantities. 

(     ) in (4) is calculated as follows, in accordance with 

the interval arithmetic rules [23]: 

 

      (     )     
    

    
    

        (5) 

 

After subtraction, if the lower bound of the interval 

becomes a negative value, it is replaced by 0. 

For the computation of   (     ), different cases defined 

by load and generation interval-valued levels at time step   

have to be considered. For the sake of brevity, two examples 

are considered for exemplification, and shown in Fig. 2. 

For the case in Fig. 2(a),    (     ) is calculated as 

follows: 

 

  (     )                     (6) 

 

where    ,    , and    ,     are fractions of the intervals    

and   , respectively. Specifically, if     ( ) indicates the 

length of an interval,     is the fraction of     (  
    ) over 

the length of the entire interval,     (  
    

 ). This fraction 

corresponds to the probability of the actual (unknown) load (or 

generation) being within that part (subinterval) of the interval, 

because of the assumption of uniform distribution of the actual 

load (or generation) within the estimated intervals. In fact, we 

can formally derive (6) by directly using the probability 

density function of a uniform random variable [24]: if   is a 

uniform random variable on the interval (   ), then its 

probability density function  ( ) is given by 

 

 ( )  {
 

   
         

           
         (7) 
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If       is a subinterval of (   ), then the probability of   

falling within the interval       depends only on the length of 

      with respect to (   ). Specifically [24]: 

 

  (     )  ∫
  

   
 

   

   

 

 
                       (8) 

 

If the load and the generation intervals are as in Fig. 2(b), 

   (     ) is calculated similarly as follows: 

 

  (     )                  ,     (9) 

 

where    ,    , and     are the intervals fractions as defined 

above. This calculation corresponds to the probabilistic 

assumption that load and generation can take any value in 

   
     

   and    
    

  , respectively, with uniform probability, 

i.e. each point in [  
 ,   

 ] and    
    

   is equally likely to be a 

possible value of L and G, respectively.  

 

B. Interval-based Point Estimation of EENSs 

As explained in Section 3.A, load and power generation, 

provided by NNs as PIs, can be directly used for EENS 

estimation. One possible strategy, leading to an interval 

estimation of EENS, has already been described in the 

previous section. An alternative way to generalize EENS to 

the interval case leads to obtaining a point estimate of the 

adequacy index. This strategy is based on the probability 

density function of the continuous random variable       
  , where       and       are, respectively, two 

admissible values of the load demand and power generation at 

time  , thus          {    
    

 }    
    

  .  Any value 

assumed by    represents a possible amount of energy that 

cannot be supplied by the power system at time   to meet the 

demand: hence, a point estimate of EENS at time   can be 

obtained by computing the expected value of    over the 

intervals of admissible values for load and power,    and   , 

respectively. This is indeed a probabilistic approach, since the 

assumption of uniform distribution of the energy values within 

   and    has again to be made. Moreover, uncertainty 

quantification is taken into account, because the load and 

power PIs are used in the EENS estimation process. The 

obtained final estimate of EENS is a single value, which may 

give a more interpretable result. 

According to this strategy, the EENS of the system can be 

calculated as follows [22]: 

 

              ∫    
  
    

 

   {       
    

 }
 (    )       (10) 

 

From this general formulation we can derive the following 

expressions, for the examples shown in Fig. 2 (Fig. 2a and 2b, 

respectively): 

           ∫    
  
 

  
 ∫ (     )

 

  

  

  
 

 

  
                   (11)

      

            ∫    
  

 

  
 ∫ (     )

 

  

  
 

  

 

  
             (12) 

           

where      
    

  and      
    

 , and we directly 

computed the integrals assuming a uniform probability density 

function for both random variables    and   . In general, for 

any of the possible cases of interval-valued load and 

generation at each time step, we can derive an analytic 

expression for the interval-based point estimate of EENS. We 

do not report the explicit EENS calculations in each case, for 

the sake of brevity. 

IV. EXPERIMENTAL RESULTS 

The proposed approach has been tested on the RBTS (Roy 

Billinton test system) system [25]. The RBTS system consists 

of 11 conventional generation units with a total capacity of 

240 MW. A wind farm with 20 identical WTG units has been 

added to the RBTS system. Each WTG is assumed to have a 

rated capacity of 2 MW and cut-in, rated and cut-out speeds of 

14.4 km/h, 36 km/h and 80 km/h, respectively. In Fig. 3, the 

system topology of the RBTS system is shown. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  Single line diagram of the RBTS [7]. 

 

A. Failure Modeling 

With respect to the failure and repair behavior, the system 

components are considered to be independent and with only 

two states: up and down.  

It is assumed that all components are initially in the up 

state. For a generic component i (such as generator, 

transformer, line, etc.), both time-to-failure (TTFi) and time-

to-repair (TTRi) follow an exponential distribution. By 

randomly sampling two numbers    and    from a uniform 

distribution, the sampled values of the state residence time are 

calculated as follows: 

 

              (  )            (13) 

 

              (  )                         (14) 

 

where MTTF and MTTR are the means of the respective 

exponential distributions.  

Conventional 

generation units 

Possible 

location for 
wind turbines: 

40 MW 
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Table I reports conventional generating unit ratings and 

reliability data [25]. For an individual wind turbine, the failure 

and repair rates are set to 0.0005/hr and 0.013 /hr, respectively 

[2]. 

 
TABLE I 

CONVENTIONAL GENERATION UNITS’ RELIABILITY DATA [25] 
 

Unit size 

(MW) 
Type 

No. of 

units 

MTTF 

(hr) 

MTTR 

(hr) 

5 hydro 2 4380 45 

10 thermal 1 2190 45 

20 hydro 4 3650 55 

20 thermal 1 1752 45 

40 hydro 1 2920 60 

40 thermal 2 1460 45 

 

B. Data Description and NN Parameters 

Hourly wind speed time data for the period 2003-2011 (9 

year series) have been measured in Regina, Saskatchewan, a 

region of central Canada [9]. These 9 years data have been 

used to calculate hourly mean wind speed values. The one 

year time series of wind speed have then been transformed in a 

time series of wind power through the characteristic curve 

(power curve) of a wind turbine, defined in Section 2.A. One 

year (8736 h) load data, i.e. load profile over 1 year with 1-h 

time step, have been generated according to the load model 

described in Section 2.B. Fig. 4 shows raw time series data 

sets, for both total wind power of WTG units, with a 

maximum value of 37.36 MW and load, with a maximum 

value of 196.88 MW. Both time series data sets show 

remarkable fluctuations along time.    

The architecture of the NN model used consists of one input, 

one hidden and one output layers. The number of input 

neurons is set to 4 for both load and wind PIs estimations, 

since an auto-correlation analysis [26] has shown that the 

historical past values     ,     ,     , and      should be 

used as input variables for predicting    in output; the number 

of hidden neurons is set to 10 after a trial-and-error process; 

the number of output neurons is set to 2, to provide the lower 

and upper bounds. As activation functions, the hyperbolic 

tangent function in the hidden layer and the logarithmic 

sigmoid function in the output layer have been found to give 

the most satisfactory results. In the NSGA-II, population 

size is set to 50 and the number of generations to 300. To 

account for the inherent randomness of NSGA-II, five 

different runs have been performed and an overall best non-

dominated Pareto front has been obtained from the five 

individual fronts. All data have been normalized within the 

range [0.1, 0.9].  

 

C. Estimated PIs  

The multi-objective NSGA-II with PI coverage probability 

and width provide Pareto sets of solutions (one for the wind 

power and one for the load), i.e. optimal NN models 

(weights); it is, then, necessary to select the optimal sets of 

weights to use in the NN models for prediction (see Fig. 5). 

For exemplification purposes, solutions are here subjectively 

chosen as a good compromise in terms of high PICP and low 

NMPIW. The selected solutions are characterized by 95 % 

PICP and a NMPIW equal to 0.265 for the load prediction, 

and 95 % PICP with a NMPIW equal to 0.19 for the wind 

power prediction, respectively.  Fig. 6 shows 1-hour ahead PIs 

for the selected Pareto solutions, marked in rectangles in Fig. 

5, estimated by the trained NNs for wind power from one 

turbine and load predictions. For the sake of clarity of 

visualization, a zoom on the first 250 hours has been plotted.  

 
 

TABLE II 

DESCRIPTIVE STATISTICS OF EENS OVER 100 SIMULATIONS 
 

 Mean Std dev. 

EENS_LB 19278.93 11090.22 

EENS_UB 25521.84 14663.75 

EENS_mean 22381.89 12859.20 

EENS_point 22419.12 12888.83 

EENS_actual 22769.24 13147.55 

 

 

 

 
 
Fig. 4.  The wind power time series set and load curve over 1 year used in this 
study: (a) load (b) wind power. 

 

 
 

 
 
Fig. 5.  The overall best Pareto front obtained by training of the NNs for 1h-

ahead load and wind power predictions: (a) load (b) wind power. 

 

D. Estimated EENS 

To estimate the overall EENS accounting for failures and 

repairs of the components, we performed 100 repetitions. In 

each repetition, a new matrix of the up and down states of the 

components is generated. Then, for each repetition the 

assessment process is followed with the same estimated load 
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and wind power PIs and conventional units’ generation 

capacity. Fig. 7 shows the EENS results obtained according to 

the methods explained in Sections 3.A and 3.B. It can be 

noticed that the estimated PIs of EENS include the point 

predictions. In other words, interval-valued EENS carries 

more information, i.e. reflects the worst and best cases of 

unavailable energy during the given time horizon, and it 

provides an indication of how the uncertainties in input affect 

the output quantities. 

 

 
 

Fig. 6.  Estimated PIs (solid lines) over a 1-year time horizon (dashed line): 
(a) 1h-ahead load (b) 1h-ahead wind power from one turbine.  

 

The EENS values in Fig. 7 (b) have been obtained by 

considering 6 different scenarios, corresponding to the 

different uncertainty levels in the input parameters, i.e. wind 

power, load and system state. These scenarios have been 

called point EENS, interval EENS, EENS LB, EENS mean, 

EENS UB and EENS actual. The former two are the same as 

in Fig. 7 (a). EENS LB and EENS UB have been calculated by 

considering only the LB and UB of the estimated load and 

wind power PIs, respectively, and by computing a single-

valued inputs EENS index. Similarly, to estimate EENS mean, 

the central values (mean point) of the PIs have been used as 

input. For computing EENS actual, we have used the actual 

data sets shown in Fig. 4: EENS actual is, thus, the unknown 

quantity we would like our estimates to be close to, and it 

cannot be computed in a real case study; we have calculated it 

here only for demonstration of the strength of our approach. 

Note that, differently from the point EENS and interval EENS, 

the values of EENS LB, EENS UB, and EENS mean are 

calculated with single-valued load and wind power inputs: 

hence, they do not include any uncertainty quantification in 

their estimation process. Table II reports the mean and 

standard deviations of the EENS LB, EENS UB, EENS mean, 

EENS point and EENS actual results over 100 simulations. 

Note that, being capable of properly accounting also for 

uncertainties, EENS point is the closest to EENS actual on 

average (and with comparable variability). 

EENS is equal to zero when there is no failure of 

conventional generators (see Fig. 7), because at any time t 

over the given time horizon, total available generation 

capacity,  ( ) is bigger than total load  ( ). In case of 

failures, EENS takes different non-zero values according to 

the load and wind levels. Standard deviations show the effect 

of the failures on the system adequacy, since load and wind 

levels do not change through the runs. One can, then, use the 

results of such analysis to identify the components which have 

high contribution to the expected annual energy not supplied. 

Also, if the estimated EENS is unacceptable, technical 

interventions may be needed, e.g. new generation units might 

be added to the system. 

As each scenario carries different information, ultimately the 

decision makers are supposed to select the one which gives a 

more interpretable result for their final decisions/actions. Fig. 

8 shows the boxplots of the differences obtained by the 

subtraction of ENNS_actual from the EENS_LB, EENS_UB, 

EENS_mean and EENS_point, respectively. A boxplot is an 

exploratory graphic used to visualize key statistical measures, 

such as median and quartiles, and to have an idea about the 

distribution of a data set, i.e. the location, dispersion, and 

symmetry or skewness of the data set, at a glance [27], [28]. It 

is also used to make comparisons of these features in two or 

more data sets. The boxplots dif_mean and dif_point are 

comparatively shorter (meaning narrower distributions) than 

the boxplots dif_LB and dif_UB.  This fact indicates a higher 

variability for the estimates of EENS obtained using PIs LB 

and UB, compared to the ones based on EENS point and 

mean. In other words, EENS mean and EENS point show 

comparable results, which are also more consistent with 

respect to the actual values of EENS throughout the 

simulations (not just on average, as we could already conclude 

from Table II). Since the EENS point is estimated on the basis 

of the load and power PIs, i.e. it takes into account the 

uncertainties in the inputs, it is more precise and reliable 

compared to the others. Hence, among all the possible 

estimates of EENS that could be obtained, EENS point shows 

more promising and trustable results in capturing the actual 

EENS by considering the uncertain inputs. 

On the basis of the comparisons shown in Fig. 7 and Table 

II, where load demand and wind power generation take 

different values according to the considered scenario, the 

conclusion that different load and wind levels result in 

different EENS can be drawn. From the results reported in 

Table II we can observe that, for values of the load 

corresponding to the upper bound of PIs, a bigger EENS is 

obtained compared to the one obtained in other scenarios. It is 

worth to remark that, in the same scenario, an increase in the 

wind level would reduce the EENS. Ultimately, having an 

estimate of EENS with an associated variability helps the 

decision makers in managing the system on the basis of a 

more realistic / reliable adequacy assessment. 
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(a) 

 
(b) 

 

Fig. 7.  The EENS results over 100 runs: (a) interval-valued and single-valued EENS (b) comparisons of different scenarios. 

 

 

 
 

Fig. 8. Boxplots of the differences obtained by the subtraction of 

ENNS_actual from the EENS_LB, EENS_UB, EENS_mean and EENS_point, 

respectively.  

 

V. CONCLUSION 

A method which calculates the EENS value for a wind-

integrated power network based on interval-valued load and 

wind power input data has been proposed. The objective is to 

know and dominate the impact of the uncertainty in wind and  

load on the uncertainty in EENS. Simulation results on 

different scenarios confirm that uncertainties in input data can 

be properly taken into account to obtain more reliable EENS 

estimations.   

The presented expected annual energy not supplied can be 

integrated with a cost model whose results help the decision 

makers to take operational level decisions and do medium-

term and long-term strategic planning.  

 

REFERENCES 

[1] E. Zio and T. Aven  “Uncertainties in smart grids behavior and 
modeling: What are the risks and vulnerabilities? How to analyze 
them? ” Energy Policy, vol. 39, no. 10, pp. 6308-6320, Oct. 2011. 

[2] Y-F. Li and E. Zio, "A multi-state model for the reliability assessment of 

a distributed generation system via universal generating 
function," Reliability Engineering & System Safety, vol. 106, pp. 28-36, 

Oct. 2012. 

[3] Z. Wei  T. Tao  D. ZhuoShu  and E. Zio  “A dynamic particle filter- 
support vector regression method for reliability prediction ” Reliabili y 

Engineering & System Safety, vol. 119, pp. 109-116, Nov. 2013. 

[4] R., Billinton and R. N. Allan, Reliability Evaluation of Power Systems. 
2nd ed., New York: Plenum Press, 1996. 

[5] G. A. Koeppel  “Reliability considerations of future energy systems: 
multi-carrier systems and the effect of energy storage ” Ph.D. 
dissertation, Power System Laboratory, Swiss Federal Institute of 

Technology, Zurich, 2007. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

[6] J. Wen  Y. Zheng  and F. Donghan  “A review on reliability assessment 
for wind power ” Renewable and Sustainable Energy Reviews, vol. 13, 
no. 9, pp. 2485–2494, Dec. 2009. 

[7] Y. Gao, R. Billinton  and R. Karki  “Composite generation and 

transmission system adequacy assessment considering wind energy 
seasonal characteristics ” presented at the IEEE Power Energy Society 

General Meeting  PES  ’09 IEEE  Calgary  Canada  July 2 -30, 2009. 

[8] B. Falahati  Y. Fu  Z. Darabi  and L. Wu  “Reliability assessment of 
power systems considering the large-scale PHEV integration ” presented 

at the Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, 

Chicago, USA, Sep. 6-9, 2011. 
[9] Canadian Weather Office. [Online]. Available: http: 

//www.weatheroffice.gc.ca/canada_e.html. [Accessed: 01-Jan-2013]. 

[10] Reliability Test System Task Force of the Application of Probability 
Methods Subcommittee  “IEEE Reliability Test System ” IEEE Trans. 

on Power Apparatus and Systems, vol. PAS-98, no. 6, pp. 2047–2054, 

Nov. 1979. 
[11] K. Deb  A. Pratap  S. Agarwal  and T. Meyarivan  “A fast and elitist 

multiobjective genetic algorithm: NSGA-II  ” IEEE Transactions on 

Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Apr. 2002. 

[12] R. Karki  P. Hu  and R. Billinton  “A simplified wind power generation 

model for reliability evaluation ” IEEE Trans. on Energy Conversion, 

vol. 21, no. 2, pp. 533–540, June 2006. 
[13] C.G. Justus  W.R. Hargraves  and A. Yalcin  “Nationwide assessment of 

potential output from wind-powered generators ” Journal of Applied 

Meteorology, vol. 15, no.7, pp. 673–678, July 1976. 
[14] A.B. Rodrigues and M.G. Da Silva  “Probabilistic assessment of 

available transfer capability based on Monte Carlo method with 
sequential simulation ” IEEE Transactions on Power Systems, vol. 22, 

no. 1, pp. 484–492,  Feb. 2007. 

[15] J., Korbicz, J. M. Ko´scielny, Z. Kowalczuk, and W. Cholewa, Fault 
Diagnosis: Models, Artificial Intelligence, Applications. Germany: 

Springer Verlag, 2004. 

[16] K. Hornik, M. Stinchcombe  and H. White  “Multilayer feedforward 
networks are universal approximators ” Neural Networks, vol. 2, no. 5, 

pp. 359–366, 1989. 

[17] D.L. Shrestha and D.P. Solomatine  “Machine learning approaches for 
estimation of prediction interval for the model output ” Neural Networks 

vol. 19, no. 2, pp. 225–235, 2006. 

[18] A. Khosravi  S. Nahavandi  D. Creighton  and A. F. Atiya  “Lower 
Upper Bound Estimation Method for Construction of Neural Network-

Based Prediction Intervals ” IEEE Trans. on Neural Networks, vol. 22, 

no. 3, pp. 337-346, March 2011. 
[19] R. Ak, Y. F. Li, V. Vitelli, E. Zio, E. López Droguett, and C. Magno 

Couto Jacinto  “NSGA-II-trained neural network approach to the 

estimation of prediction intervals of scale deposition rate in oil & gas 
equipment ” Expert Systems with Applications, vol. 40, no. 4, pp. 1205-

1212, March 2013. 

[20] A. Konak  D.W. Coit  and A.E. Smith  “Multi-objective optimization 
using genetic algorithms: A tutorial ” Reliability Engineering & System 

Safety, vol. 91, no. 9, pp. 992–1007, Sep. 2006. 

[21] R., Billinton and R. N. Allan, Reliability Assessment of Large Electric 
Power Systems. Springer, 1988. 

[22] Power Systems Engineering Committee  “Reliability indices for use in 
bulk power supply adequacy evaluation ” IEEE Transactions on Power 

Apparatus and Systems, vol. PAS-97, no. 4, pp. 1097–1103, July/Aug. 

1978. 

[23] Moore, R. E., Kearfott, R. B., and Cloud, M. J. Introduction to Interval 
Analysis, Society for Industrial and Applied Mathematics. 1st ed., USA, 

2009, pp. 1-235. 

[24] Ross, S. M., 2010. Introduction to Probability Models. 10th Ed., Elsevier 
Inc., USA. 

[25] R. Billinton, S. Kumar, N. Chowdhury, K. Chu, K. Debnath, L. Goel, E. 

Khan, P. Kos, G. Nourbakhsh,, J. Oteng-Adjei  “A reliability test system 
for educational purposes-basic data ” IEEE Trans. on Power Systems, 

vol. 4, no. 3, pp. 1238–1244, Aug. 1989. 

[26] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: 
Forecasting and Control. 4th ed., Wiley, 2008. 

[27] Devore, J. L. and Berk, K. N., 2011. Modern mathematical statistics 

with applications. Springer, London. 
[28] Mosteller, F. and Tukey, J. W., 1977. Data Analysis and Regression: A 

Second Course in Statistics. Addison-Wesley Series in Behavioral 

Science: Quantitative Methods, Reading, Mass.: Addison-Wesley, 

1977, 1. 

 

Ronay Ak is currently pursuing the Ph.D. 

degree at Chair on Systems Science and the 

Energetic Challenge, European Foundation for 

New Energy-Électricité de France (EDF), 

École Centra le Paris (ECP) and École 

Supérieure d’Électricité (SUPELEC), France, 

since March 2011. Her research interests include uncertainty 

quantification, prediction methods, artificial intelligence, 

reliability analysis of wind-integrated power networks, and 

multi-objective optimization. 

 
 

Yan-Fu Li is an Assistant Professor at Ecole 

Centrale Paris (ECP) & Ecole Supérieure 

d'Electricité (SUPELEC), Paris, France. Dr. 

Li completed his PhD research in 2009 at 

National University of Singapore, and went to 

the University of Tennessee as a research 

associate. His current research interests 

include reliability modeling, uncertainty analysis, evolutionary 

computing, and Monte Carlo simulation. He is the author of 

more than 30 publications, all in refereed international 

journals, conferences, and books. He is an invited reviewer of 

over 10 international journals. 

 

            

Valeria Vitelli received the Ph.D. degree in 

Mathematical Models and Methods for 

Engineering, with a focus on statistical 

models for classification of high-dimensional 

data, in May 2012. She worked as a postdoc 

researcher within the Chair on Systems 

Science and the Energetic Challenge, European Foundation 

for New Energy- Électricité de France (EDF), École Centrale 

Paris (ECP) and École Supérieure d’Électricité (SUPELEC), 

France, from February 2012 to May 2013. She is currently a 

postdoc researcher in the Department of Biostatistics, 

University of Oslo, Norway. Her current research interests 

concern prediction and uncertainty quantification methods for 

complex data. 

 
 

Enrico Zio received the Ph.D. degree in 

nuclear engineering from Politecnico di 

Milano and MIT in 1995 and 1998, 

respectively. He is currently Director of the 

Chair on Systems Science and the Energetic 

Challenge, European Foundation for New 

Energy- Électricité de France (EDF), at École 

Centrale Paris (ECP) and École Superieure d’Électricité 

(SUPELEC) and full professor at Politecnico di Milano.  His 

research focuses on the characterization and modeling of the 

failure/repair/maintenance behavior of components, complex 

systems and their reliability, maintainability, prognostics, 

safety, vulnerability and security, Monte Carlo simulation 

methods, soft computing techniques, and optimization 

heuristics. 
 




