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Abstract 9 

We propose a set of new indices to assist global sensitivity analysis (GSA) in the presence of data 10 

allowing for interpretations based on a collection of diverse models whose parameters could be 11 

affected by uncertainty. Our GSA metrics enable us to assess the sensitivity of various features (as 12 

rendered through statistical moments) of the probability density function of a quantity of interest 13 

with respect to imperfect knowledge of (i) the interpretive model employed to characterize the 14 

system behavior and (ii) the ensuing model parameters. We exemplify our methodology for the case 15 

of heavy metal sorption onto soil, for which we consider three broadly used (equilibrium isotherm) 16 

models. Our analyses consider (a) an unconstrained case, i.e., when no data are available to 17 

constrain parameter uncertainty and to evaluate the (relative) plausibility of each considered model, 18 

and (b) a constrained case, i.e., when the analysis is constrained against experimental observations. 19 

Our moment-based indices are structured according to two key components: (a) a model-choice 20 

contribution, associated with the possibility of analyzing the system of interest by taking advantage 21 

of multiple model conceptualizations (or mathematical renderings); and (b) a parameter-choice 22 

contribution, related to the uncertainty in the parameters of a selected model. Our results indicate 23 

that a given parameter can be associated with diverse degrees of importance, depending on the 24 

considered statistical moment of the target model output. The influence on the latter of parameter 25 

and model uncertainty evolves as a function of the available level of information about the modeled 26 

system behavior. 27 

 28 

 29 

Plain Language Summary 30 

The quality and amount of data available in many practical situations justify the interpretation of the 31 

system under investigation through a collection of alternative interpretative models. This is 32 

reflected by the observation that there is uncertainty about model structure/format. The situation is 33 

exacerbated by the observation that parameters associated with each model could also be affected 34 

by uncertainty. In this context, quantification of the influence of these multiple sources of 35 

uncertainties on environmental quantities of interest is key to increase our understanding and 36 

confidence on model(s) functioning and guide further actions (including, e.g., model calibration or 37 

collection of new data). We propose an original Global Sensitivity Analysis (GSA) approach that 38 

enables us to quantify the sensitivity of a target quantity with respect to each of the parameters 39 

stemming from situations where multiple interpretative models have been formulated. The proposed 40 

GSA allows (i) investigating the sensitivity of model outputs through diverse aspects of uncertainty 41 

(i.e., focusing on various statistical moments of the probability density function of the target output) 42 

as well as (ii) discriminating between contributions to sensitivity due to our lack of knowledge in 43 

(a) model format and (b) parameter values. 44 

 45 

Highlights 46 

 A novel Global Sensitivity Analysis in case of multiple alternative interpretive models is 47 

proposed. 48 

 The approach allows discriminating between contributions to sensitivity due to our lack of 49 

knowledge in (a) model format and (b) parameter values. 50 

 We analyze the evolution of the proposed sensitivity metrics as observations about the system 51 

under investigation become available.  52 



1. Introduction 53 

Sensitivity analysis is key to assist understanding (and eventually improvement) of models 54 

aiming at rendering the dynamics of environmental/hydrological systems. Challenges associated 55 

with a sensitivity analysis are exacerbated by the increasing complexity of conceptual models, in 56 

terms of model formulation and associated parametrization, which is in turn sustained by our 57 

increased knowledge of environmental dynamics and by the exponentially increasing computational 58 

power available for numerical model simulations (e.g., Paniconi and Putti, 2015; Förster et al., 59 

2014; Herman et al., 2013; Wagener and Montanari, 2011; Koutsoyiannis, 2010). Sensitivity 60 

analysis techniques can be classified according to two categories, i.e., local and global methods 61 

(e.g., Gupta and Razavi, 2018; Pianosi et al. 2016; Borgonovo and Plischke, 2016; Razavi and 62 

Gupta, 2016a,b). According to the former approach, sensitivity (typically resting on the derivative 63 

concept) is evaluated in the neighborhood of a given combination of parameters of a model. Global 64 

sensitivity analysis (GSA) approaches rest on the evaluation of sensitivity (usually quantified 65 

through metrics entailing the variability of the model response) across the entire support within 66 

which model system parameters vary. As such, the typically encountered uncertainty about 67 

parameters driving the behavior of environmental/hydrological systems can be readily 68 

accommodated in this context (Saltelli et al., 2008). Our study is set within a GSA framework. 69 

In this broad framework, it is important to note that the formal definition of a sensitivity 70 

metric must be linked to the nature of the question(s) the GSA is intended to address. 71 

Understanding of the way uncertainty associated with model parameters affects uncertainty of given 72 

modeling goals / results can be useful to address various research questions, such as: Which are the 73 

most important model parameters with respect to given model output(s) / response(s)? (e.g., Hill et 74 

al., 2016; Ruano et al., 2012; Wagner et al., 2009; Pappenberger et al., 2008; Gupta et al., 2008; 75 

Muleta and Nicklow, 2005); What are the relationships between key features of model output(s) 76 

uncertainty and model parameter(s)? (e.g., Pianosi and Wagner, 2015; Borgonovo, 2007; Liu et al., 77 

2006); Could we set some parameter(s) (which are deemed as uninfluential) at prescribed value(s) 78 

without significantly affecting model results? (e.g., Chu et al., 2015; Punzo et al., 2015; Nossent et 79 

al., 2011; van Griensven et al., 2006; Degenring et al., 2004); At which space/time locations can 80 

one expect the highest sensitivity of model output(s) to model parameters and which parameter(s) 81 

data could be most beneficial for model calibration? (e.g., Hölter et al., 2018; Wang et al., 2018; 82 

Younes et al., 2016; Ciriello et al., 2015; Fajraoui et al., 2011; Yue et al., 2008). 83 

Dell’Oca et al. (2017) focus on these research questions by proposing a moment-based GSA 84 

approach enabling quantification of the influence of uncertain model parameters on the (statistical) 85 

moments of a target model output. In this sense, these authors (i) define sensitivity in terms of the 86 

(average) variation of main statistical moments of the probability density function (pdf) of an output 87 

due to model parameter uncertainty and (ii) propose summary sensitivity indices (termed AMA 88 

indices after the Authors’ initials) to quantify the concept. Here, we extend the AMA indices to 89 

embed the effect of uncertainties both in the system model conceptualization and in the model(s) 90 

parameters. Our study rests on the observation that physical processes and natural systems within 91 

which they take place are complex, making state variables amenable to a multiplicity of 92 

interpretations and (conceptual/mathematical) descriptions, including system parameterizations. As 93 

such, predictions and uncertainty analyses based on a unique model can yield statistical bias and 94 

underestimation of uncertainty, thus justifying the assessment of multiple (competing) model 95 

system conceptualizations (e.g., Clark et al., 2008; Wholing and Vrugt, 2008; Ye et al., 2008a; 96 

Beven 2006; Poeter and Anderson, 2005; Bredehoeft, 2005; Burnham and Anderson, 2002). When 97 

a collection of alternative models is available, one can then use various criteria to (a) rank such 98 

models and/or (b) weigh model-based predictions (e.g., Höge et al., 2019; Neuman, 2012; Ye et al., 99 

2008b, 2004; Neuman et al., 2003; Kass and Raftery, 1995). When prior information is unavailable, 100 

one can assign equal prior probability (or a priori model weight) to each model. Otherwise, a 101 

posterior model probability (or a posterior model weight) can be linked to each model when 102 

observations on the state variables of interest are made available (e.g., Rodríguez-Escales et al., 103 

https://www.sciencedirect.com/science/article/pii/S2467967417300491#!


2018; Höge et al., 2018; Liu et al., 2016; Knuth et al., 2015; Schӧniger et al., 2014; Ye et al., 104 

2008b). 105 

In this context, the study of Dai and Ye (2015) highlights the importance of extending the 106 

classical variance-based GSA approach to include the possibility that a collection of models can be 107 

employed to assess a quantity of interest. In this multi-model framework, these authors introduce a 108 

definition of sensitivity that combines the model-averaging approach with the variance-based 109 

methodology to quantify an averaged (across the set of models) contribution of a parameter 110 

(including its interaction with other parameters) to a model-averaged variance of the output of 111 

interest. Dai et al. (2017) focus on the quantification (through a variance-based method) of the 112 

sensitivity of model prediction(s) to the uncertainty in the conceptualization of diverse model 113 

system processes, a setting corresponding to a lack of knowledge about the conceptualization of 114 

differing processes (and eventually their controlling parameters) contributing to a model structure. 115 

The GSA approach presented by Dai and Ye (2015) and Dai et al. (2017) is based on the rationale 116 

that the definition of sensitivity is that of uncertainty (as rendered through the variance) 117 

apportioning, i.e., the highest sensitivity is attributed to the factor providing the highest contribution 118 

to the uncertainty of the output of interest. 119 

A key element distinguishing our study from those of Dai and Ye (2015) and Dai et al. (2017) 120 

is the definition of the metric employed to quantify sensitivity. Here, we identify sensitivity with the 121 

(average) variation of a set of statistical moments of the pdf of a desired output (thus considering 122 

various features of the uncertainty on the output) due to the uncertainty on (a) the conceptualization 123 

of the system functioning (as rendered through various alternative model formulations) and (b) 124 

model parameters. In this sense, our definition of sensitivity is more relevant for factor fixing 125 

aspects (i.e., with reference to questions of the kind “How does a parameter affect a given statistical 126 

moment of the output pdf?” and/or “Is it possible to fix its value arbitrarily?”), rather than for the 127 

uncertainty apportioning aspect. A comparison between the metrics at heart of our GSA approach 128 

and those proposed by Dai and Ye (2015) and Dai et al. (2017) is provided in Appendix B-C. 129 

Following the idea of uncertainty apportioning, Baroni and Tarantola (2014) present a 130 

probabilistic framework for uncertainty and global sensitivity analysis focusing on hydrological 131 

studies. These authors distinguish five sources of uncertainty, respectively corresponding to model 132 

input (e.g., weather data), time-varying model parameters (e.g., crop height), scalar model 133 

parameters (e.g., soil hydraulic properties), available observations (e.g., soil moisture), and model 134 

structure. With reference to the latter, these authors identify model structure uncertainty with the 135 

use of diverse levels of (space-time) refinement and descriptive detail of an otherwise 136 

deterministically given mathematical model, i.e., they do not analyze the impact of considering a set 137 

of alternative conceptual/mathematical formulations to render the investigated system. A GSA is 138 

then performed upon relying on the Sobol indices. In a similar fashion, Schoups and Hopmans 139 

(2006) present a sensitivity analysis methodology aimed at assessing the relative importance of 140 

three common sources of uncertainty, i.e., parameters, observation error and the model structure, 141 

here encompassing both the level of model refinement/details and the format of the 142 

conceptual/mathematical formulation), and measurements error, by focusing on the fractional 143 

contribution of each of these sources to the total predictive error between observations and 144 

corresponding model outputs. As mentioned above, our multi-model GSA is guided by a diverse 145 

rationale. 146 

We exemplify our approach by targeting a geochemical phenomenon associated with the 147 

process of sorption of single metal onto a soil and considering three differing models that are 148 

typically used in the literature, each associated with uncertain parameters. We structure our analyses 149 

across two stages. We start in the absence of data/observations on the target model output against 150 

which one would perform model calibration (i.e., an equal prior probability is assigned to each 151 

candidate model and uncertainty of each model parameters is rendered through uniform pdfs 152 

characterized by the same coefficient of variation). In this case, the purpose of a GSA is that of (i) 153 

improving our understanding of the model functioning, in terms of the relevance of each model 154 



parameter on the considered model output, and (ii) identifying parameters which might be 155 

uninfluential and whose values could be fixed (and excluded from a subsequent calibration 156 

procedure) without affecting the model output (e.g., Hutcheson and McAdams, 2010; Liu et al., 157 

2006). We then perform our GSA after model parameters and weights are estimated through model 158 

calibration against system state observations. At this stage, the main purpose of the GSA is that of 159 

identifying parameters having the largest impact on the variation in the statistical moments of the 160 

output, thus guiding additional efforts for their characterization. 161 

The rest of the work is organized as follows. Section 2.1 describes the sensitivity 162 

metrics/indices at core of the proposed GSA; Section 2.2 provides the expressions for multi-model 163 

statistical moments of a target quantity; and Section 2.3 details the computational approach 164 

employed. Section 3.1 and Section 3.2 exemplify the proposed methodology for the unconstrained 165 

and constrained cases, respectively. A discussion is given in Section 4, and Section 5 provides our 166 

major conclusions. 167 

2. Methodology 168 

2.1 Sensitivity Index  169 

We consider a quantity Δ (which represents a given modeling goal, e.g., concentration of 170 

adsorbed metal onto soil or dissolved chemical in an aquifer, hydraulic head in a well, travel time of 171 

a solute in a well-field, or other quantities of interest in an environmental scenario) that could be 172 

rendered through a suite of MN  alternative (possibly competing) conceptual and mathematical 173 

models collected in a model set M. The latter somehow represents our ability to interpret a given 174 

process or a set of processes contributing to characterize Δ. 175 

In the presence of observations of Δ, one can rely on various criteria to (a) rank available 176 

models, and/or (b) weigh results rendered by these models (e.g., Höge et al., 2019; Neuman, et al. 177 

2012; Clark et al., 2008; Ye et al., 2008a, 2005, 2004; Poeter and Hill, 2007; Neuman et al., 2003). 178 

In this context, one can evaluate prior (before new data/information about the system under analysis 179 

become available (e.g., Rodríguez-Escales et al., 2018; Ye et al., 2008b) and posterior (after 180 

data/information from the system are available (e.g., Bianchi Janetti et al., 2019, 2012; Ranee et al., 181 

2016; Moghadesi et al., 2015; Ye et al., 2008a) weights associated with each model included in M. 182 

Prior probability weights are usually taken to be equally apportioned amongst models or determined 183 

on the basis of expert opinion. Posterior weights depend on the model discrimination criterion of 184 

choice and on the prior weight associated with each model (e.g., Schӧniger et al., 2014). Models 185 

included in M can be ranked according to such posterior weights or can be employed to provide 186 

model-averaged statistics of the quantity of choice Δ. 187 

Each model 
jM  (j = 1, …, MN ) in M is characterized by a set of parameters, which we 188 

collect in vector 
j . We treat each parameter of model j, i.e., 

j
i  (i = 1, …, 

jN ) as a random 189 

variable to account for our incomplete knowledge of its exact value. It is then possible to evaluate 190 

the impact of uncertainties associated with both the models and their parameters on a quantity of 191 

interest (Δ) in terms of moment-based sensitivity indices. We do so by extending the AMA 192 

sensitivity indices introduced by Dell’Oca et al. (2017), that considered a unique system model with 193 

uncertain parameters, to the case of possible multiple interpretative models, as rendered by the 194 

collection of models included in M. 195 

Within this multi-model context, we quantify the sensitivity of a given statistical moment 196 

(SM) to parameter 
j

i  through the following index 197 

 
 SM SM SM | SM | SM |j j j j j

i i i

j

j j j

model-choice contribution parameter-choicecontribution

w M
AMA M E M M

  

 
                         

    (1) 198 



with 199 

   

 

SM SM 0

1 SM 0

if

if

   
  

 

 (2) 200 

Here, SM j

i

AMA


 is the AMA  index associated with a given statistical moment SM (e.g., SM = E, 201 

V, , k when considering the expected value, variance, skewness and kurtosis, respectively) of Δ 202 

considering the i-th parameter of model 
jM ;  jw M  is the (prior or posterior) probability of 203 

model 
jM ; j

i

E


 is the expectation operator in the space of variability of 
j

i ; SM |j

i

jM

 
 

 and 204 

SM |j

jM 
 

 correspond to the value of the statistical moment of Δ considering uncertainty of 205 

(a) all parameters of model 
jM  except 

j
i  (i.e., the value of the statistical moment resulting from 206 

conditioning to 
j

i ) and (b) the whole set of parameters in 
j , respectively. The quantity  SM   207 

in (1) represents the value of the given statistical moment of Δ evaluated in a multi-model context, 208 

i.e., when both the model employed to interpret a given process and its associated parameters are 209 

uncertain. In Section 2.2 we provide further details about the evaluation of the statistical moment of 210 

Δ in a multi-model context. We note here that the first and the second terms in (1) are scalar 211 

quantities that can be consistently summed (see also discussion of Figure 1 below). 212 

The rationale behind definition (1) is that the sensitivity of Δ, as grounded on a set of 213 

statistical moments, to the parameter 
j

i  is proportional to the induced variations of these statistical 214 

moments (with respect to their multi-model counterparts) due to the conditioning on the parameter 215 
j

i . As such, the rationale at the core of (1) is different from that employed in GSA methodologies 216 

grounded on an uncertainty apportioning (e.g., Dai and Ye, 2015) or on a derivative based (e.g., 217 

Razavi and Gupta, 2019; Rakovec et al. 2014, within the single-model context) rationales. 218 

In the context of the proposed GSA, we emphasize that conditioning to 
j

i  requires starting 219 

with selecting/choosing a model 
jM . It then follows that two terms contribute to index SM j

i

AMA


 220 

(1): (i) the first one is related to the choice of model 
jM  (within model vector M) and is termed 221 

here as the model-choice contribution (note that this contribution is common to all parameters in 222 
jM  and is non-zero in the presence of multiple models, even if each model is characterized by 223 

deterministically known parameters); (ii) the second one is a parameter-choice contribution and 224 

represents the contribution to SM j

i

AMA


 due to uncertainty of parameter 
j

i  embedded in model 225 

jM  (note that this contribution does not vanish in the presence of uncertain model parameters even 226 

in cases where there is only one available model; see also our discussion to Figure 1 below). It is 227 

also important to remark that indices SM j

i

AMA


 are particularly suited for factor fixing studies 228 

because they allow highlighting those parameters that could potentially induce strong variations of 229 

the investigated statistical moments of the target model output.  230 

Note that relying on multiple statistical moments explicitly recognizes that variance is not an 231 

exhaustive metric to quantify sensitivity (e.g., Dell’Oca et al., 2017; Pianosi and Wagner, 2015; 232 

Borgonovo, 2007; Liu et al., 2006). 233 

Figure 1 depicts a sketch of the overall concept underpinning (1) when one considers two 234 

possible model choices, 
1M  and 

2M , each associated with a set of two parameters, i.e., (
1
1 , 

1
2 ) 235 

for 
1M  and (

2
1 , 

2
2 ) for 

2M . One can clearly visualize the nature of the diverse terms 236 

contributing to index SM j

i

AMA
  through the depiction of Figure 1. Let us consider, for example, 237 



index 1SM
i

AMA


: (i) the distance between  SM   and 1

1SM | M 
 

 (dark blue double pointed 238 

arrow in Figure 1) corresponds to the model-choice contribution; (ii) the average (with respect to 239 
1
i ) distance between  1 1SM | M


 and 1

1SM |
i

M

 
 

 (light blue and blue double pointed 240 

arrows for 
1
1  and 

1
2 , respectively) corresponds to the parameter-choice contribution for parameter 241 

1
i  (i = 1, 2); (iii) the sum of (i) and (ii), weighted by w(

1M ) and normalized by  SM  , quantifies 242 

the influence of 
1
i  on Δ, as expressed by index 1SM

i

AMA


. The same line of reasoning can be 243 

employed to describe the contributions of the parameters of 
2M  to our sensitivity indices. Note 244 

that, in the presence of a unique interpretive model, e.g., 
1M , the distance between  SM   and 245 

 1 1SM | M


 vanishes, reflecting the deterministic choice of the model.  246 

 We recall here that when one considers only one interpretive model, the first term in (1) 247 

vanishes and SM j

i

AMA


 coincides with index SM
i

AMA


 defined by Dell’Oca et al. (2017), i.e., 248 

1
SM SM SM | SM |j j j j

i i i i

j jAMA AMA E M M
   

        
         (3) 249 

Comparison of (3) and (1) suggests that some similarities in the indices SM
i

AMA


 and SM j

i

AMA


 250 

are expected when the parameter-choice contribution in (1) is dominant. 251 

2.2 Multi-model Statistical Moments 252 

Here, we provide the details for the evaluation of the statistical moments of   in a multi-253 

model context, i.e.,  SM  , leading to the evaluation of index (1). Introducing the probability 254 

density function of Δ,  p  , as (e.g., Ye et al., 2004) 255 

   
1

|
MN

j j

j

p p M w M


   
   (4) 256 

where | jp M 
 

 is the pdf of Δ given model 
jM , the expected value (first statistical moment) of 257 

Δ is defined as  258 

   
1

|
M

j

N
j j

j

E w M E M


   
      (5) 259 

while the n-th order (central) moment can be evaluated as  260 

          
1 0

| |


 

 
             

 
 

M

jj

N n n k
kn j j j

j k

n
SM w M SM M E M E

k   (6) 261 

Variance, 
 2

V SM , skewness,  3 3/2/SM V   and kurtosis, 
 4 2/k SM V , of Δ can then be 262 

assessed from (5) as 263 

        
2

1 1

| |
M M

j j

N N
j j j j

j j

within-model between-model

V w M V M w M E E M
 

         
     

 (7) 264 

 265 



 266 

 
 

   
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  
    

33/2

3/2
1 1

3/2
1

||
|

|
3 |

jM Mj

j

M j

j

jjN N
j j j

j j

between-modelwithin model

jN
j j

j

mixed

E E MV M
w M M w M

V V

V M
w M E E M

V

 
 





               
    

 
      

 


 









  (8) 267 

 268 
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2
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j
j
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

 


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    

                                 

 







 





ed

 (9) 269 

 270 

The first term on the right hand side of (7) is typically referred to as the within-model variance and 271 

coincides with the average (across the collection of models) of the variances associated with each 272 

model whereas the second term in (7) is denoted as the between-model variance and is proportional 273 

to the off-set between  E   and |j

jE M 
 

 (e.g., Draper, 1995). Along the same line, one 274 

recognizes that equations (8)-(9) show that, in a multi-model context, the shape of the distribution 275 

of  , as quantified by skewness and kurtosis, is affected by the following three terms: (i) a within-276 

model component, which corresponds to the weighted average of the values (of skewness or 277 

kurtosis) rendered by each model, the weights being proportional to  jw M  and the ratio between 278 

|j

jV M 
 

 and  V  ; (ii) a between-model component, which is proportional to the off-set 279 

  |j

jE E M   
 

; and (iii) a mixed component, that takes into account the off-set 280 

  |j

jE E M   
 

 (i.e., the between-model variability) as well as the variability within each 281 

model, as quantified by |j

jV M 
 

 in (7) or by |j

jV M 
 

 and |j

jM  
 

 in (8). 282 

It is here important to note that (a) our definition of sensitivity in (1) is grounded on the 283 

assessment of the (average) variation of a SM due to conditioning on a given parameter in a given 284 

model while (b) formulations (7)-(9) serve uncertainty apportioning, i.e., (7)-(9) allow identifying 285 

the main factors (between model format and model parameters) contributing to the uncertainty of an 286 

output of interest. 287 

2.3 Numerical Evaluation 288 

Inspection of equation (1) reveals that one needs to evaluate SM |j

i

jM

 
 

, i.e., the 289 

statistical moment of   conditional to diverse values of 
j

i , considering model 
jM . Here, we do 290 

so through a straightforward Monte Carlo sampling scheme. We (i) discretize the support of each 291 

parameter by way of a given number of equal bins, i.e., Nbins (for simplicity we employ the same 292 



value of Nbins for all parameters) and (ii) evaluate the conditional statistical moment, 293 

SM |j

i

jM

 
 

, associated with each bin. We then proceed to evaluate the second term in (1) by 294 

taking expectation with respect to 
j

i , i.e., j

i

E


. The unconditional statistical moment, i.e., 295 

SM |j

jM 
 

, is evaluated through the algebraic expressions (4)-(8). Convergence of the results 296 

with respect to the Nbins is assessed by increased the latter by regular increments of 10 until the 297 

relative variation of all investigated quantities is smaller than a fixed threshold. Here, for simplicity 298 

and ease of implementation we select the median value within each bin as representative and 299 

evaluate each model under investigation considering all of the combinations of the parameter values 300 

identified according to this, i.e., we run model j for a total of   jN

binsN  times. As such, while more 301 

efficient sampling strategies can be employed, there are no particular constraints in the sampling 302 

scheme one can employ in our GSA. 303 

3. Illustrative examples 304 

As a showcase example to illustrate the application of the theoretical framework introduced in 305 

Section 2, we focus on the geochemical process of sorption of metals onto soil matrices. We do so 306 

by leveraging on the study of Bianchi Janetti et al. (2012) who analyze the ability of diverse 307 

isotherm models to interpret experimental observations documenting copper sorption onto Bet 308 

Dagan soil type (see Table 1 of Bianchi Janetti et al. (2012) for the description of the key 309 

characteristics of the soil type). For each experiment, 1g of soil was mixed with 40 mL of a solution 310 

containing copper.Seven diverse initial concentrations were considered. The same initial pH was set 311 

for all experiments. The resulting mixture was then shaken for 48 h to attain equilibrium. A 10-mL 312 

sample of the solution was then extracted and passed through a 0.22 μm filter. Copper concentration 313 

was evaluated by inductively coupled plasma-mass spectrometry. Three replicates were performed 314 

for each initial concentration, the resulting average and variance (assumed to represent 315 

measurement error variance) being employed in the calibration procedure. The complete description 316 

of the details of the experimental set-up and conditions are offered by Bianchi Janetti et al. (2012).  317 

The following three commonly used interpretive isotherm models have been considered by 318 

Bianchi Janetti et al. (2012) to interpret the experimental results, 319 

0
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Here, 0c  (mmol L
-1

) and c (mmol L
-1

) are the concentration of solute initially dissolved in the fluid 323 

and adsorbed onto the soil, respectively; V (L g
-1

) is the ratio between the solution volume and the 324 

soil mass considered in the batch experiments. The Freundlich model (Freundlich, 1906) is based on 325 

the assumption that sorption energies are characterized by an exponential distribution. The model is 326 

parameterized by the partition coefficient 
FK  (

1mmolL
F Fn n

g
-1

) and a dimensionless exponent 0 < 327 

Fn  < 1. The Langmuir model (Langmuir, 1918) assumes that sorption takes place at a fixed 328 

number of well-localized sites, all of which are characterized by uniformly distributed sorption 329 

energies, whereas 
L
mq  (mmol g

-1
) corresponds to the saturation of all sorption sites and 

LK  (L 330 

mmol
-1

) is the adsorption rate. The Redlich-Peterson model (Redlich-Peterson, 1959) is a 331 

combination of the Freundlich and Langmuir models is parameterized by 
RK  (L g

-1
), 

R  (332 



mmoL l
R R 

) and 0 < 
R  <1. We follow Bianchi Janetti et al. (2012) and present our results in 333 

terms of mass per volume of solute, i.e., C (mg L
-1

). 334 

In the following we focus on to two diverse cases: unconstrained (Section 3.1; i.e., no data are 335 

employed to constrain model parameters and weights) and constrained (Section 3.2; i.e., model 336 

parameters and weights are evaluated on the basis of the experimental results). 337 

3.1 Unconstrained case 338 

Here, we perform the (moment-based) global sensitivity analysis detailed in Section 2 by 339 

considering the statistical moment of C before the parameters and weights of the candidate models 340 

are constrained through calibration against available observations. We term this case as 341 

unconstrained. In this context, we assign an equal weight,   1/ 3jw M  , to each of the models 342 

(10a)-(10c). We treat parameter uncertainties by assuming model parameters 
j

i  as independent 343 

identically distributed (iid) random variables, characterized by a uniform probability density 344 

function (reflecting the lack of prior knowledge about model parameters) and a constant coefficient 345 

of variation, j

i

CV


 (to reduce biases in the analysis arising from considering diverse relative 346 

intervals of variation for each 
j

i ). Note that our proposed GSA approach is not limited to the 347 

specific choices we consider in this study, whereas the use of diverse formats of the prior 348 

distribution of 
j

i  and of diverse values of j

i

CV


 are fully compatible with the approach. We set 349 

0.7j

i

CV

 , to consider a relatively wide parameter space defined as 350 

1 3 ,1 3j j

i i

j
iCV CV E

 
     
  

, j
iE  

 
 being the expected value of 

j
i  listed in Table 1, 351 

taken to coincide with the corresponding parameter estimate evaluated by Bianchi Janetti et al. 352 

(2012). Regarding the convergence of the results, we verified that  that considering Nbins = 100 (i.e., 353 
410  or 610  evaluations of the Freundlich and Langmuir models or the Redlich-Peterson model, 354 

respectively) was sufficient to ensure a relative variation smaller than 1% for all of the considered 355 

results. 356 

Figure 2 depicts the (a) expected value, |j

jE C M 
 

, (b) variance, |j

jV C M 
 

, (c) 357 

skewness, |j

jC M  
 

, and (d) kurtosis |j

jk C M 
 

, of the adsorbed concentration C versus the 358 

initial solute concentration, 0C , conditional to the Freundlich (black curve), the Langmuir (blue 359 

curves) or the Redlich-Peterson (red curves) model. The corresponding multi-model statistical 360 

moments are also depicted (purple curves). For all statistical moments of order larger than one we 361 

also depict the within-model (dashed purple curves) and the between-model (dotted purple curves) 362 

contributions. Figures 2c-d also include the mixed terms (dash-dotted curves, see definition in (8)-363 

(9)). 364 

Overall inspection of Figure 2 shows that in each model all statistical moments (hence the 365 

shape of the pdf) of C depends on 0C . All centered SMs (see Figure 2b-d) are well approximated 366 

by their within-model contributions, the between-model contribution for the variance being at least 367 

an order of magnitude smaller than the within-model terms, and the between-model and mixed 368 

terms for skewness and kurtosis being close to zero. As such, the uncertainty about the model (as 369 

imbued in the variability of the center of mass of the pdfs of C) to describe the adsorbed 370 

concentrations has a minor role on the ensuing uncertainty in C (as rendered through the centered 371 

SMs here analyzed) than our lack of knowledge about the model parameters. 372 

Figure 3a depicts indices FK
AMAE  (black continuous curve) and Fn

AMAE  (blue curve) 373 

together with the corresponding model-choice (red continuous curve) and parameter-choice 374 



(symbols) contributions as a function of 0C . These results are complemented by Figure 3b, 375 

depicting indices FK
AMAE  (black curve) and Fn

AMAE  (blue curve), which are obtained by 376 

assuming that the Freundlich isotherm is associated with a unit weight (i.e., corresponding to a 377 

single model approach). Figures 3c, d and Figures 3e, f show the corresponding results performed 378 

for the Langmuir and Redlich-Peterson models, respectively. 379 

Joint inspection of Figures 3a, c, e reveals that the parameter-choice contributions (linked to 380 

parameter variability given a selected model) practically coincide with indices j

i

AMAE


, the model-381 

choice contribution being at least one order of magnitude smaller than the parameter-choice 382 

contribution. Comparison of indices FK
AMAE  and Fn

AMAE  in Figure 3a reveals that the influence 383 

of 
FK  on the expected value of C is larger than that of 

Fn  for all values of 0C . This suggests that 384 

the uncertainty of 
FK  has, on average, a stronger impact than that of 

Fn  on the mean of C. Figure 385 

3c shows that 
LK  influences the expected value of C to a greater extent than 

L

mq  for low 0C , 386 

these two parameters tending to be equally influential as 0C  increases. Figure 3e shows that 387 

indices RAMAE
  and RAMAE


 are significantly smaller than RK

AMAE  and all three indices 388 

decrease with increasing 0C . One can also note that index j

i

AMAE


 (Figure 3a, c, e) and its 389 

counterpart 
i

AMAE


 (Figures 3b, d, f) display a similar trend when plotted versus 0C . This result 390 

suggests that for this unconstrained setting (where each model is associated with the same weight) 391 

the uncertainty in the model parameters induces very similar contributions to the relative change of 392 

the expected value of C, regardless of whether one relies on a multi- or a single-model approach. 393 

Similar results have been obtained for indices j

i

AMAV


 (see Figure 4), j

i

AMA

  (see Figure 394 

A.1) and 
i

AMAk


 (see Figure A.2).  395 

3.2 Constrained case 396 

Here, we perform our GSA after adsorption data become available and model parameters and 397 

weights are estimated by means of model calibration. We term this as constrained case and diagnose 398 

the influence of the residual (i.e., following model calibration) uncertainty associated with model 399 

parameters on the statistical moments of C in the presence of various models. 400 

We rely on the model calibration results of Bianchi Janetti et al. (2012) who estimate model 401 

parameters through a Maximum Likelihood (ML) (see e.g., Carrera and Neuman, 1986) procedure 402 

and (posterior) model weights  jw M  on the bases of the Kashyap (1982) model discrimination 403 

criterion (KIC), allowing to consider (i) measurement error variance in the parameter estimation 404 

process as well as (ii) conceptual model uncertainty (see e.g., Hӧge et al., 2019; Moghadasi et al., 405 

2015; Bianch Janetti et al., 2012; Ye et al., 2004). Parameter estimates and posterior weights are 406 

listed in Table 1. Consistent with the ML procedure adopted for model calibration, a Gaussian 407 

density is associated with each model parameter, which is then characterized by its (estimated) 408 

mean and standard deviation. 409 

All our results are based on Nbins = 100, a value that is consistent with the unconstrained case 410 

and is sufficient to ensure a relative variation smaller than 1% for all of the considered results. 411 

 412 

Table 1. Results of the ML model calibrations (from Bianchi Janetti et al. (2012)). 413 

Model Parameter 

 

Estimated Mean 

Value 

Standard 

Deviation  

Coefficient 

of Variation 

Model weight 

Freundlich FK  0.99  0.04 0.04 0.8851 



(10a) Fn  0.26 0.05 0.19 

Langmuir LK  0.28 0.41 1.46 
0.0369 

(10b) L
mq  2.86 0.09 0.03 

Redlich- RK  3.89 0.14 0.04 

0.0780 Peterson R  3.28 0.16 0.05 

(10c) R  0.79 0.01 0.01 

 414 

Figure 5 is the counterpart of Figure 2 based on the ML model calibration results and 415 

posterior model weights of Table 1. Figure 5a also includes the experimental data (black dots). 416 

A striking feature of Figure 5a is the marked/modest relative differences observed for 417 

low/high 0C  between the expected values of C resulting from the diverse interpretive models 418 

considered. Note that such relative differences tend to be larger/smaller than those recorded for the 419 

unconstrained case (see Figure 2a) for the lowest/largest values of 0C . These features are 420 

consistent with the observation that only few data are available for model calibration at low 0C . 421 

Comparison of |j

jV C M 
 

 and  V C  in Figure 5b and in Figure 2b reveals that both 422 

quantities are smaller for the constrained than for the unconstrained scenario, with the exception of 423 

|L

LV C M 
 

. This result is consistent with the reduced relative uncertainty (as expressed through 424 

the coefficient of variation) associated with the parameter values estimated through model 425 

calibration (with the exception of LK
CV ) with respect to their prior (or unconstrained) counterparts 426 

(for which 0.7j

i

CV

 ). We further note that in the constrained case the between-model 427 

contribution to  V C  can be of the same order of magnitude of (or even larger than) the 428 

corresponding within-model contribution. The latter result is a consequence of model calibration 429 

that causes a redistribution of the relative importance of the lack of knowledge about (a) model 430 

parameters and (b) model structure on the variability of C. 431 

The comparison of |j

jC M  
 

 in Figure 5c and in Figure 2c reveals a reduction of the 432 

skewness of the pdfs of C as rendered by the Freundlich and Redlich-Peterson models (433 

|F

FC M  
 

 and |R

RC M  
 

 almost vanished in the constrained scenario), and an increase of 434 

 |L C L


 for the constrained respect to the unconstrained scenario. On the other hand,  C  435 

(purple curve) is significantly larger (~ one order of magnitude) in the constrained than in the 436 

unconstrained scenario. Figure 5c also indicates that the within-model contributions (dashed purple 437 

curve) are dominant to  C , followed by the mixed term (dot-dashed purple curve). The major 438 

factor causing the dominance of the within-model contribution (see the first term in (8)) is the term 439 

associated with the Langmuir model which, despite having a low model weight (= 0.0369), exhibits 440 

a high ratio between |L

LV C M 
 

 and  V C . This observation is sustained by the observed 441 

similarity in the trend of |L

LC M  
 

 and  C , as a function of 0C . A similar behavior emerges 442 

also from the comparison of |j

jk C M 
 

 and  k C  (see Figure 5d and Figure 2d), and is again due 443 

to the dominance of the factor associated with the Langmuir model in the within-model contribution 444 

in (9). 445 



Comparison of the sensitivity indices in Figure 6 with their counterparts in Figure 3 provides 446 

an indication of the way the influence of each model parameter on the expected value of C, as 447 

expressed in terms of j

i

AMAE


, evolves as information about the system under investigation are 448 

acquired. It is possible to note that (a) the parameter-choice contributions to j

i

AMAE


 in Figures 6a, 449 

c, e are smaller than in the uniformed case (Figure 3a, c, e), as a consequence of the model 450 

calibration procedure (with exception of the term associated with 
LK ); and (b) the model-choice 451 

contribution increases and becomes dominant for most of the parameters for low 0C , in agreement 452 

with the previously noted marked relative discrepancies between the |j jE C M 
 

 for the three 453 

considered models (see Figure 5). Results included in Figure 7 complement those of Figure 4 for 454 

the constrained case. Comparison of these two sets of results clearly indicates that, following data 455 

acquisition, the major factor contributing to each index j

i

AMAV


 tends to be the model-choice 456 

contribution rather than the component associated with the parameter-choice contributions, a sole 457 

exception being given by LK
AMAV . Inspection of sensitivity indices grounded on the skewness, 458 

j

i

AMA

  (Figure A.3), and the kurtosis, j

i

AMAk


 (Figure A.4), provides results in line with those 459 

for the expected value and the variance (see Appendix A). 460 

 Comparison of SM j

i

AMA


 (Figure 6-7a, c, e ) and their counterparts SM
i

AMA


 (Figure 6-461 

7b, d, f) reveals that for the constrained case the influence of i-th parameter on the mean and 462 

variance of C could either change markedly (when the model-choice contribution is the dominant 463 

one) or only marginally (when the parameter-choice contribution is dominant) as a consequence of 464 

considering only one or multiple models. These aspects are encapsulated, for example, in the results 465 

depicting the behavior of (i) the Freundlich and Redlich-Peterson models, where the model-choice 466 

contribution to j

i

AMAV


 is the most relevant component, or (ii) the results for 
LK  in the Langmuir 467 

model, where the parameter-choice contribution to LK
AMAV  is the dominant term. Similar results 468 

are detected for the sensitivity indices grounded on the skewness and the kurtosis of the pdfs of C 469 

(see Appendix A). 470 

4. Discussion 471 

The comparison of the importance of the model-choice and parameter-choice contributions 472 

for the unconstrained and constrained cases highlights that: (a) in the former case, where all models 473 

are associated with equal weight, the influence of the choice of the model on the statistical moments 474 

of C are negligible with respect to the impact of the uncertainty of the model parameters; (b) in the 475 

latter case, the variability of the first four statistical moments of C is more strongly controlled by the 476 

residual lack of knowledge about the adequacy of each of the candidate models to interpret the 477 

system rather than by the residual uncertainty about the estimated model parameters; (c) an 478 

exception to the observed decreased influence of the parameter-choice contributions is noted with 479 

reference to 
LK , whereas the quality of the estimate of this parameter is quite modest (i.e., the 480 

corresponding coefficient of variation is higher than that considered for the unconstrained case, see 481 

Table 1), thus leading to a strong sensitivity of the SMs of C to 
LK  even as the Langmuir model is 482 

associated with a low posterior model weight. From a practical perspective, these observations 483 

suggest that the variability in the SMs of C here analyzed could be further constrained by: (i) 484 

collecting additional data with the aim of reducing uncertainty associated with estimates of 
LK  or 485 

(ii) excluding the Langmuir model from model set M, in light of its low model weight. 486 

We note that the results could be impacted by considering diverse formats of the pdfs of the 487 

parameters either in the unconstrained or in the constrained case (whereas we rely on a uniform and 488 

Gaussian distribution, respectively). Diverse studies, performed in a single-model context, highlight 489 



the relevance of the choice of the parameters’ distributions on the results of a GSA (e.g., Paleari and 490 

Confalonieri, 2016; Shin et al., 2013; Wang et al., 2013; Kelleher et al., 2011). Furthermore, it has 491 

to be recognized that the results of the GSA here performed could also depend on the method 492 

employed to estimate model weights (here we resort to the Kashyap (1982) model discrimination 493 

criterion (KIC), as described in Section 3.2). It would then be of interest to analyze in future studies 494 

the relevance of diverse choices for these elements within the context of multi-model GSAs. 495 

For the sake of clarity in the interpretation of the results, we recall here that (a) the sensitivity 496 

index in (1) corresponds to the (average) variation of a SM due to conditioning on a given 497 

parameter in a given model while (b) formulations (7)-(9) allow quantifying the contribution to the 498 

uncertainty of an output stemming from the model format and parameters. Thus, it is not surprising 499 

that, for the constrained case here examined, even as the behavior of the multi-model skewness and 500 

kurtosis of C (see Figure 5) (and, to a lesser extent, that of the multi-model variance) are clearly 501 

dictated by the terms associated with the Langmuir model in the within-model contributions in (8)-502 

(9), it is yet possible that the major contributing factor to the sensitivity index for a parameter (e.g., 503 
R  or L

mq ) is the model-choice contribution. 504 

From a physical perspective, the results for the unconstrained case suggest an overall major 505 

relevance of parameter 
jK  (with j = F, L, R) on the modeling goals. While this parameter is 506 

associated with a different specific meaning depending on the model, it can be generally understood 507 

as a constant of proportionality driving the intensity of the sorption process. As mentioned in 508 

Section 1, we focus on the unconstrained case to gain insight about model functioning, and it is in 509 

such a set-up that we can mitigate possible bias about parameter relevance associated with diverse 510 

relative sizes of the pdfs’ supports (i.e., we impose the same coefficient of variation for each 511 

parameter) and with diverse model weights (i.e., each model has the same weight). Otherwise, 512 

results for the constrained case are more suited to guide further system investigations. 513 

With reference to the numerical sampling scheme, we point out that the formulation in (1) 514 

does not prevent the use of other, and possibly more efficient, sampling strategies, as compared to 515 

the one we detail in Section 2.3. We further note that considering complex and computationally 516 

expensive models might require reducing the computational burden by leveraging on the use of a 517 

surrogate model, given the ability of the latter to successfully render the required statistical 518 

moments (see e.g., Dell’Oca et al. 2017).  519 

As a final remark, we note that it could be of interest to evaluate the way a (statistical) 520 

moment of   is influenced by (a) a parameter (synthesizing some properties/features of the 521 

investigated system) in cases where the latter appears in more than one model in M; or (b) diverse 522 

conceptualizations and/or mathematical formulations of the various processes embedded in a model 523 

of the system under investigation. These aspects might assist in exploring answers to questions of 524 

the kind ‘to which processes are the statistical moments of   most sensitive? Is such a sensitivity 525 

due to the uncertainty about process conceptualization or is it mainly due to parametric uncertainty 526 

employed in our conceptualization of each process?’. We present the mathematical formulation 527 

associated with these aspects in Appendix B and C, respectively. Comparisons of the present 528 

methodology with other multi-model GSAs (e.g., Dai et al., 2017; Dai and Ye, 2015) will be the 529 

subject of future studies, where we will consider the case where parameters appear in more than one 530 

model in M (in the showcase introduced in Section 3 each of the parameters considered was 531 

associated with a unique model), as well as the possibility that a model comprises processes for 532 

which alternative conceptualizations are available (here, we consider a unique process, i.e., 533 

adsorption). 534 

5. Conclusions 535 

Our work leads to the following major findings. 536 

1) We develop and illustrate sensitivity indices providing metrics for global sensitivity 537 

across multiple interpretive models with uncertain parameters. We assess the sensitivity 538 

of the first four statistical moments of a target quantity of interest ( ) with respect to its 539 



variations related to the uncertainty in the model structure and associated parameters. 540 

Our illustrative example demonstrates that a given parameter can be associated with 541 

diverse degrees of importance, depending on the statistical moment of   considered. 542 

2) Our (moment-based) sensitivity indices are structured according to two key components: 543 

(a) a model-choice contribution, which takes into account the possibility of analyzing the 544 

system of interest by taking advantage of various model conceptualizations (or 545 

mathematical renderings); (b) a parameter-choice contribution, associated with the 546 

uncertainty in the parameters of a selected model.  547 

3) In the showcase example analyzed, involving three competing models to interpret 548 

concentration of metal sorption on soil samples, C, the values of the proposed sensitivity 549 

indices vary depending on whether we diagnose the system response prior to acquiring 550 

data on C or after observing the outcomes of some experiments and performing 551 

Maximum Likelihood models calibration with ensuing estimation of probability weights 552 

related to each model. Our moment-based indices resulting from the latter setting (here 553 

termed as constrained scenario) quantify the influence of the residual (i.e., following 554 

model calibration) uncertainty associated with model parameters on the statistical 555 

moments of C in the presence of multiple models. 556 

4) Our results show that in the absence of conditioning on observations of C (here termed 557 

as unconstrained scenario) all sensitivity indices are dominated by the variability in the 558 

model parameters, contributions due to the various model conceptualizations being at 559 

least of an order of magnitude smaller. Otherwise, conditioning on acquired C data 560 

yields a decrease in the values of the sensitivity indices (a symptom of reduced relative 561 

variability in the ensuing statistical moments of C) and an increases of the model-choice 562 

contribution that could be of the same order of magnitude of (or even greater than) the 563 

parameter-choice term. An exception to the latter observation is noted for indices 564 

associated with parameters which estimates are characterized by poor quality. 565 
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Appendix A. Sensitivity Analysis grounded on the Skewness and the Kurtosis of model output, 827 

Unconstrained and Constrained Scenarios. 828 

Figure A.1a depicts FK
AMA  (black continuous curve) and Fn

AMA  (blue curve) together 829 

with the corresponding model-choice (red continuous curve) and parameter-choice (symbols) 830 

contributions as a function of 0C  for the unconstrained scenario. These results are complemented 831 

by Figure A.1b, depicting indices FK
AMA  (black curve) and Fn

AMAE  (blue curve), which are 832 

obtained by assuming a unit weight (i.e., single model approach) for the Freundlich isotherm (10a). 833 

Figures A.1c-A1.d and Figures A.1e-f show the corresponding results obtained for the Langmuir 834 

(10b) and Redlich-Peterson (10c) models, respectively. Figure A.2 depicts the collection of 835 

companion results for j

i

AMAk


 and 
i

AMAk


. 836 

Joint analysis of Figures A.1-A.2 and Figures 2-3 reveals an overall similarity in the 837 

sensitivity of the first four statistical moments of C with respect to (i) the parameters of each model, 838 

either in the multi- or single-model context, and (ii) the (less relevant) contributions associated with 839 

the model choice. 840 

Figures A.3-A.4 are the counterparts of Figures A.1-A.2 for the constrained scenario, 841 

respectively. Comparison of Figures 3.A - 4.A with Figures 6 - 7 indicates an overall similarity of 842 

the sensitivity of the diverse SMs with respect to parameters- and the model-choice contributions.  843 

 844 

Appendix B. Extension of the AMA sensitivity indices for the multi-model context when a 845 

parameter appears within multiple models. 846 

One can assess the influence that a parameter associated with multiple models can have on a 847 

given statistical moment (SM) of an investigated quantity ( ) in terms of the following indices 848 
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where SM j

i
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

 is given by (1). The key difference between SM j

i

AMA


 and SM
i

AMA
 M  is that 851 

the former answers the question ‘how does the variability in a given parameter influence  SM  , 852 

when we look at such a parameter only in model 
jM ?’ while the latter answers the question ‘how 853 

does the variability in a given parameter influence  SM  , when we look at such a parameter 854 

across the set of models within which it appears?’. 855 

As such, index SM j

i

AMA


 allows quantifying the implications on SM of selecting model 
jM  856 

(at the expenses of other models) and setting parameter 
j

i  to a given value. Otherwise, 857 

SM
i

AMA
 M  focuses on the diagnosis of the relevance of parameter i  across a collection of 858 

competing model alternatives within which i  appears. Note that SM SM j
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 

M  if i  is 859 

associated with only one model of the collection. 860 

When  SM   corresponds to the variance of  , it should be noted that 
i

AMAV
  differs from 861 

the index 
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 proposed by Dai and Ye (2015) and defined as 862 
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Index 
i

S


 quantifies the influence of 
j

i  to Δ as the ratio between: (i) the expected change of the 864 

variance of Δ for a given model, i.e., |j

jV M 
 

, due to the knowledge of parameter 
j

i , as 865 

averaged over all of the models in which 
j

i  appears; and (ii) the weighted-average (over the 866 

diverse competing models in which 
j

i  appears) of |j

jV M 
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. As such, 
i

AMAV


 and 
i

S


 867 

convey different information about the nature of the sensitivity of Δ with respect to 
j

i . 868 

With reference to the showcase detailed in Section 3, it should be noted that index 
i

S


 in 869 

(2.B) coincides with the well-known Sobol index, given that each parameter 
j

i  appears only in a 870 

given model 
jM  and not across a set of models. 871 

 872 

Appendix C. Embedding uncertainty of model processes within the AMA indices 873 

The metric proposed in Section 2 (Eq. (1)) could be modified to evaluate the sensitivity of a 874 

given statistical moment with respect to the possibility of rendering a process (or multiple 875 

processes) involved in the model construction through a variety of alternative mathematical 876 

formulations. In this context, each model, 
jM  in the set M is viewed as a union of diverse 877 

processes, i.e., 878 

  ,j k j kM P     (C.1) 879 

Here, kP  is the k-th process and 
,j k  is the vector of parameters relevant to the k-th process, as 880 

rendered through the mathematical formulation associated with model 
jM . As an example, a 881 

subsurface solute transport model of an adsorbable compound could include a variety of processes 882 

(e.g., adsorption, advection, hydrodynamic dispersion, distributed recharge, or others), each 883 

characterized by its own set of parameters. All possible combinations of the identified model 884 

processes give rise to the set of models M. 885 

It is then possible to group such k mathematical formulations of a given process within 886 

vector k
P . One can quantify the influence of these various mathematical formulations of the 887 

process on a target statistical moment (SM) of an investigated quantity ( ) as 888 
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Here, , ,
SM |j k k

jM


 
  P

 is the selected statistic, which is evaluated considering variability in the 891 

parameters of the k-th process in model 
jM , the variability associated with other processes 892 

components, i.e., 
kP , having been averaged out; ,SM |j k k

i

jM


 
  P

 is the statistic conditioned 893 

to parameter ,j k
i , of process 

kP  and given 
jM , the variability associated with the remaining 894 



parameters of 
kP  given 

jM  having been averaged out (as well as the one linked to other 895 

processes, i.e., 
kP , in model 

jM ). 896 

Note that it is still possible to distinguish between (a) a contribution due to variability in the 897 

conceptualization (or mathematical rendering) of a process and (b) a contribution determined by the 898 

lack of knowledge about the parameters appearing in the mathematical formulation of the process. 899 

The former or the latter contribution vanishes if the mathematical model of the k-th process or its 900 

parameters are deterministically known, respectively. 901 

Figure D.1 depicts a sketch of the overall concept underpinning index SM kP
AMA  when only 902 

two processes (i.e., k = 1, 2) are considered. Three conceptualizations of process 
1P  are considered, 903 

each characterized by two parameters affected by uncertainty. Otherwise, only one 904 

conceptualization is considered for process 
2P , whose parameters are taken to be deterministic. 905 

This gives rise to three distinct models. Note that values of ,SM |j k k

jM 
   P  for k = (1, 2) 906 

coincide in this example, because 
2P  is deterministically known. 907 

One can then visualize the nature of the various contributions to index SM kP
AMA  through 908 

the depiction of Figure C.1 When considering, for example, index 1SM
P

AMA , we observe that: (i) 909 

the sum of the distances between  SM   and ,1 1SM |j

jM 
   P  (dark purple double pointed 910 

arrow) across models 
jM  corresponds to the model-choice contribution; (ii) the weighted sum over 911 

the models 
jM  of the averaged distances between ,1 1SM |j

jM 
   P  and ,1 1SM |j

i

jM


 
  P

 912 

(dark and light blue, green and yellow double pointed arrows for parameters 
,1

1
j  and ,1

2
j  in model 913 

1M , 
2M , and 

3M , respectively) corresponds to the parameter-choice contribution. We remark 914 

that, even as we consider only one conceptualization (here with deterministic parameter(s)) for 915 

process 
2P , there is still a model-choice contribution (as quantified by the black double pointed 916 

arrows in Figure 1.C) which reflects the observation that   is determined by the interaction of 917 

processes 
1P  and 

2P . 918 

In case  SM   corresponds to the variance of   (i.e.,  SM     V  ), it should be noted 919 

that SM kP
AMA  differs from the index kP

S  proposed by Dai et al. [2017], which reads 920 

    
 

,

: |

|j k k

j k k j

j
j

k

M P M

w M V V M
PS

V

    





  P

P

 (C.3) 921 

 922 

The latter identifies the most influential process as the one leadings to the highest reduction of 923 

the overall variance of  . As such, it is a metric focusing on apportionment of uncertainty (due to 924 

variability in model process conceptualization). Otherwise, index SM kP
AMA  is keyed to 925 

quantifying variability in a given statistical moment of  , highlighting the contribution due to 926 

uncertainty in the process conceptualization and in the process parameter(s). It is then clear that 927 

SM kP
AMA  and kPS  provide different information and could potentially be jointly used to assist 928 

comprehensive sensitivity analyses, a topic which is the subject of a future study. 929 



With reference to the showcase detailed in Section 3, the evaluation of (C.2) and (C.3) would 930 

be of very limited interest, given that each model 
jM  encompasses only one process (i.e., 931 

adsorption). 932 

  933 



Figures 934 

 935 

 936 

Figure 1. Sketch of the overall concept underpinning the sensitivity indices in (1), considering the 937 

generic statistical moment SM for the quantity of interest  . For ease of illustration we consider 938 

only two interpretative models, 
1M  and 

2M , with corresponding model weights w(
1M ) and w(

2M939 

). Each model has a set of two uncertain parameters, i.e., ( 1
1 , 1

2 ) for 1M  and ( 2
1 , 2

2 ) for 2M . 940 

 SM  , SM |j

jM 
 

 and SM |j

i

jM

 
 :

 with j =(1, 2) and i = (1, 2) correspond to the 941 

ensuing SM evaluated in a multi-model context, evaluated considering uncertainty in all the 942 

parameters of model 
jM  and evaluated considering uncertainty in all the parameters of model 

jM  943 

except j
i  . 944 

  945 



 946 

Figure 2. Unconstrained scenario, a) expected value,  (b) variance,  (c) skewness, and (d) kurtosis, 947 

of the adsorbed concentration C versus the initial solute concentration, C0, conditional to the 948 

Freundlich (black curve), the Langmuir (blue curves) and the Redlich-Peterson (red curves) model. 949 

The corresponding multi-model statistical moments are also depicted (purple curves). For all central 950 

statistical moments the within-model (dashed purple curves) and the between-model (dotted purple) 951 

contributions are also depicted. Figures 2c-d also include the mixed terms (defined in (7)-(8)). 952 
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 965 

 966 
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 968 

 969 



 970 

Figure 3. Unconstrained scenario. Sensitivity indices (1) associated with the expected value of C 971 

for the multi-model context versus 0C  considering (a) the Freundulich ( FK
AMAE , black 972 

continuous curve, and Fn
AMAE , blue continuous curve); (c) the Langumir ( LK

AMAE , black 973 

continuous curve, and L

mq
AMAE , blue continuous curve); (e) the Redlich-Peterson ( RK

AMAE , 974 

black continuous curve, RAMAE


, blue continuous curve, and RAMAE


, green continuous curve). 975 

For each index the corresponding (i) parameter-choice contribution (symbols) and (ii) the model-976 

choice contribution (red curves) are also depicted. The counterparts for the single-model context are 977 

depicted for (b) the Freundulich, (d) the Langumir and (f) the Redlich-Peterson model. 978 

  979 



 980 

 981 

Figure 4. Unconstrained scenario. Sensitivity indices (1) associated with the Variance of C for the 982 

multi-model context versus 0C  considering (a) the Freundulich ( FK
AMAE , black continuous curve, 983 

and Fn
AMAE , blue continuous curve); (c) the Langumir ( LK

AMAE , black continuous curve, and 984 

L

mq
AMAE , blue continuous curve); (e) the Redlich-Peterson ( RK

AMAE , black continuous curve, 985 

RAMAE


, blue continuous curve, and RAMAE


, green continuous curve). For each index the 986 

corresponding (i) parameter-choice contribution (symbols) and (ii) the model-choice contribution 987 

(red curves) are also depicted. The counterparts for the single-model context are depicted for (b) the 988 

Freundulich, (d) the Langumir and (f) the Redlich-Peterson model. 989 

  990 



 991 

Figure 5. Constrained scenario, (a) expected value,  (b) variance,  (c) skewness, and (d) kurtosis, of 992 

the adsorbed concentration C versus the initial solute concentration, C0, conditional to the 993 

Freundlich (black curve), the Langmuir (blue curves) and the Redlich-Peterson (red curves) model. 994 

The corresponding multi-model statistical moments are also depicted (purple curves). For all central 995 

statistical moments the within-model (dashed purple curves) and the between-model (dotted purple) 996 

contributions are also depicted. Figures 5c-d also include the mixed terms (defined in (7)-(8)). 997 

 998 

 999 
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 1015 

Figure 6. Constrained scenario. Sensitivity indices (1) associated with the expected value of C for 1016 

the multi-model context versus 0C  considering (a) the Freundulich ( FK
AMAE , black continuous 1017 

curve, and Fn
AMAE , blue continuous curve); (c) the Langumir ( LK

AMAE , black continuous curve, 1018 

and L

mq
AMAE , blue continuous curve); (e) the Redlich-Peterson ( RK

AMAE , black continuous 1019 

curve, RAMAE


, blue continuous curve, and RAMAE


, green continuous curve). For each index 1020 

the corresponding (i) parameter-choice contribution (symbols) and (ii) the model-choice 1021 

contribution (red curves) are also depicted. The counterparts for the single-model context are 1022 

depicted for (b) the Freundulich, (d) the Langumir and (f) the Redlich-Peterson model.  1023 



 1024 

 1025 

Figure 7. Constrained scenario. Sensitivity indices (1) associated with the Variance of C for the 1026 

multi-model context versus 0C  considering (a) the Freundulich ( FK
AMAE , black continuous curve, 1027 

and Fn
AMAE , blue continuous curve); (c) the Langumir ( LK

AMAE , black continuous curve, and 1028 

L

mq
AMAE , blue continuous curve); (e) the Redlich-Peterson ( RK

AMAE , black continuous curve, 1029 

RAMAE


, blue continuous curve, and RAMAE


, green continuous curve). For each index the 1030 

corresponding (i) parameter-choice contribution (symbols) and (ii) the model-choice contribution 1031 

(red curves) are also depicted. The counterparts for the single-model context are depicted for (b) the 1032 

Freundulich, (d) the Langumir and (f) the Redlich-Peterson model. 1033 

  1034 



 1035 

Figure A.1. Unconstrained scenario. Sensitivity indices in (1) associated with the skewness of C  1036 

for the multi-model context versus 0C  considering (a) the Freundulich ( FK
AMA , black 1037 

continuous curve, and Fn
AMA , blue continuous curve); (c) the Langumir ( LK

AMA , black 1038 

continuous curve, and L

mq
AMA , blue continuous curve); (e) the Redlich-Peterson ( RK

AMA , black 1039 

continuous curve, RAMA

 , blue continuous curve, and RAMA


 , green continuous curve). For 1040 

each index the corresponding (i) parameter-choice contribution (symbols) and (ii) the model-choice 1041 

contribution (red curves) of each model, are also depicted. The counterparts for the single-model 1042 

context are depicted for (b) the Freundulich, (d) the Langumir and (f) the Redlich-Peterson model. 1043 

  1044 



 1045 

Figure A.2. Unconstrained scenario. Sensitivity indices in (1) associated with the kurtosis of C for 1046 

the multi-model context versus 0C  considering (a) the Freundulich ( FK
AMAk , black continuous 1047 

curve, and Fn
AMAk , blue continuous curve); (c) the Langumir ( LK

AMAk , black continuous curve, 1048 

and L

mq
AMAk , blue continuous curve); (e) the Redlich-Peterson ( RK

AMAk , black continuous curve, 1049 

RAMAk


, blue continuous curve, and RAMAk


, green continuous curve). For each index the 1050 

corresponding (i) parameter-choice contribution (symbols) and (ii) the model-choice contribution 1051 

(red curves) of each model, are also depicted. The counterparts for the single-model context are 1052 

depicted for (b) the Freundulich, (d) the Langumir and (f) the Redlich-Peterson model.  1053 



 1054 

Figure A.3. Constrained scenario. Sensitivity indices in (1) associated with the skewness of C  for 1055 

the multi-model context versus 0C , considering (a) the Freundulich ( FK
AMA , black continuous 1056 

curve, and Fn
AMA , blue continuous curve); (c) the Langumir ( LK

AMA , black continuous curve, 1057 

and L

mq
AMA , blue continuous curve); (e) the Redlich-Peterson ( RK

AMA , black continuous curve, 1058 

RAMA

 , blue continuous curve, and RAMA


 , green continuous curve). For each index the 1059 

corresponding (i) parameter-choice contribution (symbols) and (ii) the model-choice contribution 1060 

(red curves) of each model, are also depicted. The counterparts for the single-model context are 1061 

depicted for (b) the Freundulich, (d) the Langumir and (f) the Redlich-Peterson model. 1062 

  1063 



 1064 

 1065 

Figure A.4. Constrained scenario. Sensitivity indices in (1) associated with the kurtosis of C  for 1066 

the multi-model context versus 0C  considering (a) the Freundulich ( FK
AMAk , black continuous 1067 

curve, and Fn
AMAk , blue continuous curve); (c) the Langumir ( LK

AMAk , black continuous curve, 1068 

and L

mq
AMAk , blue continuous curve); (e) the Redlich-Peterson ( RK

AMAk , black continuous curve, 1069 

RAMAk


, blue continuous curve, and RAMAk


, green continuous curve). For each index the 1070 

corresponding (i) parameter-choice contribution (symbols) and (ii) the model-choice contribution 1071 

(red curves) of each model, are also depicted. The counterparts for the single-model context are 1072 

depicted for (b) the Freundulich, (d) the Langumir and (f) the Redlich-Peterson model.  1073 



 1074 

Figure D.1. Sketch of the overall concept underpinning the sensitivity indices SM kP
AMA  in (B.2) 1075 

, considering the generic statistical moment SM for the quantity of interest  . For ease of 1076 

illustration we consider only two processes, i.e., 
kP  with k = (1, 2). Three distinct 1077 

conceptualizations for process 
1P  are considered, each characterized by two parameters, i.e., i = (1, 1078 

2), affected by uncertainty, i.e., ,1j

i . Otherwise, only one conceptualization is considered for 1079 

process 
2P , whose parameters are taken to be deterministic. This gives rise to three distinct 1080 

models, i.e., j = (1, 2, 3), each with its model-weight, i.e., w(
jM ).  SM   is the ensuing SM once 1081 

uncertainty in all processes and associated parameters has been accommodated;1082 

, ,SM |j k j k

jM 
  : P

 is the target SM once uncertainty in the parameters of the k-th process in 1083 

model jM  has been accommodated, the variability associated with other process components 1084 

having been averaged out; , ,SM |j k j k

i

jM


 
 : : P

 is the target SM conditioned to ,j k
i  of process 1085 

kP  and given 
jM , while the variability associated with the remaining parameter of 

kP  given jM  1086 

has been averaged out. 1087 

 1088 
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