
A Unified PSO-based method for multi-hoist scheduling in advanced
Galvanic plants

Danial Ramin1, Egidio Leo2, Leonardo Nicolosi3, Stefano Spinelli1 and Alessandro Brusaferri1

Abstract— In this work, we propose a method based on
the unified particle swarm optimization (UPSO) for no-wait
multi-hoist scheduling, including a collision avoidance heuristic.
Conflicts due to track sharing between hoists and no-wait con-
straints represent major issues to be addressed. Consequently,
a complex optimization problem has to be solved dynamically,
to identify the best operating strategy to be executed depending
on the characteristics of the current job list. A decomposition
procedure has been developed to speed up the solution of
the large-scale optimization problem at hand. The proposed
approach is demonstrated on a real galvanic process layout,
showing the improved performances achieved by the proposed
heuristic compared to the monolithic approach.

Index Terms—Particle Swarm Optimization, No-wait job
shop scheduling, Multi-hoist scheduling, Advanced Galvanic
plants

I. CONTEXT AND OBJECTIVES

In manufacturing facilities, the movement and handling
of process material or equipment across the plant is usually
carried out by track-mounted hoists (or robots). In this work,
we consider a standard configuration, which consists of
one or more hoists moving along a single horizontal track
mounted on the ceiling. The production schedule for the
plant, in general, assumes hoists to be available to perform
the movement of the material form one processing unit to
another at the desired times, in order to not compromise the
defined schedule. However, as the hoists operate on a single
track, they must be scheduled to avoid colliding with each
other. Thus production schedule and hoist schedule problems
are strictly connected. However, because of the complexity of
the monolithic problem, these schedules are usually planned
separately, considering the production decisions as the input
of the hoist scheduling. This simplification could generate in-
feasibilities in the hoist schedule, as the production schedule
is defined without modeling effective hoist availability.

Widely known industrial application where the simultane-
ous schedule of jobs and hoists assumes a central relevance is
the galvanic plants for surface treatments. In these processes,
part lots must follow a specific sequence of chemical and wa-
ter baths, with strict exposure times and demanding storage
policies. Hence, highly automated production lines, where
material handling is executed by computer-controlled hoists

1 Danial Ramin, Stefano Spinelli and Alessandro Brusaferri are with the
Institute of Intelligent Industrial Systems and Technologies for Advanced
Manufacturing (STIIMA), National Research Council (CNR), Milan, Italy,
{name.surname}@stiima.cnr.it

2 Egidio Leo is with the Technische Universitat Dortmund,
Process Dynamics and Operations Group, Dortmund, Germany,
egidio.leo@tu-dortmund.de

3 Leonardo Nicolosi is with the PARVIS systems and services s.p.a.,
Milan, Italy, leonardo.nicolosi@parvis.it

or robots, have become common practice in modern ad-
vanced manufacturing systems. Consequently, a strong need
for enhanced hoist scheduling systems emerged, representing
a key enabler to maximize productivity and product quality.

The first seminal study in this field was developed in the
early seventies by [1]. Subsequently, several mathematical
models and meta-heuristic algorithms have been investigated
(see e.g., review in [2]). Most of them deal with the cyclic
case, whereas a minor number deal with advanced multi-
hoists lines. The schedule of multiple hoists on a single track
is an extremely complex problem to be solved. A major num-
ber of decisions have to be optimized and collision among
hoists has to be taken into account. Despite the complexity
of the problem, little research work has been performed in
this area. In [3] a first mixed-integer programming (MIP)
formulation is proposed to find an optimal cyclic hoist sched-
ule for the single-track multi-hoist system with unidirectional
part flow, with the strong assumption that the part processing
sequence should be the same as the tank arrangement. This
work was improved by [4], proposing the first MIP approach
considering a bidirectional cyclic part flow, and removing
the assumption of identical the part processing sequence and
tank arrangement. [2] developed a MIP model for a cyclic
jobshop single hoist scheduling problem with multi-capacity
reentrant tanks and time-window constraints. In a hybrid
solution along with a metaheuristic approach [5] proposed
a mixed-integer model for the cyclic scheduling of multiple
hoists considering collision. However they found the MIP to
be computationally expensive when dealing with large-scale
problems.

Most of the previous works on the hoist scheduling
problem are aimed at identifying an optimal cyclic schedule,
maximizing the number of parts produced in each cycle.
The major limitation of the cyclic hoist scheduling is the
assumption of identical jobs in the system. Besides, the
definition of a cycle is rather vague when there are multiple
job types and multiple robots. Although the scheduling of
multi-item production lines is of high practical relevance,
it is rarely dealt with in the literature. [6] studied the
two-hoist scheduling problem, pre-assigning to each hoist
a precise set of tanks. Adopting this simplification, the
collision constraints are not needed and the problem becomes
more tractable. However, this approach restricts the sequence
of treatment of the parts to follow the layout of the tanks.
Hence, the authors consider alternative partition problems.
Adopting a less restrictive simplification, [7] studied a layout
where the assigned zones can overlap. The algorithm requires
the identification of all the collision configurations in the



shared common zones and gives priority to one of the hoists.
To the best of our knowledge, integrated methods addressing
non-cyclic scheduling of multi-hoist, multi-product galvanic
processes including collisions management, are still lacking
in the literature.

In this paper, we propose a Unified Particle Swarm Opti-
mization (UPSO)-based method for the multi-hoist, multi-
stage batch Galvanic process, taking into account robot
collisions explicitly. Besides, we developed a decomposition
strategy to tackle the intractable solution of the monolithic
scheduling problem while addressing applications of realistic
size. The paper is organized as follows: Section 2 details the
characteristic of the no-wait multi-hoist scheduling problem.
Section 3 presents the proposed approach, including the
UPSO-based algorithm, the collision management procedure,
and the decomposition strategy. Section 4 provides quantita-
tive results from an industrial use case.

II. SCHEDULING MULTI-HOISTS IN GALVANIC PLANTS

Galvanic plants represent a key component of the manu-
facturing chain in various application fields, from consumer
goods to the aerospace industry. A major challenge of
galvanic plants resides in the management of transportation
system aimed at moving processed materials through differ-
ent baths, depending on the specific product needs. Indeed,
several specific requirements and constraints have to be
properly tackled to guarantee production quality, maximize
productivity and minimize operating costs.
In advanced galvanic plants, the hoists, or robots, transport
the lots from one tank to another for the next operation.
The transfer of parts can be multi-directional. A critical
process constraint is that each hoist can only move a single
part at a time without holding the job more than the exact
transfer time. No intermediate storage is present between
consecutive baths, thus when the part finishes its processing
time, a hoist must be available to transfer it to the next
processing bath. Therefore a non-intermediate storage (NIS)
policy is assumed. An additional constraint, which increases
the complexity of the problem, is that the baths must process
part lots singularly, with a fixed and strict duration, avoiding
the overexposure, which can seriously damage the part-lot.
These process constraints are known as “zero-wait” (ZW)
policy. Because of these constraints, usually two or more
hoists are in place in order to improve plant productivity.
It is evident that the optimal utilization of this critical shared
resource, i.e., the multi-hoist system, can considerably im-
prove the productivity of these plants, which largely depends
on the schedule of the hoist activities, leading to an important
reduction in the total processing time. The typical objective
of this kind of plant is to find the best production and
transportation schedule that minimize the total completion
time of all jobs in the system, widely known as the Makespan
criterion (MK). Another common objective function is the
total weighted tardiness if job deadlines are provided. In
this work, we assume that N lots have to be processed
following predefined recipes, which indicate the sequence
of baths (or units) to be visited, which is common in most

Hoist 1 Hoist 2

Job 𝑗 Job 𝑗′

Unit 𝑖 Unit 𝑖 + 1

Fig. 1. Galvanic plant schema

industrial setups. Besides, the problem considers that two
hoists (or robots) are installed on the same track. Hoists
share the track and therefore collisions must be avoided.
The hoist schedule assumes a central relevance: the problem
concerns the scheduling of N jobs in M units, in a job shop
multi-product plant with ZW and NIS policies with shared
resources and limited capacity for the job movement. The
proposed model can be easily extended to consider multiple
robots and different recipes for each part lot. From an
optimization point of view, the problem under investigation
represents a class of large-scale job shop scheduling problem
(JSSP), which is NP-hard in the strong sense.

A. Case study: advanced galvanic plant for metal compo-
nents

To validate the proposed scheduling method, an advanced
automatic industrial process for surface-treatment of metal
components is presented. The name of the company is not
reported due to confidentiality reasons. The galvanic plant,
Figure 1, is composed of two lines of chemical baths with 39
baths per line, where the jobs have to be scheduled following
their own production recipes. To move the jobs from one
bath to another, two hoists for each line are mounted on
the ceiling. Since each couple of hoists operates on a single
track they could collide or interfere with each other. The
job/task list employed for testing has been identified from
real production scenarios executed on the plant. The specific
details regarding processing times of each task and the
sequence of baths followed by each job recipe are reported in
Table I. For the sake of readability the data related to the first
two jobs is provided. Different baths (10-11, 15-16, 24-25-
26-27) can be used as parallel units. The input/output buffer
is defined by the baths 79-74: each job starts and finishes its
production recipe in one of these baths. The transfer of jobs
from one line to the other one is performed by two transfer
hoists: the first one transfers the jobs from bath 72 to 1; the
second one from bath 31 to 39. Transport time refers to the
time required to reach the next unit. A lower bound and an
upper bound are provided for each hoist transport task (see
I). In addition, recycle flows can occur.



TABLE I
TASK LIST

IDjob Unit Transport Time [s] Min Processing Time [s] Max Processing Time [s]
1 1 25 10 10
1 3 29 300 330
1 8 23 2 4
1 9 26 10 20
1 12 23 300 330
1 13 32 20 40
1 6 23 60 66
1 7 23 120 132
1 8 23 2 4
1 9 25 10 20
1 11 25 300 330
1 9 38 10 20
1 20 23 2 4
1 21 26 300 330
1 24 29 300 330
1 29 23 4 8
1 30 36 4 8
1 20 29 2 4
1 15 28 2400 2640
1 19 39 2 4
1 31 33 10 10
1 39 26 10 10
1 42 23 210 231
1 41 32 6 12
1 48 49 4 4
1 67 32 3 6
1 74 128 1 1
2 1 23 10 10
2 2 28 300 330
2 5 25 60 66
2 7 26 5 5
2 8 29 2 4
2 9 29 10 20
2 10 30 60 66
2 14 25 5 10
2 15 28 2401 2641
2 18 27 2 2
2 20 28 2 4
2 23 25 2430 2673
2 24 30 1830 2013
2 28 30 240 264
2 29 29 4 8
2 30 31 4 8
2 31 33 10 10
2 39 28 10 10
2 43 27 66 73
2 45 57 15 30
2 64 28 10 11
2 63 30 353 388
2 64 28 10 11
2 65 28 4 8
2 66 28 4 8
2 67 28 3 6
2 68 28 20 22
2 69 28 1 1
2 70 28 120 132
2 74 128 1 1

III. HOISTS SCHEDULING METHOD

A. Unified Particle Swarm Optiomization approach

In this work, we exploited Particle Swarm Optimization
(PSO) as the backbone optimization framework. The PSO
represents a well-established meta-heuristic approach, due
to its ease of implementation, efficiency, and robustness
[8]. Originally conceived for optimization with continuous
variables, the PSO has been recently extended and adapted
also to deal with binary, discrete, and mixed-integer variable
problems [9], [10]. Widespread adoption of PSO can be
found in industry for the solution of complex optimization
problems thanks to its speed in finding a global optimum,
little effort required for parameter configuration and reduced
risk to fall into a local minimum. Complex production
scheduling problems [11], energy-driven factory optimiza-
tion [11], assembly sequence planning and model predictive
control [12] are just some examples of the wide range of
applications available. The problem at hand represents a
purely combinatorial problem, for which several discrete
optimization procedures can be found in the literature. Nev-
ertheless, the discrete version of the PSO has been considered
in this work, since planned developments will involve also
the optimization of continuous variables, e.g., task processing

time and additional energy-related aspects.
The PSO is a population-based algorithm, originally in-

spired by the swarming behavior of bird flocks searching
for food, which allows to probe the whole search space
concurrently. The population, i.e. the swarm, is formed by
P particles, i.e. the potential solutions of the optimization
problem [13], each one is characterized by a position xi in
the optimization space and a velocity vi. The positions and
velocities are vectors, i.e. xi vi ∈ n, where n is the problem
dimension. At each iteration k of the algorithm, each particle
position xi(k) is adjusted according to its velocity vi(k);
subsequently, also the velocity of each particle is updated,
for the next iteration, by considering three contributions [14]:

• The particle velocity at the current iteration vij(k);
• The distance between the current position and the best

position pij ever visited by the particle;
• The distance between the current position and the best

position ever visited by either the whole swarm (pgg ,
namely global PSO) or a sub-group of particles (pgl,
namely local PSO).

Specific combinations of such contributions define a partic-
ular PSO algorithm. The original PSO model is described
by (1). In this work, the so-called Unified Particle Swarm
Optimization (UPSO) method is adopted, since it allows
a balanced influence of the local PSO (LPSO) and the
global PSO (GPSO) on the position shifts, through a convex
combination determined by the unification factor u. The
UPSO is mathematically defined by (1) to (3), where R1

and R2 are random numbers uniformly distributed within
[0,1], c1 and c2 are called acceleration coefficients and can
be either constant or variable throughout the optimization.
The factor ξ, defined in (4), is the so-called constriction
factor that allows controlling particle velocity preventing
explosion and ensuring convergence. In particular, in (1)
vg and pgg (respectively, vl and pgl in (2)) represent the
velocity and the best position of the particle in the case
of GPSO (LPSO, respectively). The two contributions are
opportunely weighted by the combination in (3): values of
u approaching zero favor LPSO facilitating the exploration
phase, whereas values of u close to 1 give priority to
GPSO and, therefore, to exploitation search. The unification
factor can be kept constant or it can be varied during the
optimization procedure.

vgij (k + 1) = ξvij(k) + c1R1(pij − xij(k))+
c2R2(pgg − xij(k)) (1)

vlij (k + 1) = ξvij(k) + c1R1(pij − xij(k))+
c2R2(pgl − xij(k)) (2)

vij(k + 1) = uvgij (k + 1) + (1− u)(vlij (k + 1)) (3)

The particle positions can be updated accordingly by:

xij(k + 1) = xij(k) + vij(k + 1) (4)

The new positions are evaluated by a problem specific
objective function. The best particle positions are updated



Algorithm 1 The PSO algorithm
1: procedure PSO
2: for each particle i = 1, . . . , P do
3: Set the initial position of the particle xi(0) with a uniformly distributed random vector
4: Set the initial best known position of the particle to its initial position: pi(0)←− xi(0)
5: if f(pi) < f(pgg) (respectively, f(pi) < f(pgl) ) then
6: Update the best known position of the swarm globally (locally): pgg ←− pi (respectively, pgl ←− pi)
7: Initialize the velocity of the particle
8: while a termination criterion is not met do:
9: for each particle i = 1, . . . , P do

10: for each dimension j = 1, . . . , n do
11: Pick random numbers: R1, R2 ∈ U(0, 1)
12: Update the velocity of the particle as in (1)-(3)
13: Update the particle position as in (4)
14: if f(xi) < f(pi) then
15: Update the particle best-known position: pi ←− xi
16: if f(pi) < f(pgl) then (respectively, if f(pi) < f(pgg) then)
17: Update the best known position of the swarm globally (locally): pgl ←− pi (respectively, pgg ←− pi)

by:

pi(k+1) =

{
xi(k + 1) if f(xi(k + 1)) < f(pi(k))

pi(k) otherwise
(5)

Finally, the global best position are similarly adjusted as
follows:

pgg(k + 1) =

{
xi(k + 1) if f(xi(k + 1)) < f(pgg(k))

pgg(k) otherwise
(6)

pgl(k + 1) =

{
xi(k + 1) if f(xi(k + 1)) < f(pgl(k))

pgl(k) otherwise
(7)

The optimization algorithm, described in Algorithm 1,
terminates when a user-defined stop criterion is reached,
which is typically the maximum number of iterations or the
maximum execution time.

B. Developed Fitness function

As any meta-heuristic algorithm, the PSO uses a fitness
function to quantify the optimality of a particle (sequence).
The fitness function, incorporating the optimization con-
straints, is also responsible for the definition of the feasible
region and therefore it has to determine whether a solution
is feasible or not. When a proposed solution violates the
problem constraints, the common practice is to assign an
infinite value to the fitness function. However, this approach
is not reliable when dealing with a large-scale optimization
problem. Indeed, the algorithm might terminate exceeding
the maximum execution time without finding a feasible
solution. In the proposed work, this limitation has been
overcome by developing a procedure that modifies the infea-
sible solution (particles’ positions) until it becomes feasible,
thus making its fitness function evaluable. The proposed
algorithm is described by the pseudo-code in Algorithm
2. The developed fitness function takes implicitly the hoist

collisions into account. During each iteration, the scheduling
feasibility check is performed by analyzing the eventual
presence of hoist conflicts. In the case of hoist conflicts
in the current iterate solution, starting times and temporal
intervals are shifted to achieve feasibility within the current
run. Then, by iterations, the algorithm converges to a feasible
local minimum.

Algorithm 2 Fitness Function
1: procedure FITNESS FUNCTION PROCEDURE

for each task
2: check for collision with algorithm 3
3: If no collision
4: compute the tardiness of the solution
5: If collision
6: while (solution not feasible)
7: modifiy solution with algorithm 3

C. Hoists collisions avoidance

Each particle describes a solution to the optimization
problem. A solution is characterized by:

• Start time of each task of each job in the units defined
by the recipe;

• End time of each task of each job in the units defined
by the recipe;

• Unit ID (if there are parallel units) to process each task
of each job;

• Hoist ID (if there are more than two hoists) to perform
each transport task;

• Start time of the transport task;
• End time of the transport task.
It is worth highlighting that each transport task is com-

posed of an empty movement, performed by the hoist to
reach the unit where the job is processed, and a loaded
movement, to transport the job. The proposed algorithm,



comparing all the transport tasks, detects the hoists’ colli-
sions, and modifies the solution to avoid conflicts.

Our aim is to include a slight modification to the schedul-
ing problem, in order to minimize the impact on the com-
putational burden and to maintain a simple treatment. To
this end, for each transport task a temporal/spatial interval
with start and end time/unit of the task as extreme points is
included. Comparing each transport task to all the others, a
collision is detected if the intersection between the temporal
intervals and the spatial intervals is not an empty set. In the
case of the detection of a collision, the algorithm modifies
the start and end times of the task under investigation.

The modification is performed delaying the starting time
by the end of the task responsible for the collision. Since
we are dealing with NIS and ZW constraints, all the tasks
of the job responsible for the collision are delayed by
the same quantity. Since this modification might violate
other constraints, the algorithm checks again the feasibility
of the solution. If no constraint violations are found, the
algorithm terminates providing a feasible solution, otherwise,
the procedure is repeated until a feasible solution is provided.
The major steps of the procedure are reported in pseudo-code
by Algorithm 3.

Algorithm 3 Collision Procedure
1: procedure COLLISION PROCEDURE for each job
2: Compose temporal/spatial intervals for the

tasklist;
3: for each interval
4: Evaluate intersection of temporal/spatial inter-

vals
5: If Collision number != 0
6: delay starting time and update time intervals
7: go to 4: check intersection

After each modification, the main algorithm evaluates the
process constraints and if the solution is feasible, the algo-
rithm proceeds to calculate the consequent job tardiness.

D. Developed solution strategy

The integration of the hoist scheduling and job scheduling
leads to a large-scale optimization problem, characterized
by high computation time. Even though meta-heuristics
optimization approaches are generally capable of finding
good quality solutions for such large-scale problems faster
than other techniques, the computation time required to
terminate the PSO algorithm, for this instance, is greater than
2 hours. To speed up the solution phase, instead of solving
an intractable monolithic problem, a decomposed approach,
generating smaller subproblems that can be easily solved, is
proposed. The original problem is split into subproblems par-
titioning the original job list into smaller ones. These smaller
subproblems are solved in a sequential way, taking into
account the state of the plant (tasks pre-assigned to hoists and
machines) defined by previously performed optimizations.
Since the objective of the original problem is to minimize the
tardiness of the jobs, the subproblems are created exploiting

one of the most common priority rules: the earliest due date.
The jobs are presorted sequentially in order to classify them
into ranks according to their due date. The job list of each
subproblem is generated by selecting five jobs per time.
By adopting this strategy, the first optimized subproblem
is composed of the jobs with the earliest due date. Then,
the initial position of the PSO particles is initialized to the
solution obtained in the previous subproblem optimization.

IV. COMPUTATIONAL RESULTS

In this section, we report the results obtained by the
application of the proposed method to a real production
scenario of the Galvanic process. The job-list includes
55 jobs, covering a daily production plan. Computations
have been performed on a PC with 8 Core (with parallel
processing in 8 threads) 2.5 GHz Processor with 8GB of
RAM. Due to the lack of a baseline method addressing the
same problem class within the research field, we compared
the decomposition approach to the conventional monolithic
solution, to investigate the contribution of such a technique.
As shown in Table II, the proposed decomposition solution
outperforms the monolithic model. Indeed, a better (i.e.,
lower fitness function) solution is found in less computational
time. Even if global optimality is not guaranteed (a character-
istic of meta-heuristic approaches in general) the algorithm
converged to a feasible local optimum in a computational
time compatible with the process requirements. Figures 2-3
depict the related fitness value over the number of iterations.
It is worth noting that the increasing envelop of the fitness
curves, shown in Figure 3, is due to solution in sequence
of the decomposed sub-problems. Each converging curve
represents the solution of the related sub-problem. Then, the
succeeding sub-problem is solved by adding to its fitness
function the converged cost of the previous subproblems.

The resulting schedules for the hoists obtained by the
decomposition algorithm, considering the conflicts on the
shared track, is reported in Figure 4. Due to the large number
of tasks, for the sake of readability only the first two hours
of the scheduling horizon is shown here. The width of each
block (with arbitrary height) represents the transfer time for

Fig. 2. Fitness function of the monolithic problem



Fig. 3. Accumulative fitness function of the decomposed sub-problems

TABLE II
COMPUTATIONAL RESULTS

Monolithic problem Decomposed problem
CPU time [s] > 6000 1800.9

Fitness function value 2.6e4 2.5e4
Number of iterations 400 4411

various stages of the same job (distinguished by different
shades of the same color) as handled by the assigned hoist
(shown in the corresponding panel). Here the hoist pairs (1,2)
and (3,4) each share the same track.

V. CONCLUSION

In this paper, a non-cyclic scheduling approach for multi-
hoist multi-product Galvanic plants with no-wait constraints
is proposed. To this end, we adopted a Unified PSO ap-
proach. The main target is the inclusion of hoists collision
avoidance within the optimization problem as multiple hoists
are mounted on the same track in most Galvanic processes.
To this end, we embedded a dedicated heuristic into the fit-
ness function computation loop, post-processing the solution
found by the UPSO during each iteration to achieve a feasible

Fig. 4. Hoist schedule

allocation of the hoists, thus avoiding collisions.
Due to the extensive computation time required to solve the
overall problem by a monolithic approach, we developed a
dedicated decomposition strategy. By application to a real
production scenario from a Galvanic plant, we have shown
the capability of the proposed method to achieve feasible
solutions. Besides, the decomposition approach provides a
strong reduction of the optimization time, which is funda-
mental to enable the exploitation of the proposed scheduling
method within industrial practice. This is particularly crucial
for the implementation of reactive schedulers, required to
compensate for unforeseen events that could occur during
production execution.
Next developments will include the exploration of other
decomposition strategies, the integration of tasks process-
ing time variables and baths/hoists energy-related con-
straints/objectives; and the application of this framework to
other use cases.

REFERENCES

[1] L. Phillips and P. Unger, “Mathematical programming solution of a
hoist scheduling program,” IIETrans, vol. 8, no. 2, p. 219–225, 1976.

[2] J. Feng, C. Chu, and A. Che, “Cyclic jobshop hoist scheduling
with multi-capacity reentrant tanks and time-window constraints,”
Computers and Industrial Engineering, vol. 120, pp. 382 – 391, 2018.

[3] J. Leung and G. Zhang, “Optimal cyclic scheduling for printed circuit
board production lines with multiple hoists and general processing
sequence,” IEEE Trans. Robot. Autom., vol. 19, pp. 480–484, Jun 2003.

[4] Che and Chu, “Single-track multi-hoist scheduling problem: A
collision-free resolution based on a branch-and-bound approach,”
International Journal of Production Research, vol. 42, 2004.

[5] E. Laajili, S. Lamrous, M.-A. Manier, and J.-M. Nicod, “Collision-
free based model for the cyclic multi-hoist scheduling problem,” in
2019 IEEE International Conference on Systems, Man and Cybernetics
(SMC), pp. 873–878, IEEE, 2019.

[6] L.Lei and T.Wang, “The minimum common cycle algorithm for
cycle scheduling of two material handling hoists with time window
constraints,” Manage. Sci., vol. 12, no. 37, p. 1629–1639, 1991.

[7] M. Manier and S.Lamrous, “An evolutionary approach for the design
and scheduling of electroplating facilities,” J Math Model Algor, vol. 7,
p. 197–215, 2008.

[8] K. Parsopoulos and M. Vrahatis, “Upso: A unified particle swarm
optimization scheme,” in International Conference of Computational
Methods in Sciences and Engineering (ICCMSE 2004), p. 868–873.

[9] A. M. S.Chowdhury, W. Tong and J.Zhang, “A mixed-discrete particle
swarm optimization algorithm with explicit diversity-preservation,”
Structural and Multidisciplinary Optimization, p. 367–388, 2013.

[10] S. S. A.Pal and K.Deep, “Use of particle swarm optimization algo-
rithm for solving integer and mixed integer optimization problems,”
International Journal of Computing Science and Communication Tech-
nologies, vol. 4, no. 1, p. 663–667, 2011.

[11] L. Xiaoping and Y. Zhang, “Adaptive hybrid algorithms for the
sequence-dependent setup time permutation flow shop scheduling
problem,” IEEE Transaction on Automation Science and Engineering,
vol. 9, no. 3, 2012.

[12] J. Mercieca and S. Fabri, “Particle swarm optimization for nonlinear
model predictive control,” in 5th Int. Conference on Advanced Engi-
neering Computing and Applications in Sciences, 2011.

[13] K. Parsopoulos and M. Vrahatis, Particle Swarm Optimization and
Intelligence: Advances and Applications. 2010.

[14] L. Nicolosi, A. Brusaferri, and A. Ballarino, “A novel toolbox for
advanced particle swarm optimization based industrial applications,”
in Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA), pp. 1–8, IEEE, 2014.


