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Abstract: The present paper is focused on proposing and implementing a methodology for robust
and rapid diagnosis of PEM fuel cells’ faults using Electrochemical Impedance Spectroscopy (EIS).
Accordingly, EIS tests have been first conducted on four identical fresh PEM fuel cells along with an
aged PEMFC at different current density levels and operating conditions. A label, which represents
the presence of a type of fault (flooding or dehydration) or the regular operation, is then assigned to
each test based on the expert knowledge employing the cell’s spectrum on the Nyquist plot. Since the
time required to generate the spectrum should be minimized and considering the notable difference
in the time needed for carrying out EIS tests at different frequency ranges, the frequencies have been
categorized into four clusters (based on the corresponding order of magnitude: >1 kHz, >100 Hz,
>10 Hz, >1 Hz). Next, for each frequency cluster and each specific current density, while utilizing a
classification algorithm, a feature selection procedure is implemented in order to find the combination
of EIS frequencies utilizing which results in the highest fault diagnosis accuracy and requires the
lowest EIS testing time. For the case of fresh cells, employing the cluster of frequencies with f > 10 Hz,
an accuracy of 98.5% is obtained, whereas once the EIS tests from degraded cells are added to the
dataset, the achieved accuracy is reduced to 89.2%. It is also demonstrated that, while utilizing the
selected pipelines, the required time for conducting the EIS test is less than one second, an advantage
that facilitates real-time in-operando diagnosis of water management issues.

Keywords: PEM fuel cells; fault diagnosis; electrochemical impedance spectroscopy; machine learning;
feature selection

1. Introduction

In recent years, scientists and engineers have been making notable efforts to mitigate air pollution
and global warming by substituting fossil fuel based power generation systems with renewable and
environment-friendly units [1,2]. The transportation and automotive sectors are shifting the production
from gasoline to Electric Vehicles (EVs). However, these solutions depend on lithium-ion batteries,
which guarantee a low autonomy. Furthermore, the time needed to completely charge the device
is too long, if compared to the current refueling time of a generic car [3]. An alternative solution
to the latter problem is the adoption of hydrogen as fuel and feeding it into a Polymer Electrolyte
Membrane Fuel Cell (PEMFC), an electrochemical device that is able to convert the chemical energy
of hydrogen into electrical energy [1]. Unfortunately, these devices are still too expensive (owing to
the cost of the employed materials) and their durability does not meet today’s need [4–9]. In addition,
the device is complex and its operation is strongly dependent on the operating conditions, which need
to be maintained in an optimized range as much as possible, in order to guarantee stable and reliable

Energies 2020, 13, 3643; doi:10.3390/en13143643 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-4405-2956
https://orcid.org/0000-0003-0783-5425
http://www.mdpi.com/1996-1073/13/14/3643?type=check_update&version=1
http://dx.doi.org/10.3390/en13143643
http://www.mdpi.com/journal/energies


Energies 2020, 13, 3643 2 of 19

generation [10–15]. Working at operation points that are far from the optimal one results in various
issues, specifically problems corresponding to water content of the membrane, which should be
well-hydrated during the operation. Accordingly, non-optimal water content results in dehydration or
flooding faults within the cell [5,10,16–18]. Thus, the PEMFC’s health management and diagnostics is
an indispensable task to ensure a desirable operation [7,11,19,20].

In this context, Electrochemical Impedance Spectroscopy (EIS) has been determined to be a
promising diagnostic tool for recognizing faults and in particular water management related ones [21].
EIS is used to diagnose the cell following mainly two approaches: model-based or data-driven
methods [22]. Model-based techniques require a deep knowledge of the system and the inter-relations
between the corresponding physical phenomena [23]. Data-driven (non-model-based) methods,
are instead based on the data collected in the context of an experimental campaign, which is
subsequently analyzed and is then employed in the training procedure [24–27]. Some recent studies
have been dedicated to diagnosing water management faults through EIS. Kurz et al. [28] developed
a control strategy based on simultaneous EIS measurements on single cells (6-cell PEMFC stack),
to distinguish between flooding and drying conditions. They demonstrated that only two points
from the spectrum are necessary to detect the kind of fault that is present: HFR (High Frequency
Resistance, 1 kHz) and FIV (Flooding Indication Value, 0.5 Hz). The adopted control strategy was able
to prevent any voltage drop half an hour prior to the time required to observe the same phenomenon
in the polarization curve [29]. Zheng et al. [30] used EIS and a double-fuzzy method (fuzzy clustering
and logic) as an unsupervised machine learning approach to mine diagnostic rules automatically.
Wasterlain et al. [31] studied a 20-cells PEMFC stack and investigated flooding/drying phenomena.
In this study, six different degrees of flooding and drying were considered (from light drying to
moderate flooding) and a Naive Bayes classifier was used to automatically recognize the faults.
It was shown that the latter supervised machine learning based approach ensures an accuracy of
91.2%. Fouquet et al. [32] used a model-based diagnosis method, coupled with EIS, to detect the
water content of a six-cells PEMFC stack. Furthermore, in the latter study, the equivalent circuit’s
parameters were fitted to the data. Petrone et al. [33] carried out several tests on an H2/O2 PEMFC to
generate faulty conditions and utilized EIS measurements to determine the main features for diagnosis
purposes. Jeppesen et al. [34] proposed a data-driven impedance-based diagnosis methodology for
high temperature PEMFC, in which the EIS measurements were labeled based on types of faults (five
different labels related to high/low air cathode stoichiometry, CO poisoning, high/low methanol
anode stoichiometry). In the latter study, EIS measurements were first pre-processed and some features
were then selected to reduce the dimensionality of the problem. Lastly, an Artificial Neural Network
(ANN) [35] was employed as the machine learning algorithm and the accuracy of 94.6% (100% for the
CO poisoning case and cathode stoichiometry) was obtained.

Recent studies have demonstrated that the EIS testing procedure can be conducted on automotive
PEM fuel cells in operation through limited modifications to the converter [36,37]. Such feasibility
provides the notable benefit of possible utilization of EIS based methodology as a real-time in-operando
diagnostic tool. Nevertheless, in most of the previous studies, the entire EIS spectrum has been utilized
as the input, performing the procedure of which requires a notable time that limits the applicability of
this method for real-time application.

Motivated by the latter research gap, in the present work, a methodology for real-time fault
diagnosis of PEM fuel cells is proposed and implemented, in which results of EIS tests conducted at a
reduced number of frequencies (rather than the whole spectrum) can be provided as input features.
Accordingly, EIS tests have been first carried out at different current density levels and operating
conditions. The presence of flooding or drying phenomena at each test has then been determined
employing the cell’s spectrum on the Nyquist plot. Each test and the corresponding spectrum is
thus assigned with a label, which represents the presence of a type of fault or regular operation.
Considering the fact that the time required to generate the spectrum should be minimized and taking
into account the notable difference in the time needed for carrying out the EIS tests at different
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frequency ranges, the frequencies have been categorized into four clusters (based on the corresponding
order of magnitude: >1 kHz, >100 Hz, >10 Hz, >1 Hz). Next, for each frequency cluster and for each
specific current density, while employing a machine learning algorithm [38–40], a recursive feature
elimination procedure is implemented and the set of EIS frequencies employed that result in the
highest accuracy and require the lowest EIS testing time are determined. The procedure has firstly
been implemented on fresh cells, and then on both fresh and degraded (aged) cells, in order to verify
the dependence of the chosen frequencies along with the obtained accuracy on the cell’s age.

It is worth noting that the key contribution of the present paper is selecting frequencies at which
the EIS should be performed and determining the resulting accuracy. The obtained results facilitate
reducing the required EIS testing time, which in turn permits the application of this methodology in
real-time (in-operando) applications.

2. Electrochemical Impedance Spectroscopy

Electrochemical Impedance Spectroscopy (EIS) is a diagnostic tool based on system dynamics:
a harmonic voltage (or current) perturbation is superimposed to steady state potential (or current), so that
the resulting impedance of the system can be measured in a wide range of frequencies. Solving the
problem in a frequency-domain allows to separate different physical phenomena that are occurring in the
system [29,41,42]. As such, the fastest phenomena can be shown only if the applied disturbance is fast
enough [29,41,43]. Considering a voltage perturbation (Potentiostatic mode) being applied to the system:

∆V = ∆V0 + |∆V1| cos(ωt) = ∆V0 +<∆V1ejωt (1)

As shown in (1), the voltage variation is the sum of a steady-state value (∆V0) and a sinusoidal
oscillation. As a result, the current will adapt to this perturbation, according to (2), with a certain
phase-shift φ:

I = I0 + |I1| cos(ωt + φ) (2)

Under the hypothesis of linearity of the system, the impedance can be defined as the ratio between
the oscillation of voltage and the one of current.

Z(ω) =
∆V1

I1
= Z< + jZ= (3)

From (3), which is a complex number, some information about the modulus and the phase shift
can be easily obtained, as follows: |Z| =

|∆V1|
|I1|

tan φ = Z=
Z<

(4)

After repeating the same calculations for a wide range of frequencies, the result can be plotted
in both Bode or Nyquist form. Bode is a (|Z| − f ) and (φ− f ) plot, whereas in a Nyquist plot the
imaginary part of the impedance is plotted against the real one. The latter is the one used in the
following analysis.
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2.1. Nyquist Plot

From the analysis of an impedance spectrum in the Nyquist plot, possible PEM fuel cell’s issues
can be recognized [29]. Starting from the highest frequencies (left part of the graph, as demonstrated
in Figure 1), the intercept of the impedance arc on real axis is called HFR (High Frequency Resistance)
and it is the sum of the ionic resistance of the membrane and electric resistances of GDL, MPL,
and the bipolar plates. A high frequency arc, related to the hydrogen oxidation reaction (HOR) is
present, but it can be hardly seen since the fast kinetics at the anode results in a much smaller capacity
element compared to ORR (cathode) reaction. A 45◦ linear branch is often present in the left part
of the Nyquist plot, and it figures out some limitations in the proton-transfer through the CL [31].
Moreover, two capacity loops can be detected: the former is due to kinetics of ORR, the latter is present
when there are significant mass transport issues. When the current density increases, size of the first
loop becomes smaller and the mass transport capacitive element grows up significantly.

Figure 1. Nyquist plot of a polymer Electrolyte Membrane (PEM) Fuel Cell.

2.2. Water Flooding Issues in Nyquist Plot

The EIS technique can be used to detect flooding or drying issues into PEM fuel cells. When the
system suffers from dehydration, the membrane’s ionic conductivity is reduced, the HFR increases and
the impedance spectra progressively shifts towards higher real values [10,32]. The ionic conductivity
of a PEM rises when the degree of humidification of the membrane is high. In the opposite case,
when there is too much water in the cell, the conductivity of the membrane rises (well hydrated
membrane, augmented ion transport), but the high content of water blocks the cathode GDL’s pores,
hindering mass transport, and reduces the active sites of the CCL. These two effects can be seen in
the Nyquist plot: as the water content increases, the real part of the impedance becomes lower, and at
the same time the spectrum’s amplitude becomes wider (this last effect can be easily detected looking
at both real values and imaginary ones at lower frequencies). The impedance spectra represented
in Figure 2 have been obtained by changing cathodic relative humidity (RHc), a parameter that can
be easily linked to the water content of a PEMFC. At very low current densities (j = 0.2 A/cm2),
lowering the RHc the fuel cell starts suffering from minor to severe dehydration. At high current
densities (j = 1.2 A/cm2) instead, the cell becomes more and more flooded when the degree of
humidification rises.
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Figure 2. Impedance spectra of dried and flooded PEM fuel cells, at j = 0.2 A/cm2 and
j = 1.2 A/cm2 respectively.

2.3. Impedance Spectra of Aged Cells

In addition to the dataset made of EIS spectra obtained from fresh cells, data from an aged cell
has also been used. This cell suffers from electrocatalyst degradation, induced through an Accelerated
Stress Test (AST), which was performed according to the protocol reported by the US Department
of Energy for electrocatalyst degradation. For an ideal electrode, the oxygen reduction kinetics is
described by the Tafel law, which is defined as:

J = Kraγ
O2

exp(− ∆Φ
bORR

) (5)

where the Kr is the kinetic constant, ao2 is the activity of oxygen, γ is the reaction order, ∆Φ is the
electrode potential, and bORR is the Tafel slope. Theoretically, when electrocatalyst degradation occurs,
the result is a reduction in the kinetic constant Kr, related to a decrease in the Electrochemical Surface
Area of the PEMFC. Under the hypothesis of Tafel kinetics for the Oxygen Reduction Reaction, the term
bORR (Tafel-slope) does not change. The Tafel equation is valid when j is far from 0, otherwise a more
complex equation (like Butler–Volmer) must be used. The Tafel-slope term is defined as:

bORR =
RT
βF

(6)

In (6), R is the Ideal Gas Constant, T is the absolute temperature, β is the symmetry factor (a kinetic
parameter) and F is the Faraday constant. Thus, under the hypothesis of fixed current density j, as the
Tafel slope is constant, the spectrum remains the same. In fact, the charge transfer resistance RCT ,
for an electrode with ideal oxygen and ion transport, is defined as:

RCT =
b
j

(7)

The resistance is related to the size of the spectrum, and it depends on the ratio of two constant
values, therefore the spectrum does not change. It is possible to demonstrate that the latter is valid
also when a non-ideal electrode is considered [44]. Theoretically, the fault diagnosis procedure is
not affected by this kind of degradation phenomenon, as the spectra should be the same. However,
in practice there is a marginal variation between the fresh cell’s spectrum and the aged cell’s one
(Figure 3). As already discussed in the literature [45], the latter is associated with the non-uniform
degradation of the cathode catalyst layer. This will affect the precision of the implemented pipeline,
decreasing the overall classification accuracy.
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Figure 3. Comparison between the spectrum of a fresh PEMFC at j = 0.5 A/cm2 and the spectrum
belonging to the same cell with electrocatalyst degradation.

3. Experiment Description

3.1. System Architecture

Four identical MEAs (Membrane Electrode Assembly) have been tested. The MEA is made
up of GDL (Gas Diffusion Layer—SGL29BC), ACL and CCL (Anode and Cathode Catalyst Layers)
and the membrane (PEM: Nafion R© XL). Two gaskets with a thickness of 175 µm each have been
placed between the CCM (Catalyst Coated Membrane, i.e., membrane with catalyst layers) and the
graphite plate. The gasket, manually designed by MRT Fuel Cell Lab’s researchers, guarantees a perfect
coincidence with MEA’s borders. The assembly ends with the graphite flow-field, current collectors
and end-plates connection. The whole structure is kept fixed by six bolts with 12 Nm torque [45].
The system is then connected to the experimental station, which is shown in Figure 4.

Figure 4. System architecture.

The system includes three digital flow meters, used to control gas flow rates (air is fed fully dried,
gas purity is estimated to be 99.999% for nitrogen and hydrogen and 99.995% for the oxygen). It also



Energies 2020, 13, 3643 7 of 19

contains three bubblers that are utilized to saturate the inlet gases flow, which set the relative humidity
of the flows by controlling the dew point temperature. Furthermore, the set-up comprises pressure
transducers—placed at the inlet and at the outlet of the PEMFC (two for the cathode side, and two
for the anode one), thermo-couples inserted in specific seats of the tightening plates and connected
to an acquisition system. Other employed components include a potentiostat, back-pressure valve
(to manage the operating pressure of the system), and the electric load to perform characterization
tests (EIS measurements).

Electrochemical Impedance Spectroscopy (EIS) is an electrochemical technique and it has
been conducted during the polarization test for each current density. The impedance spectra are
characterized by 29 points, each of which is obtained at a specific frequency in the range of 1 Hz
to 20 kHz. These measurements did not allow to obtain a complete spectrum in the Nyquist plot
(lowe frequencies should be considered). However, using only a part of the spectrum can help reducing
the EIS testing time (i.e., time needed to perform the EIS measurements) significantly [44].

3.2. Experimental Procedure

The PEMFC has been firstly initialized following the potentiostatic activation protocol reported
in [46]. The cell has then been activated under galvanostatic (j = 0.5 A/cm2) reference conditions.
The reference conditions are characterized by:

• T = 80 ◦C
• p = 2 barA

• RHanode/cathode = 50%/30%
• Stoichiometry λanode/cathode = 2/4

After twenty minutes of conditioning under steady state operation, the polarization is started
(voltage measurement is steady state after ten minutes) and the reference curve is obtained. Once the
first test is concluded, the operating parameter that has to be tested can be changed, and after another
twenty minutes of conditioning (under steady state operation), the new polarization curve is ready to
be obtained. The operating parameters have been changed one by one and in combinations in order to
perform a sensitivity analysis aiming at finding out the optimal conditions for the PEMFC (i.e., the one
with the highest voltage output, which corresponds to the smallest spectrum in the Nyquist plot).
All of the conducted experiments are listed in Table 1. The experiments have been then repeated in
galvanostatic mode for most of the following current densities:

~j = [0.1, 0.2, 0.5, 0.7, 1, 1.2, 1.5] (8)

As the EIS tests on the above-mentioned cases have not been conducted at all of the mentioned
current densities, number of available EIS tests for each current density is different. Table 2 represents
number of the available fresh cell and aged cell tests for each of the considered current densities.
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Table 1. Experiments carried out with Galvanostatic measurements (for seven different current
densities: j = 0.1, 0.2, 0.5, 0.7, 1, 1.2, 1.5 A/cm2) and related operating conditions.

Name Sample Cell λa λc RHa% RHc% T [◦C] p [bar]

EWII B1 REF 1 B1 2 4 50 30 80 2
EWII B1 AN3 2 B1 3 4 50 30 80 2
EWII B1 CA5 3 B1 2 5 50 30 80 2
EWII B1 RHa80 4 B1 2 4 80 30 80 2
EWII B1 RHa100 5 B1 2 4 100 30 80 2
EWII B1 RHc50 6 B1 2 4 50 50 80 2
EWII B1 RHc80 7 B1 2 4 50 80 80 2
EWII B1 RHc100 8 B1 2 4 50 100 80 2
EWII B1 T60 9 B1 2 4 50 30 60 2
EWII B1 HRH P25 10 B1 2 4 80 50 80 2.5
EWII B1 HRH HL P25 11 B1 3 5 80 50 80 2.5
EWII B1 OPT 12 B1 4 8 80 50 80 2.5
EWII B2 REF 13 B2 2 4 50 30 80 2
EWII B2 RHc50 14 B2 2 4 50 50 80 2
EWII B2 RHc80 15 B2 2 4 50 80 80 2
EWII B2 RHc100 16 B2 2 4 50 100 80 2
EWII B3 REF 17 B3 2 4 50 30 80 2
EWII B3 RHc50 18 B3 2 4 50 50 80 2
EWII B3 RHc80 19 B3 2 4 50 80 80 2
EWII B3 RHc100 20 B3 2 4 50 100 80 2
EWII B4 REF 21 B4 2 4 50 50 80 2
EWII B4 RHc50 22 B4 2 4 50 50 80 2
EWII B4 RHc80 23 B4 2 4 50 80 80 2
EWII B4 RHc100 24 B4 2 4 50 100 80 2
EWII B2 REF aged 25 B2 2 4 50 30 80 2
EWII B2 RHc50 aged 26 B2 2 4 50 50 80 2
EWII B2 RHc80 aged 27 B2 2 4 50 80 80 2
EWII B2 RHc100 aged 28 B2 2 4 50 100 80 2

Table 2. Number of available fresh and aged cell tests for each current density.

Current Density j [A/cm2] Number of Fresh Cell Tests Number of Aged Cell Tests

0.1 22 1
0.2 22 3
0.5 22 3
0.7 23 3
1.0 22 3
1.2 24 1
1.5 16 1

3.3. EIS Testing Time

The required time for conducting the EIS measurements, which is utilized in the implemented
feature and algorithm selection procedure, is a limiting factor. The time needed for conducting a
measurement at a certain frequency is the inverse of that frequency. Therefore, the total required
time is the sum of the inverse values of all of the required frequencies. The obtained value is then
multiplied by a constant r, which is an integer number corresponding to the performed repetitions of
the sinusoidal oscillation. According to the experience of the co-authors (MRT Fuel Cell Lab), r = 3 is
a reasonable value. The overall required time can thus be estimated as:

t = r
n f eature

∑
i=1

1
fi

(9)
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4. Overall Methodology

As was previously explained, the EIS tests have been conducted in different operating conditions
(presented in Table 1) and current densities (reported in Table 2). Since the resulting spectrum for each
test includes m = 29 frequencies and considering the fact that two values ((Z<( fk) and Z=( fk))) are
derived for each frequency fk, the corresponding total number of available features (real and imaginary
values) is equal to 2m = 58. A label (which represents the type of fault or regular operation) is assigned
to each spectrum based on the corresponding expert knowledge (the experience of laboratory’s
research staff gained through experimental activities) employing the cell’s spectrum on the Nyquist
plot. The labels which are given to the spectra, as demonstrated in Figure 5, are as follows:

1. Regular: the system is working under optimized conditions (or very closed to them).
2. Dried: there is evidence of ion conductivity loss, since the spectrum in the Nyquist plot is shifted

to the right compared to the regular one.
3. Flooded: the spectrum’s amplitude has increased. Positive effect: lower HFR. In fact, while the

cathodic GDL’s pores are blocked by water, the membrane conductivity increases due to the high
hydration.

4. Severely Flooded: same effects of the “Flooded” case, but much more emphasized. This effect
can be easily seen at high current densities.

5. Severely Dried: very strong dehydration can be detected when current density is very low
(0.1–0.2 A/cm2).

As the key aim of the present work is recognizing the potential water management issues
(represented by the above-mentioned labels) in PEMFCs employing the EIS spectra, a classification
algorithm is provided with the real and imaginary values extracted for each frequency as inputs and is
trained to estimate the assigned label (targets). Thus, as the algorithm will only require a spectrum to
diagnose the faults, the validity of this procedure can be generalized to any spectrum, independently
of the corresponding operating conditions. Linear Discriminant Analysis [47–49] is utilized as the
classifier in all of the developed pipelines and the corresponding function, provided in the Scikit-learn
free software package [50,51], is accordingly employed. As the procedure is implemented for each
current density independently, the corresponding number of available EIS spectra (number of tests for
each current density that are provided in Table 2) represents the number of rows in the corresponding
utilized matrix, while the columns are the imaginary and real values that are obtained at the chosen
frequencies (the corresponding selection procedure is explained below). Utilizing the EIS data extracted
at a reduced number of frequencies (that would require a lower EIS testing time) facilitates employing
the proposed fault diagnosis methodology in a real-time (in-operando) manner. Therefore, a procedure
is implemented in order to select set frequencies for each current density, while giving a higher
priority to the frequencies with inferior required EIS testing time. Accordingly, considering the notable
difference in the time needed for carrying out the EIS tests at different frequency ranges (as explained
in Section 3.3), the frequencies are first categorized into four clusters:

• f > 1 kHz (8 frequencies)
• f > 100 Hz (15 frequencies)
• f > 10 Hz (22 frequencies)
• f > 1 Hz (29 frequencies)

Figure 6 shows the spectra of labeled samples considering the above-mentioned frequency
clusters (the axis ranges are kept constant in the sub-figures dedicated to different clusters aiming at
demonstrating the relative differences in the corresponding ranges of real and imaginary values).
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Labeled spectra

Figure 5. Labeled spectra in a 3D plot. Two of the three axes are the Nyquist plot’s ones (i.e., real and imaginary)
and the third is the current density j [A/cm2].

(a) f > 1 kHz (b) f > 100 Hz

(c) f > 10 Hz (d) f > 1 Hz

Figure 6. Labeled samples in the Nyquist plot, considering different subsets of frequencies.
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The overall procedure that is performed for each of the considered frequency clusters is
represented in Figure 7. In this procedure, recursive feature elimination is implemented and the
accuracy achieved utilizing different combinations of frequencies (using EIS data obtained at these
frequencies), is determined. For each set of frequencies, employing the formulation provided in
Section 3.3, the corresponding required EIS testing time is then calculated. Next, for each current
density, the set of frequencies utilizing which leads to the highest accuracy is determined. In case
the highest accuracy can be achieved using multiple pipelines, the one which requires the lowest EIS
testing time and the lowest number of frequencies is selected.

The latter procedure is first carried out using a dataset that only includes impedance spectra
obtained from PEMFCs in Beginning of Life (BoL) conditions (fresh cells) and then utilizing the data of
the EIS tests conducted on both fresh and aged cells.

Dataset: labelled impedance
spectra at ji current density

Pre-Processing: Robust Scaler

nfeature = 1

Feature selection: RFE
(Recursive Feature Elimination)

EIS testing time and
accuracy calculation

ji+1

nfeature = nmax ?

nfeature = nfeature + 1

NOYES

Figure 7. Overall methodology explained through a flowchart.

5. Results and Discussion

5.1. Obtained Results Employing the Data Obtained from Tests Conducted on Fresh Cells

The chosen set of frequencies for each current density along with the resulting accuracy and the
determined required EIS testing time, while only employing the cluster of frequencies with f > 1 kHz,
are provided in Table 3. As can be observed in this table, for the current densities of j = 0.1 A/cm2

and j = 0.2 A/cm2, all the labels can be estimated with 100% accuracy. The latter demonstrates that
for these current densities, the HFR (High Frequency Resistance) is sufficient to detect the dehydration
status of the membrane. Furthermore, as a single elevated frequency is only employed in these selected
pipelines, the corresponding required EIS testing time is negligible (<10−3 s). On the other hand,
the measurements conducted at kHz frequencies ( f > 1 kHz) do not provide enough information
to accurately estimate the labels for higher current densities. For these current densities, an average
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accuracy of 69% is reached, requiring an average EIS testing time of 0.0025 s, while six frequencies are
required overall.

Table 3. f > 1 kHz.

j [A/cm2] Accuracy Required EIS Testing Time [s] Frequencies [kHz]

0.1 1.0 <10−3 10.1
0.2 1.0 0.0022 1.3
0.5 0.909 0.0039 1.8, 1.3
0.7 0.739 0.0048 14.2, 10.1, 7.2, 1.8, 1.3
1 0.545 <10−3 10.1

1.2 0.583 0.003 3.6, 1.3
1.5 0.688 <10−3 3.6

Considering all of the frequencies higher than 100 Hz, as demonstrated in Table 4, the overall
achieved accuracy increases (average accuracy: 83.6%). For the low current densities (j = 0.1 A/cm2

and j = 0.2 A/cm2), the accuracy of 100% was already achieved in the previous cluster; thus the
selected frequencies for these current densities are identical to the ones of the previous cluster.
Similarly, for j = 0.7 A/cm2, as a higher accuracy could not be achieved by adding more frequencies,
the same frequencies as those of the previous cluster are selected. The accuracy increases for all of the
remaining frequencies, nevertheless, several frequencies are required for j = 1.2 A/cm2, while an
accuracy of only 75% is achieved in this case.

Table 4. f > 100 Hz.

j [A/cm2] Accuracy Required EIS Testing Time [s] Frequencies [kHz]

0.1 1.0 <10−3 10.1
0.2 1.0 0.0022 1.3
0.5 0.955 0.0197 0.15
0.7 0.739 0.0048 14.2, 10.1, 7.2, 1.8, 1.3
1 0.636 0.0265 10.1, 1.8, 0.12

1.2 0.708 0.0677 14.2, 2.6, 0.30, 0.24, 0.15, 0.12
1.5 0.813 0.0256 14.2, 3.6, 0.12

As shown in Table 5, employing the frequencies higher than 10 Hz is the most promising choice
as an accuracy of 100% can be reached for current densities of j = 0.1, 0.2, 0.5, 1, and 1.2 A/cm2,
while elevated accuracies can be achieved for the remaining ones (95.7% for j = 0.7 A/cm2 and 93.4%
for j = 1.5 A/cm2). Using the frequencies that are selected in this cluster, the required EIS testing time
for all of the considered current densities is less than one second. These results demonstrate that not
all the frequencies need to be considered in order to have an accurate diagnosis and a smaller portion
of the spectrum is sufficient.

Table 5. f > 10 Hz.

j [A/cm2] Accuracy Required EIS Testing Time [s] Frequencies [kHz]

0.1 1.0 <10−3 10.1
0.2 1.0 0.0022 1.3
0.5 1.0 0.5263 7.2, 0.15, 0.087, 0.015, 0.011
0.7 0.957 0.4722 7.2, 0.015, 0.011
1 1.0 0.7990 10.1, 0.61, 0.24, 0.12, 0.061, 0.031, 0.022, 0.015, 0.011

1.2 1.0 0.4718 0.015, 0.011
1.5 0.934 0.6305 5.1, 3.7, 0.15, 0.022, 0.015, 0.011
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As demonstrated in Table 6, utilizing the selected frequencies, while being provided the whole
spectrum, only improves the accuracy at the current density of j = 0.7 A/cm2 (from 95.7% to 100%).
Though, the latter marginal improvement is obtained with the price of increasing the required EIS
testing time from 0.47 s to 0.95 s. The selected frequencies for the other current densities are identical
to the ones obtained for the previous cluster (frequencies higher than 10 Hz). Therefore, it can be
concluded at conducting tests at the frequencies between 1 to 10 Hz (which require a notable EIS testing
time), does not provide a significant benefit for improving the diagnosis of water management faults.
Table 7 summarizes the latter discussion by comparing the average accuracy, the average required EIS
testing time, and the number of required frequencies corresponding to the selected sets of frequencies
of the considered frequency clusters.

Table 6. f > 1 Hz.

j [A/cm2] Accuracy Required EIS Testing Time [s] Frequencies [kHz]

0.1 1.0 < 10−3 10.1
0.2 1.0 0.0022 1.3
0.5 1.0 0.5263 7.2, 0.15, 0.087, 0.015, 0.011
0.7 1.0 0.9532 0.15, 0.0077, 0.0055
1 1.0 0.7990 10.1, 0.61, 0.24, 0.12, 0.031, 0.022, 0.015, 0.011

1.2 1.0 0.4718 0.015, 0.011
1.5 0.934 0.6305 5.1, 3.7, 0.15, 0.022, 0.015, 0.011

Table 7. Results of the testing procedure for fresh Electrochemical Impedance Spectroscopy (EIS) data.

Case Average Accuracy Average Required EIS Testing Time [s] Required Frequencies

f > 1 kHz 0.781 0.0022 6
f > 100 Hz 0.836 0.0210 11
f > 10 Hz 0.985 0.4146 15
f > 1 Hz 0.991 0.4833 16

Most Influential Frequencies

Figure 8 shows the number of times that the data obtained at a certain frequency is utilized
(considering all of the current densities) for each frequency cluster. Thus, it illustrates the most
influential frequencies in the selected frequency sets. For the case of f > 10 Hz, it can be observed that
some frequencies ( f = 43.6, 305.18, 488.28, 976.56, 1831, 2563.5, 14160 Hz) are not useful as they are
never employed. On the other hand, some of the elevated frequencies including 10132, 7202, 3662.1
and 1342.8 Hz are selected in all of the considered cases.

5.2. Fresh and Aged Cells

The same procedure, which was previously applied to fresh cells, is then repeated for a dataset
including both fresh and aged cells. The latter is conducted in order to assess the dependence of
the achieved accuracy and the selected frequencies on cell’s aging. Table 8 summarizes the obtained
results for the considered frequency clusters. Considering f > 1 kHz cluster, the accuracy is lower
than the previous case (68.3% average accuracy vs. 78.1%) due to the fact that in the current density
range between 0.7 A/cm2 to 1.2 A/cm2, the accuracy is around 50%. However, similar to the previous
case, 100% accuracy can be reached for j = 0.1 A/cm2, using only one frequency. The classification
accuracy increases while more frequencies are considered ( f > 100 Hz), reaching 76.8%. To increase
the classification accuracy, lower frequencies need to be employed. As such, using f > 10 Hz
results in an average accuracy of 89.2%, while requiring an average EIS testing time of less than 0.5 s.
The frequencies that are selected while providing the whole spectrum only marginally increase the
accuracy to 90.4%, while resulting in a higher average EIS testing time (0.89 s). Therefore, similar to
the previous case, using the cluster of frequencies between 1 to 10 Hz does not provide any significant
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benefit. For each of the considered frequency clusters, the average accuracy, the average required EIS
testing time, and the number of required frequencies corresponding to the selected sets of frequencies
are reported in Table 9. Figure 9 shows the number of times that a certain frequency is utilized by the
algorithms, for each frequency cluster, demonstrating the most influential frequencies that are selected
for the considered current densities.

Figure 8. Bar chart showing the most promising features, for each of the four studied frequency
clusters. The y-axis represents the absolute frequency for each feature (i.e., number of times that a
certain feature appears).

Figure 9. Bar chart showing the most promising features for the fresh/aged case (for all of the considered
frequency clusters). The y-axis represents the absolute frequency for each feature (i.e., number of times that
a certain feature appears).
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Table 8. Results of the testing procedure for fresh/aged EIS data.

Case j [A/cm2] Accuracy Required EIS Testing Time [s] Frequencies [kHz]

0.1 1.0 <10−3 10.1
0.2 0.8 0.0029 14.2, 7.2, 1.3
0.5 0.8 0.0046 7.2, 5.1, 3.7, 2.6, 1.8

f > 1 kHz 0.7 0.58 <10−3 7.2
1 0.44 0.0016 1.8

1.2 0.4 0.0022 1.3
1.5 0.76 0.0033 14.2, 5.1, 3.7, 1.8

0.1 1.0 <10−3 10.1
0.2 0.88 0.025 14.2, 0.12
0.5 0.8 0.021 5.1, 2.6, 0.15

f > 100 Hz 0.7 0.62 0.020 0.15
1 0.56 0.016 0.15, 0.12

1.2 0.64 0.022 0.15, 0.12
1.5 0.88 0.069 14.2, 10.1–5.1, 1.8, 0.98, 0.49, 0.24–0.12

0.1 1.0 <10−3 10.1
0.2 0.88 0.025 14.2, 0.12
0.5 0.88 0.288 5.1, 0.24, 0.011

f > 10 Hz 0.7 0.88 0.570 0.031, 0.015, 0.011
1 0.84 0.777 10.1, 5.1, 2.6, 1.8, 0.98–0.061, 0.021, 0.015, 0.011

1.2 0.88 0.549 0.98, 0.61, 0.15, 0.061, 0.015, 0.011
1.5 0.88 0.609 0.021, 0.015, 0.011

0.1 1.0 <10−3 10.1
0.2 0.88 0.025 14.2, 0.12
0.5 0.92 0.558 5.1, 0.24, 0.0055

f > 1 Hz 0.7 0.88 0.570 0.031, 0.015, 0.011
1 0.88 3.918 0.011, 0.002, 0.0014

1.2 0.88 0.549 0.98, 0.61, 0.15, 0.061, 0.015, 0.011
1.5 0.88 0.609 0.021, 0.015, 0.011

Table 9. Results of the testing procedure for fresh/aged EIS data.

Case Average Accuracy Average EIS Testing Time [s] Frequencies Required

f > 1 kHz 0.683 0.00222 8
f > 100 Hz 0.768 0.032 10
f > 10 Hz 0.892 0.403 19
f > 1 Hz 0.904 0.890 17

5.3. Discussion

It was demonstrated using the frequencies that are selected while providing the f > 10 Hz
frequency cluster, an elevated accuracy for the case of fresh cells (98.5%) and an acceptable one (89.2%)
for the case of fresh/aged cells can be achieved, while requiring an average EIS testing time of less than
0.5 s in both cases. Therefore, the EIS testing can be conducted at the selected frequencies, while the cell
is in operation, and the implemented procedure can be utilized as a real-time approach for diagnosing
drying or flooding faults with an acceptable accuracy. It should be pointed out that, although the
procedure is conducted at the cell level, the implemented methodology and the determined most
influential frequencies can provide helpful insights and guidelines for conducting real-time diagnosis
at the stack level.

6. Conclusions

In the present work, a methodology for rapid and robust fault diagnosis of PEM fuel cells utilizing
the EIS spectrum was proposed and implemented. In order to reduce the required EIS testing time
(which can facilitate utilization of the proposed method in real-time (in-operando) manner), a feature
selection procedure was implemented. In this context, considering the notable difference between
the required time for conducting EIS tests at different frequencies, the available frequencies were first
categorized into four clusters based on the corresponding orders of magnitude. For each frequency
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cluster and for each specific current density, the achieved accuracy and required EIS testing time of
different sets of frequencies were then determined. The frequency set resulting in the highest accuracy
and requiring the lowest EIS testing time was then selected for each case. In order to take into account
the effect of degradation, the investigation was also carried out using a dataset including both fresh
and aged cells.

It was demonstrated that for the fresh cells, through employing the selected frequencies, the faults
can be diagnosed with an accuracy of 98.5% while for the fresh/aged cells an accuracy of 89.2% can
be achieved. The required EIS testing time in both cases in less than 0.5 s. Therefore, the EIS testing
can be conducted at the selected frequencies, while the cell is in operation, and the implemented
procedure can be utilized as a real-time strategy for diagnosing drying or flooding faults with an
acceptable accuracy. It is worth noting that, although the proposed procedures in the present work
are implemented at the cell level, the developed methodology and the determined most influential
frequencies can provide helpful insights and guidelines for conducting real-time diagnosis at the
stack level. Moreover, since an EIS test conducted at selected frequencies is the only required input
in the implemented methodology, the proposed procedure facilitates an accurate diagnosis of water
management issues independently of the operating conditions that have caused them.
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