
Feedback-Driven Performance and
Precision Tuning for Automatic Fixed

Point Exploitation

Daniele CATTANEO Michele CHIARI Stefano CHERUBIN Antonio DI BELLO and
Giovanni AGOSTA

Dipartimento di Elettronica, Informazione e Bioingegneria – Politecnico di Milano

Abstract. Precision tuning is an emerging class of techniques that leverage the
trade-off between accuracy and performance in a wide range of numerical appli-
cations. We employ TAFFO, a compiler-based state-of-the-art framework that relies
on fixed point representations to perform precision tuning. It converts floating-point
computations into a fixed point version with comparable semantics, in order to ob-
tain performance improvements. Usually, the process of fixed point type selection
aims at the minimization of the round-off error introduced by the precision reduc-
tion. However, this approach introduces a large number of type cast operations,
generating an overhead that may overcome the performance improvements of the
conversion to fixed point formats. We propose a control loop architecture that ex-
ploits the static analyses provided by TAFFO to reduce the number of type cast op-
erations while keeping the error under a given threshold. We evaluate our approach
on three benchmarks of the AXBENCH suite, and we show that in all cases we are
able to achieve performance improvements while keeping the introduced numerical
error below the given tolerance threshold.
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1. Introduction

The scale of computer applications has been steadily increasing across all domains, from
embedded systems to High Performance Computing (HPC). In the past, the Dennard
scaling and Moore’s Law have been the enabling factors for this growth, allowing ap-
plication developers – especially in High Performance Computing – to reduce the effort
spent in fine tuning the resource usage of applications [12]. However, their end has ush-
ered in a new stage in application development, where careful allocation of computa-
tional resources is more rewarding than in the past.

In particular, in HPC application development it is common practice to oversize the
data types with respect to the accuracy of the results needed by the application. In fact,
tuning the size of data types is a time-consuming and error-prone task. In the context
of resource-constrained embedded systems, it is customarily performed manually. How-
ever, in HPC application development such methods are not feasible due to the scale of
the applications and their data sets. To relieve the programmer from this task, we intro-
duced in our previous work [6,4] a compiler-based precision tuning assistant toolchain.
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Subsequent evolutions lead us to the development of the state-of-the-art precision tuner
based on the LLVM framework, TAFFO [7].

TAFFO performs precision tuning mainly by exploiting the fixed point numerical
representation. Fixed point representations are an important resource in application de-
velopment whenever the need to overcome computational resource limitations emerges.
Such representations are predominantly employed in embedded applications. Addition-
ally, they are also exploited as a mean to data size tuning for HPC tasks. TAFFO receives
programmer hints as input and it later infers value range information on the data flows in
a compilation unit. Then, it transforms the code to use the most appropriate fixed point
data types at the intermediate representation level. It is robust enough to support au-
tomated conversion for complex C++ benchmarks without rewriting the computational
kernels into less expressive languages, such as ANSI C. It is also able to operate both on
parallel and serial code.

However, adopting fixed point data types requires fine tuning to achieve performance
benefits. In fact, optimizing the allocation of data types to minimize precision loss will
impact the execution time, because of the increased number of data type casts, i.e. con-
versions between different fixed point types. Additionally, we have to consider that some
architectures are more suited to fixed point computations than others. To address the chal-
lenge of controlling the performance benefits of the floating point to fixed point conver-
sion, we propose as the main contribution of this work a control-loop regulation approach
to adjust the adverse effects of the precision tuning task. This control loop leverages a
performance and accuracy estimation pass, tailored to the TAFFO toolchain. We call this
new step Feedback Estimator. The Feedback Estimator is based on a combination of ma-
chine learning techniques, and traditional static control flow analyses. The control loop
uses the data collected by the Feedback Estimator to improve the floating point to fixed
point transformation, by making the chosen precision mix more homogeneous, thus min-
imizing the number of data type casts. After the aforementioned improvements, the com-
pilation process is repeated, realizing a feedback process between the mixed-precision
compiler transformation and the performance evaluation component.

We verify the effectiveness of the Feedback Estimator through a meaningful subset
of AXBENCH [23], a well-known approximate computing benchmark suite. In all the
benchmarks we considered, we were able to significantly reduce the amount of type cast
operations, without significantly compromising the accuracy of the computation, which
remains within a satisfactory threshold provided by the user. The reduction of the number
of type casts results in a direct reduction of the number of instructions in the program,
thus improving the performances of the converted code.

The rest of the article is organized as follows: in Section 2 we describe the main ex-
isting solutions concerning this problem, in Section 3 we describe the approach we pro-
pose in more detail, in Section 4 we show the results of the application of our technique
to selected AXBENCH benchmarks, and we give our concluding remarks in Section 5.

2. Related Works

This work places itself in the prolific field of reduced precision computation and in par-
ticular, static precision tuning. Tools in the state-of-the-art are aimed at automatically
producing an optimized version of a given numerical program, that sacrifices computa-
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tion accuracy to obtain performance gains. Such tools either target the entire program
[17,15,19,2], or just computational kernels identified by the user [16,22,20,9]. Perfor-
mance gains are obtained by using smaller data types, by using fixed point in place of
floating point computations, or both. In order to apply this transformation without exces-
sively degrading their accuracy, the precision requirements on the numerical computa-
tions must be evaluated, either dynamically [8,19], or statically [9]. An instruction-wise
estimation of such requirements allows a very tailored choice of the data types to be used,
allowing to minimize data width while keeping a sufficient accuracy. However, this may
result in a very heterogeneous precision mix, which requires a very frequent introduc-
tion of cast instructions (i.e. bit shifts, when using fixed point types), every time a type
mismatch arises in the data flow graph. As a result, the performances of the optimized
code degrade, possibly nullifying the gains caused by smaller type width. Also, a high
variety of data types in the precision mix may decrease the vectorization opportunities
for architectures supporting SIMD instructions.

Different approaches have been proposed in the literature to measure and to limit this
overhead. FRIDGE [16], Precimonious [22], CRAFT [18], and PetaBricks [2] perform
a dynamic estimation of the obtained performance gains by executing and profiling the
optimized code on a representative input dataset. This solution may, however, not always
be feasible, due to the time required to perform the profiling, or to the unavailability of
a sufficiently representative input dataset. Alternatively, the overhead can be estimated
a priori via heuristics, such as the number of cast instructions introduced by the code
conversion. For example, FPTuner [8] exposes a user-defined threshold for the amount
of type casts that the tool may insert into the code. This approach has the drawback of
requiring a certain skill for the user to pick the threshold. Autoscaler for C [17] and other
works [19] iteratively optimize the fixed point code by reordering instructions to remove
the shift operations whenever possible. Daisy [9] estimates the profitability of type trans-
formations by means of a cost function based on the number of cast instructions. Finally,
HiFPTuner [15] minimizes the number of cast operations by building a data-dependency
tree, and trying to assign the same data type to all values in the same cut of the tree.

An excessive reduction of precision mix heterogeneity may severely degrade compu-
tation accuracy. To pursue a reasonable trade-off between these two goals, precision tun-
ing tools need to estimate the numerical error introduced by the transformation. FRIDGE,
Precimonious, CRAFT, Autoscaler for C, and HiFPTuner decide whether the accuracy
degradation is acceptable by performing an explorative run of the reduced precision ver-
sion on a representative input dataset. The reliability of this approach depends on the ex-
tent to which the validation dataset covers the range of possible real inputs. Other tools,
such as Daisy, perform a conservative static estimation of the error bounds by means of
error propagation techniques.

3. Proposed Solution

We propose an extension of the TAFFO framework that implements a control loop regula-
tion to adjust the effects of the precision tuning task. TAFFO is composed by five stages,
namely code pre-processing, value range analysis, data type allocation, code conversion,
and feedback estimation. As shown in Figure 1, our control loop design uses the feedback
estimation stage to understand whether the proposed mixed precision version should be
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Figure 1. A flow-chart detailing the overall architecture of TAFFO. The extension with the control loop regu-
lation over the latest components of the toolchain is highligthed in red.

improved or not. The control loop acts on the data type allocation stage. In particular, we
expose a parameter q from that stage that represents the granularity of the bit partitioning
for the fixed point data types.

The goal of this control loop regulation is to maximizing the performance improve-
ment while keeping the error within an acceptable threshold. This task entails the min-
imization of the number of type cast operations in the final mixed precision code. We
consider the number of type casts that are statically present in the program, as opposed
to the number of type casts actually executed. The trivial solution of this minimization
problem would be an uniform bit partitioning across the whole program. However, the
uniform bit partitioning in the data type allocation stage would significantly impact on
the error, which may exceed the given threshold. TAFFO already provides a fine-grained
bit partitioning in the data type allocation stage. We aim at iteratively reducing the gran-
ularity of this allocation to limit the number of bit shift instructions. This new parameter
q of the data type allocation can be interpreted as a similarity threshold. Whenever the
distance between two fixed point bit partitioning p1 and p2 is lower than q, then p1 and
p2 can be merged into a single bit partitioning p12.

3.1. Similarity distance

Let p1 and p2 be two fixed point bit partitionings of the same total width, and let f1 and
f2 be their respective number of fractional bits, defining the place of the decimal delim-
iter. The similarity distance between them is defined as | f1− f2|. This definition of the
distance between two types allows the data type allocator to remove type cast instruc-
tions while keeping a limit on the additional error introduced. The order of magnitude
of the latter is directly proportional to q, the maximum distance between two types that
allows them to be merged into a single one. The resulting type is the one among the two
that has the highest number of integer bits (and so the minimum number of fractional
bits), so that no potential overflows are introduced.

3.2. The Feedback Analyses

TAFFO implements two kinds of analyses in its feedback estimation step. The first one
is a functional analysis of the mixed precision code. It is named Error estimation and
it evaluates the impact of the round-off error due to the real number representation for
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each intermediate and output value. It propagates rounding errors represented as Affine
Forms [11,10], based on the variable ranges estimated by the value range analysis com-
ponent. The second analysis classifies the mixed precision version on the basis of the
expected speedup with respect to the original version. This performance estimation step
predicts whether the mixed precision version is going to be much slower (speedup < 0.8),
much faster (speedup ≥ 1.2), or almost the same of the original version. It is based
on a Gradient Boosting classifier [14], provided by the machine learning framework
scikit-learn [21].

Although the error estimation provides a conservative over-approximation of the
round-off error, it captures the trend of the actual round-off error at runtime. Figure 2,
Figure 3, and Figure 4 reflect this property. We want to save compilation time by avoid-
ing the code generation and execution of mixed precision versions that are likely to be
not profitable. Therefore, the minimization of the estimated error is a good proxy for
the minimization of the actual error at runtime. On the contrary, the TAFFO performance
estimation only provides a coarse-grained classification. The difference between the op-
timal solution and a solution that is close to the optimal is not likely to be captured by
this classification. Thus, the TAFFO classification does not represent a metric which is
sufficient to drive the regulator from the performance point of view.

We compute the number of type cast instruction that are removed by the merge
of fixed point bit partitioning in the data type allocation stage by using the exposed
parameter q. This metric is monotonous non-decreasing with respect to q. As this metric
represents the number of instructions that were removed from the application, we design
an heuristic regulation function that assumes a positive correlation between the number
of removed type cast and the speedup.

3.3. Regulation Policy

The purpose of the regulation policy is to try to achieve a significant speedup, while
maintaining the error within acceptable bounds. The user is required to provide a bound
emax for the maximum acceptable absolute error on the output values. Then, two different
settings are available for the policy: it can be set to either maximize speedup, or minimize
error. In the former case, it explores values of q starting from q = 32, and decreases q
until the estimated error becomes lower than emax. If the speedup is deemed negative at
q = 32, or if it is still negative when the error reaches emax, it means it is not possible to
achieve a speedup while keeping the error acceptable. In this case, the program is not con-
verted to fixed point format. The pseudocode in Algorithm 1 formalizes this description.

Algorithm 1.: Performance Maximization

q← 32
error← estimate error(q)
speedup← estimate speedup(q)
while error > emax and speedup == faster do

q← q−1
error← estimate error(q)
speedup← estimate speedup(q)

end while
if speedup == faster and error ≤ emax then

return q
else

return −1
end if

Algorithm 2.: Error Minimization

q← 0
error← estimate error(q)
speedup← estimate speedup(q)
while error ≤ emax and speedup �= faster do

q← q+1
error← estimate error(q)
speedup← estimate speedup(q)

end while
if speedup == faster and error ≤ emax then

return q
else

return −1
end if
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The setting that minimizes error is essentially symmetric, since it starts from q= 0, and it
increases it until the estimated speedup becomes greater than 1.2, while the error remains
≤ emax, as we can see in Algorithm 2.

4. Evaluation

We evaluated our feedback-driven approach on three benchmarks form AXBENCH [23],
a popular approximate computing benchmark suite. The benchmarks we chose, which
are the implementations of real-world numerical algorithms from different domains, are
Black-Scholes, FFT and K-means. Below we describe the results we obtained for each
benchmark, and the behavior of the regulation policy.

4.1. Black-Scholes
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Figure 2. Measured and estimated error for the Black-Scholes benchmark.

Black-Scholes is a financial application that numerically computes the equation for
the value of European call options according to the Black-Scholes model of a financial
market. Its input dataset consists of 48,000 options. The accuracy of the optimized ver-
sion is evaluated by computing the average absolute error of its output with respect to
the floating point version.

Figure 2 shows the measured (left) and estimated (right) absolute errors with respect
to parameter q. Note that the feedback analysis overestimates the absolute error by two
orders of magnitude, which is in line with other results obtained with the technique we
used [10]. Nevertheless, the estimated error consistently follows the shape of the mea-
sured one when varying parameter q. In the few cases it does not, the error bound is
still conservative. Thus, it is possible to use it to tune parameter q, in order to improve
performance. The performance estimator predicts a positive speedup for all values of q.
If the regulation policy is set to maximize accuracy, the framework chooses q = 0 as the
final parameter setting. If, on the contrary, it is set to maximize performance, it chooses
q = 32, as the estimated error remains acceptable.

The number of removed casts, which is shown in Figure 5, increases with q, and its
variation with respect to q is consistent with the absolute error. When q = 32, all casts
are removed, which ensures that there is a performance improvement, due to the lower
number of instructions involved in the computation. In all benchmarks, the maximum
value of q is 32, because this is the width of all fixed point data types used.
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Figure 6 shows the relation between the number of removed casts and the measured
relative error on the output. Clearly, from the point of view of numerical accuracy Black-
Scholes is not very sensitive to the removal of cast instructions, as its relative error re-
mains well below 1%, even when removing all casts. This allows the optimized version
of the benchmark to achieve the maximum performance improvement.

4.2. FFT
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Figure 3. Measured and estimated error for the FFT benchmark.

FFT is an implementation of the Radix-2 Cooley-Tukey Fast Fourier Transform,
an algorithm widely used in signal processing. It receives as an input signal a discrete
rectangular wave of period K and duty cycle 1% in the time domain, and converts it into
the frequency domain. Again, the output accuracy is measured by computing the absolute
error.

The measured and estimated errors are reported in Figure 3. This time, the esti-
mated error becomes extremely high for q ≥ 4, exceeding the user-defined error thresh-
old, which is emax = 50Hz, corresponding to a relative error around 1%. The regulation
policy chooses q = 3 when optimizing performance, thus removing around 19% of cast
instructions. This is a rather significant improvement, even if the value of q remains low.
Figure 6 shows how the measured relative error approaches and becomes greater than
1% as the amount of removed casts gets higher than around 19%.

Instead, q = 0 is chosen when optimizing error, since the speedup due to the sole
conversion of floating point computations to fixed point types is still estimated as high.

Note that, according to Figure 5, even with q = 32, only 37.5% of the cast instruc-
tions are removed. This is due to the fact that the data type allocation stage always re-
frains from merging two types when this operation could potentially cause overflows dur-
ing the execution, according to the value ranges estimated for each variable. This makes
sure the accuracy reductions due to the optimization are gradual, and do not compromise
the correctness of the program completely.

4.3. K-means

K-means uses a popular machine learning algorithm to classify pixels from an image into
a user-specified number of clusters. As an input dataset for its evaluation, we use the one
provided by AXBENCH, i.e. a set of RGB pictures. The error introduced by the fixed-
point optimization is measured and estimated on the Euclidean distance between single
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Figure 4. Measured and estimated error for the K-means benchmark.
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Figure 5. Percentage of type cast instructions removed for all valid values of q, with respect to the number of
type casts when q = 0.

pixels and cluster centroids. The distance results from the main computational kernel of
the application, and it determines the classification of each pixel in its cluster. Its error
is thus significantly representative of the cluster misclassification rate introduced by the
optimization.

In this case, the only significant change in accuracy occurs between q = 18 and q =
19, for both the measured and the estimated error. The chosen error threshold is emax =
2 · 10−2, and the speedup is always estimated greater than 1.2. Therefore, the policy
chooses q = 0 when optimizing for accuracy, and q = 18 when optimizing for speedup,
thus removing 26% of the cast instructions. The number of removed cast instruction is
sensible for this benchmark, too. Again, a number of cast instructions cannot be removed
even with q = 32, due to overflow concerns.

5. Conclusion

In this paper, we presented a major extension of the TAFFO framework for precision tun-
ing. In particular, we introduced a control loop for data type selection, which is governed
by a feedback estimation component. The proposed modifications enable TAFFO to re-
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Figure 6. Measured relative error with respect to the amount of cast instructions removed.

duce the number of data type casts. This effect is achieved by merging similar fixed point
configurations whenever the impact of such merge is zero or particularly small. This
feature enables significant performance improvements. An experimental campaign car-
ried out on the AXBENCH benchmark suite for approximate computing, restricted to the
benchmarks that include significant floating point computations, shows the effectiveness
of the proposed approach. Indeed, TAFFO is able to explore the approximation options, to
correctly estimate the error introduced by different levels of optimization (corresponding
to the aggressiveness of the data type casts removal), and to identify the best solution
in performance at the requested accuracy level. As a result, when imposing an accuracy
threshold of 1% numerical error, TAFFO produces an optimized version with a number
of cast instructions between 19% and 100% lower than the baseline version with the de-
fault precision mix, resulting in a performance speedup, due to the reduced number of
instructions.

As future development, we plan to extend the set of data types managed by
TAFFO with the half-precision floating point bfloat16 [1] and arbitrary precision data
types [13,3]. This extension entails the porting of all the analyses and transformations
to generic data types, but will expand usefulness of TAFFO to many HPC use cases,
such as simulations of chaotic systems. An additional development line involves the cou-
pling of the TAFFO framework with a dynamic partial re-compilation framework such as
LIBVC [5] to implement dynamic precision tuning.
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