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Abstract

In-situ layerwise imaging in laser powder bed fusion (L-PBF) has been implemented by many system de-
velopers to monitor the powder bed homogeneity. Increasing attention has been recently devoted to the
possibility of using the same sensing approach to detect also in-plane and out-of-plane geometrical distor-
tions of the part while it is being produced. To this aim, seminal works investigated the suitability of various
image segmentation algorithms and assessed the accuracy of layerwise dimensional and geometrical measure-
ments. Nevertheless, there is a lack of automated methods to identify, in-situ and in-process, geometrical
defects and out-of-control deviations from the nominal geometry. This study presents a methodology that
combines an active contours methodology for image segmentation with a statistical process monitoring ap-
proach suitable to deal with complex geometries that change layer by layer. The proposed approach enables
a data-driven and automated alarm rule to detect the onset of geometrical distortions during the build by
comparing the slice contour reconstruction with the nominal geometry in each layer. Moreover, by coupling
edge-based and region-based segmentation techniques, the method is sufficiently robust to be applied to
imaging and illumination setups that are already available on industrial L-PBF systems. The effectiveness
of the proposed approach was tested on a real case study involving the L-PBF of complex Ti6Al4V parts
that exhibited local geometrical distortions.

Keywords: Additive manufacturing, image segmentation, in-situ monitoring, geometrical distortion

1. Introduction

The layerwise production paradigm in powder bed
fusion processes enables the opportunity to gather
a large amount of data while the part is being pro-
duced, which can be used to support qualification
procedures and to anticipate the detection of defects
and unstable process states [1, 2]. In laser powder
bed fusion (L-PBF), it is possible to measure several
quantities of interest at different levels and with dif-
ferent sensing methods [3]. The first level regards

∗Corresponding author, marcoluigi.grasso@polimi.it

the acquisition of images of the entire powder bed,
possibly before and after each recoating. A second
level regards the measurement of so-called “process
signatures” during the melting phase of each scanned
track. This usually entails high-speed video imaging
methods to capture fast and transient phenomena re-
lated to the cooling history or the ejection of process
by-products. One last level regards the monitoring of
the salient melt pool properties, which is commonly
achieved by using co-axial sensing methods exploit-
ing the optical path of the laser. This study focuses
on the first level.
In this framework, increasing attention has been de-
voted to the use of layerwise images of the pow-
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der bed either to identify recoating errors and pow-
der bed in-homogeneities [4, 5, 6] or to identify
surface and geometrical defects in the printed area
[7, 8, 9, 10, 11, 12, 13]. Some of these methods are
particularly appealing for a direct industrial imple-
mentation, as in most cases they exploit in-situ sens-
ing architectures that are either already available in
industrial L-PBF systems or easy to integrate [3].
Various authors pointed out that powder bed images
acquired after the laser scan of each layer could be
used to detect both in-plane and out-of-plane defects.
Various seminal studies focused on the identification
of recoating errors and powder bed inhomogeneities
by using layerwise images gathered after the pow-
der recoating operation [4, 5, 6], and some of these
methods are already implemented by most L-PBF
system developers. Another stream of research re-
gards the detection of out-of-plane irregularities in
the printed area, like so-called super-elevated edges,
and the measurement of the surface topography of
the slice [9, 10, 14, 15, 16, 17, 18, 19]. This stream is
motivated by the fact that irregular surface patterns
may introduce an undesired variability in the local
powder thickness, affecting the actual energy density
provided to the material. Surface irregularities may
also interfere with the recoating operation, producing
additional defect propagations within the build area.
This study focuses on a different problem, namely the
in-situ detection and characterization of in-plane ge-
ometrical deviations. In this framework, the seminal
study of Foster et al. [4] demonstrated the feasibility
of in-situ 3D reconstruction of the part geometry by
segmenting layerwise images. As pointed out by Cal-
tanissetta et al. [12], part dimensions and geometries
measured in-situ may be not representative of the
final dimensions and geometry of the as-built part,
as some deviations, including shrinkage and thermal
stress-induced distortions, may be not captured on a
layer-by-layer basis. However, when a major depar-
ture from the nominal shape is observed in one layer,
it is worth signalling as soon as possible, since it may
indicate a defect that cannot be recovered as the pro-
cess goes on.
Aminzadeh [20], Aminzadeh and Kurfess [11] inves-
tigated the accuracy of in-situ contour detection in
L-PBF by comparing the identified contours against

a manual segmentation applied to the same images.
The segmentation approach proposed by the authors
combined histogram-based thresholding with image
pre-filtering and morphological operations. Caltanis-
setta et al. [12] presented an in-situ measurement per-
formance characterization analysis based on a differ-
ent family of image segmentation methods, i.e., active
contours [21]. Caltanissetta et al. [12] used ex-situ
optical measurements as ground truth to determine
the accuracy of layerwise contour detection. They
pointed out that the pure measurement error was
up to one order of magnitude lower than the total
measurement variability affected by part-to-part and
build-to-build variations, showing that in-situ recon-
structions could be adequate for macro-geometrical
distortion detection.
Other authors combined contour detection with sur-
face pattern analysis for out-of-plane defect detection
and for layerwise topography reconstruction. Abdel-
rahman et al. [22] proposed a method to automat-
ically detect surface anomalies in layerwise images
related to uneven surface patterns within the laser
printed area. They applied the active contours algo-
rithm to register the nominal slice contour to in-situ
images in a pre-processing phase. Li et al. [8] pro-
posed the active contours methodology to identify
the region of interest consisting of the printed area
within the layer, and then a topography map was
estimated via fringe projection coupled with stereo
imaging within that region.
In all the aforementioned studies, an accurate con-
tour detection of the printed slice was needed, ei-
ther to directly determine the presence of in-plane
distortions or to identify the region of interest for
the following application of surface pattern analysis
methods. In this framework, one open issue consists
of the lack of effective and robust methods for con-
tour detection of complex geometries in L-PBF lay-
erwise images. Indeed, the seminal studies that in-
vestigated the accuracy of in-situ reconstructed con-
tours involved simple and layerwise invariant shapes
[12, 11]. As shown in Figure 1, segmentation meth-
ods previously proposed in the literature [12, 22] may
fail in the presence of more complicated geometries
and images gathered with industrial settings. Figure
1A shows a layerwise image acquired with the pow-
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der bed camera installed on an EOS M290 during
the production of a complex shape. Figure 1B and
Figure 1C show, respectively, the slice contour recon-
struction with the region-based methods proposed by
Abdelrahman et al. [22] and Caltanissetta et al. [12].
In both cases, the contour reconstruction is poorly
representative of the real slice geometry, especially
in critical features like thin walls. As a matter of
fact, layerwise images in L-PBF exhibit several chal-
lenges, e.g., noisy patterns, non-homogeneous pixel
intensity patterns and not well-defined edges of fore-
ground areas, which may limit the performances of
image segmentation techniques, including traditional
active contours-based methods.
A further open issue regards the lack of methods to
automatically identify and signal a deviation between
the in-situ reconstructed contours and the nominal
geometry of the slice. Although control charts have
been proposed in previous studies to monitor the
powder bed homogeneity [6], there is a lack of such
tools for in-line monitoring of the printed geome-
try. The contribution of the present study is aimed
at specifically filling this gap by proposing a novel
methodology that combines a robust image segmen-
tation approach with a statistical process monitor-
ing technique for automated in-situ detection of ge-
ometrical distortions. The proposed approach relies
on an active contours formulation that combines the
benefits of both edge-based and region-based seg-
mentation methods [23] instead of relying only on
region-based descriptors as done in previous studies
mentioned above. The inclusion of local pixel inten-
sity gradients into the active contours energy min-
imization function is expected to make the image
segmentation more robust to illumination conditions
and machine vision equipment available in industrial
systems and more suitable to deal with complicated
geometries. In-situ reconstructed contours are then
aligned and compared against the nominal geometry
of the slice leading to a deviation map that can be
synthesized into a univariate deviation metric. A con-
trol charting scheme is then applied to this metric to
automatically signal any out-of-control geometrical
distortion by taking into account the natural layer-
by-layer variability of the deviation measurements.
To this aim, an adaptive control chart is proposed to

deal with geometries that continuously change from
one layer to another.
The method was tested on a EOS M290 by using the
powder bed imaging already available in the system.
An experimental study was carried out by produc-
ing a complicated geometry with different orientation
and support configurations, to induce the occurrence
of geometrical errors and demonstrate their in-situ
detectability. A further experimentation, involving
simpler specimens, was performed to characterize the
performances of the proposed approach in terms of
false alarm rate.
Section 2 presents a motivating example that is used
as real case study to illustrate and test the method.
Section 3 presents the proposed methodology. Sec-
tion 4 describes the achieved results and Section 5
concludes the paper.

2. Test case

An experimental study was carried out by producing
a specimen specifically designed to include various
complex geometrical features like thin walls, acute
corners, massive parts with internal holes, overhang
regions, etc.

✿✿✿✿
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✿

to test the suitability of
the proposed approach in the presence of a com-
plex geometry that evolves layer by layer,

✿✿✿

but
✿✿✿✿
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distortions
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✿✿
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consequence
of the geometry itself

✿✿✿
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✿✿✿

its
✿✿✿✿✿✿✿✿✿✿

orientation
✿✿✿✿✿✿

within
✿✿✿✿
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✿✿✿✿✿

build.
✿✿✿✿✿✿✿✿✿

Indeed,
✿✿✿✿
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✿✿✿✿✿

case
✿✿✿✿✿✿

study
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿✿

conceived
✿✿✿

to

✿✿✿✿✿

assess
✿✿✿✿
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✿✿✿✿✿✿✿✿✿✿✿✿✿

performances
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

proposed
✿✿✿✿✿✿✿✿✿

approach

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

presence
✿✿✿

of
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

in-control
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿
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✿✿✿✿✿✿✿✿✿

(defective)
✿✿✿✿✿✿✿

shapes.
Figure 2 (left panel) shows the test specimen in two
different orientations with the corresponding sup-
ports. Orientation 2 required a much larger support
area than orientation 1, and it was also expected to
be more critical in terms of possible geometrical dis-
tortions. Figure 2 (right panel) shows how different
replicates of the test specimen were placed in the 250
x 250 mm build area of an EOS M290 L-PBF system.
Orientations 1 and 2 were replicated three times (dif-
ferent replicates were indicated with the capital let-
ters A, B and C). Three additional replicates of the
test specimen, namely 3A, 3B and 3C, were included

3



Figure 1: Original layerwise image acquired on a EOS M290 (A), contour reconstruction by means of the active contours
algorithm used in Abdelrahman et al. [22] (B), contour reconstruction by means of the active contours algorithm used in
Caltanissetta et al. [12] (C)

into the build with a 45◦ orientation. In this study,
only parts with orientation 1 and 2 were included into
the analysis, as they were the only ones that exhib-
ited geometrical distortions at the end of the process.
However, additional results are made available by the
authors upon request.

The build was produced by using a Ti6Al4V ELI
gas atomized powder with average grain size lower
than 45µm supplied by TLS Technik. An EOS
M290 equipped with an embedded powder bed cam-
era mounting a 1280 x 1024 pixels sensor was used.
Default process parameters defined by the AM ser-
vice bureau that hosted the experimentation for the
production of Ti6Al4V parts with this L-PBF system
were applied.
Figure 3 shows a scheme of the placement of the
powder bed camera and the low angle side illumi-
nation source already available in the machine. The
same embedded camera of the EOS M290 was used
in Scime and Beuth [9] for anomaly detection in the
pixel intensity patterns of layerwise images. With
this configuration, after perspective correction, crop-
ping and rescaling, layerwise images of pixel size
125 µm/pixel were obtained. It is worth noticing that
a spatial resolution in the order 100-400 µm/pixel is
representative of layerwise imaging implementations
in industrial L-PBF systems, but lower than the one
achieved in other studies that exploited ad-hoc pro-

totype systems or external sensor integration into an
existing machine [3].
The available illumination configuration on the EOS
M290 is appropriate for the detection of out-of-
plane distortions and irregularities in the powder bed
thanks to the low angle from the baseplate, but it
is not necessarily the best illumination condition for
image segmentation [12]. These experimental set-
tings were chosen in order to determine the suitability
and robustness of the proposed approach in a real in-
dustrial environment. Improved image segmentation
and in-situ detection of geometrical distortions are
expected if ad-hoc sensing and illumination sources
are used. However, in that case, a modification of the
L-PBF system hardware is needed.

3. Methodology

Figure 4 shows the scheme of the proposed method-
ology, which includes four major steps, i.e., image
pre-processing, image segmentation, deviation map
estimation and statistical monitoring of the devia-
tion from the nominal geometry. The following sub-
sections describe these four steps with examples from
the case study introduced in Section 2.
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Figure 2: Designed parts and their placement within the build area

Figure 3: Powder bed camera placement

3.1. Image pre-processing

The layerwise image acquired at the end of the L-
PBF of the current layer and before the recoating
of the next layer needs to be pre-processed in order
to enhance the results in following segmentation and
analysis steps. In this study, it is assumed that the
camera perspective correction and the alignment be-
tween in-situ images and the nominal mask of the
slice in each layer are performed during the camera
calibration phase. When embedded cameras avail-

able in L-PBF systems for powder bed imaging are
used, the output images made available to the user
are usually already calibrated and aligned. If not,
standard camera calibration procedures and image
alignment algorithms may be applied. The reader is
referred to Szeliski [24], Avants et al. [25] for an intro-
duction to these methods. Figure 5 shows an example
of layerwise image (after camera perspective correc-
tion), the corresponding mask showing the nominal
shape of the printed slice and their superimposition,
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Figure 4: Flowchart of the proposed methodology

which highlights the proper alignment between the
image and the mask.

In order to enhance the identification of the con-
tours between the foreground (the slices scanned by
the laser) and the background (the powder bed) a
smoothing operation is usually needed, which im-
proves the estimation of local intensity gradients and
filters out possible outliers. In this study, the layer-
wise images were smoothed by means of a Gaussian
filter with σ equal to 1, in both directions. A com-
parison between the original image (a detail) and the
smoothed image is shown in Figure 6B.

As far as layerwise L-PBF images are concerned,
one additional pre-processing step may be needed de-
pending on the scanning strategy adopted for the pro-
duction of the part. If the so-called “stripe scan” or
“island scan” methods are applied, an offset is left be-
tween adjacent stripes or islands (see the highlighted

regions in Figure 6). This typically results in a dis-
continuity of pixel intensities within the foreground
area along the borders of the stripes or the islands.
These internal discontinuities are visible in Figure 6,
since the stripe scan strategy was used to produce the
specimens. If traditional edge detection and image
segmentation methods are applied to an image like
the one shown in Figure 5, the offset lines could be
identified as contours of the segmented region, lead-
ing to a local mis-detection of the actual contours of
interest. To avoid this effect, the following approach,
which exploits a local pixel intensity correction to
“mask” the presence of stripe discontinuities in the
image, is proposed. The underlying idea consists of
identifying the regions of interest corresponding to
these border lines and replace the original intensity of
the pixels with a constant intensity value closer to the
average intensity of the foreground area. This miti-

6



Figure 5: Example of an acquired image (A) and its nominal mask (B), and the contour of the mask superimposed on the
original image (C)

Figure 6: Detail of one original image (A) and corresponding smoothed image (B); the yellow box identifies a discontinuity
between two adjacent stripes

gates the presence of abrupt gradient changes within
the scanned area and improves the following image
segmentation result. In this phase, the nominal mask
is used to define a preliminary identification of the
foreground area where the stripe offset correction has
to be applied. The first step consists of finding an es-

timation of the probability density function (PDF)
of the pixel intensity values inside the nominal mask.
The kernel density estimation [26] was used to this
aim. An example of the estimated density function,
p(t), is shown in Figure 7. A Gaussian kernel with
bandwidth set to 1% of the range of the available val-
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ues was used. A sensitivity analysis with respect to
this parameter is reported in Appendix A.
In order to split the PDF into dark and bright levels,
the minimum of the first derivative of the estimated
PDF, denoted as “infl” (since it is an inflection point),
is computed as:

tinfl = argmin
t

dp(t)

dt
= argmin

t
p′(t) (1)

This inflection value in the example shown in Figure 7
is indicated by a red dot. Then, the estimation of the
density curve of dark pixel intensities is computed as
a linear approximation of the PDF on the left side of
the inflection point:

pdark(t) =






p(t) if t ≤ tinfl
max {0, p′(tinfl)

· (t− tinfl) + p(tinfl)}
if t > tinfl

.
(2)

The density of bright pixel intensities can be com-
puted as pbright(t) = p(t) − pdark(t), instead. The
estimated densities are shown in Figure 7B. It should
be noted that, since the integrals of the density curves
of dark and bright pixel intensities are not equal to
one, these curves are not probability functions.
A global threshold, tth, corresponding to the dashed
dark line in Figure 7B, is finally used to segment the
region within the nominal mask into two areas, one
corresponding to dark pixels and one corresponding
to bright pixels. This threshold can be set at the zero
of the function pdark(t)− pbright(t).

Figure 8A highlights the areas of the image corre-
sponding to bright pixels according to the segmen-
tation based on the aforementioned global threshold.
The original intensity of all the pixels belonging to
the bright areas is then replaced by a gray value
equal to the quantile of order 0.1 computed using
the pixels intensity of the original image within the
nominal mask. This results into the image shown in
Figure 8B. It is worth mentioning that the isolation
of bright pixels might include not only the stripe bor-
ders, but also sparse bright pixels within the scanned
area and along its contours. Changing the intensity

of these sparse pixels by means of the pixel intensity
correction operation here proposed is expected to fur-
ther improve the segmentation results, as it avoids
abrupt intensity changes in the region of interest.
The choice of the quantile to determine the replace-
ment value for selected pixels can be customized and
tuned depending on the illumination conditions and
the pixel intensity patterns in the available images.

3.2. Image segmentation

Once the image pre-processing has been completed,
the segmentation of the foreground area correspond-
ing to the printed slice is applied. Previous stud-
ies [12, 22, 8] showed that, among all the possible
methods that can be applied to this aim, the ones
based on active contours are suitable to deal with
the specific challenges imposed by layerwise images
in L-PBF. Active contours are iterative segmenta-
tion methods: starting from a first boundary defi-
nition in the form of a closed curve, the shape of this
boundary is iteratively changed and adapted by ap-
plying shrink/expansion operations called “contour
evolution” driven by the minimization of an energy
functional. In L-PBF images, the nominal geometry
of the slice (i.e., the nominal mask) can be used as
starting boundary. The level set formulation [27] is
then used to solve the active contour algorithm. In
the literature, active contours methods for image seg-
mentation can be divided into two main classes: edge-
and region-based methods [28]. Edge-based meth-
ods work by finding discontinuities in the intensity of
an image, where an edge consists of a boundary be-
tween two regions characterized by different proper-
ties (e.g. pixel intensities). Region-based techniques,
instead, exploit a certain region descriptor to guide
the contour evolution. Relying on local derivative es-
timation, edge-based methods may be less effective
than region-based ones in the presence of weak re-
gion boundaries and noisy patterns that are common
in L-PBF layerwise images. On the contrary, edge-
based methods are more accurate than region-based
ones if the starting contour is close to the true one,
as typically happens in L-PBF layerwise images not
affected by defects.
All previous studies in L-PBF applied different vari-
ants of region-based level set methods [12, 22, 8]. A
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different approach was proposed by Liu and Peng
[23], Soomro et al. [28], i.e. an active contours ap-
proach that allows one to balance both intensity gra-
dients and region descriptors in the estimation of the
contours. Since it combines the benefits of both edge-
based and region-based methods, it is believed to be
more effective in segmenting noisy and low contrast
images like the ones acquired in L-PBF. Moreover,
combining the potentials of the two methods it is also
believed to be more appropriate to deal with compli-
cated nominal geometries that change from one layer
to another. The working principle of the method is
briefly reviewed hereafter. Additional details are pro-
vided in Soomro et al. [28]. For a review of region-
based methods applied in previous studies the reader
is referred to Caltanissetta et al. [12].
The contour is represented as the zero level set of a
signed distance function, ϕ(x), which is defined as:

ϕ(x) =

{

−d(x, ∂Ω) if x ∈ Ω

d(x, ∂Ω) if x ∈ Ω
(3)

where d(x, ∂Ω) is the distance between any pixel x
in the image and the boundary ∂Ω of the foreground

region Ω, whereas Ω is the negation of Ω, i.e. the
domain of pixels outside the foreground region. Let
ϕ(x, t = 0) be an initial signed distance at iteration
t = 0 computed using the nominal shape of the slice.
Starting from the nominal slice contour, the contour
evolves according to:

∂ϕ(x, t)

∂t
=δε(ϕ(x)) ‖∇ϕ(x)‖

{

− w g(‖∇I(x)‖)

·

[
∫∫

Ω

K (‖x− y‖) |I(x)− f1(y)|
2
dy

−

∫∫

Ω

K (‖x− y‖) |I(x)− f2(y)|
2
dy

]

+ (1− w)

[

g(‖∇I(x)‖) div

(

∇I(x)

‖∇I(x)‖

)

+∇g(‖∇I(x)‖) ·
∇I(x)

‖∇I(x)‖

]}

(4)

where I(x) is the intensity of the pixel, f1(x) and
f2(x) are local terms representing respectively the
inside and the outside of the segmented region at it-
eration t:

Figure 7: Example of an estimated kernel density function of the pixels within the nominal mask (A), and computed density
functions of the dark and bright pixels within the same region, with the indication of the global threshold (B)
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Figure 8: Isolation of bright areas in the foreground region (A) and resulting image after the proposed pixel intensity correction
operation (B)

f1(x) =
K(y) ∗ [Hε(ϕ(x)) g (‖∇I(x)‖) I(x)]

K(y) ∗ [Hε(ϕ(x)) g (‖∇I(x)‖)]

f2(x) =
K(y) ∗ [(1−Hε(ϕ(x))) g (‖∇I(x)‖) I(x)]

K(y) ∗ [(1−Hε(ϕ(x))) g (‖∇I(x)‖)]
(5)

where K(t) is a kernel function: in this study, a dense
stencil of width 2r + 1 was used. δε(x) is the Dirac
delta function and Hε(t) is the Heaviside step func-
tion:

δε(x) =
1

π

ε

ε2 + x2

Hε(x) =
1

2

[

1 +
2

π
arctan

(x

ε

)

] (6)

∇I(x) and ‖∇I(x)‖ are the gradients of the im-
age pixel intensities and their magnitude respectively,
whereas g(x) is a function that converts the norm of
the gradient into a so-called “speed” function:

∇I =

(

∂I

∂x
,
∂I

∂y

)T

‖∇I‖ =

√

(

∂I

∂x

)2

+

(

∂I

∂y

)2

g(x) = (xmax − xmin)
1

1 + e−
x−β

α

+ xmin.

(7)

The speed function g(x) assumes small values in the
edges and higher values elsewhere. This allows a cor-
rect “flow” of the contour evolution along the succes-
sive iterations, where the edges are used as attrac-
tors. In this study, the sigmoid function was used in
the computation of the speed function, given the gra-
dient magnitude. xmin and xmax are the minimum
and maximum, respectively, of the gradient magni-
tude, while α and β are two coefficients that have to
be set. w is a weighting factor such that 0 ≤ w ≤ 1,
which balances the contribution of the region- and
edge-based terms in Equation (4) that were normal-
ized between 0 and 1. A higher value of w allows one
to associate a higher weight to the region-based term,
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whereas a smaller value of w yields a higher weight
associated to the edge-based term. Since the edge-
based segmentation is believed to be more effective
than the region-based one when the reconstructed
contours is close to the contour reconstructed at the
end of the previous iteration, it is possible to recur-
sively adapt the weighting factor w in consecutive
iterations of the algorithm.
In this study, we advocate to apply a decreasing func-
tion w(t) over time, in order to let the active contours
be driven by the region-based term in first iterations,
when larger changes of the reconstructed contour in
consecutive iterations are expected, and by the edge-
based term for the final refinement of the segmenta-
tion when small changes are expected from one iter-
ation to the next one.
The segmentation of one sample image, after the
pre-processing steps described in Section 3.1, along
with the corresponding speed map, is shown in Fig-
ure 9. By comparing the contour reconstruction in
Figure 9 with the ones presented in Figure 1, it is pos-
sible to highlight the actual benefits of the proposed
active contours methodology compared with region-
based algorithms previously applied in the literature.
This approach is particularly effective in reconstruct-
ing also critical features like straight and curved thin
walls.

3.3. Deviation map estimation

The proposed process monitoring approach relies on
the estimation of the deviation between the in-situ re-
constructed contour of the slice, representative of the
as-built geometry in the current layer, and its nomi-
nal contour, representative of the as-designed geom-
etry. It is proposed to create a deviation map that
associates to each pixel in the image a scalar value
that is the distance between that pixel and the closest
pixel belonging to the nominal contour. This allows
associating a deviation value to each pixel belonging
to the in-situ reconstructed contour. An example of
distance map with a range of ±20 pixels from the null
deviation is shown in Figure 10, superimposed either
to the nominal contour and the in-situ reconstructed
one.
Since the goal of the proposed approach is to iden-
tify abrupt deviations from the nominal contour, it is

possible to synthesize the deviation pattern for each
in-situ reconstructed contour into a global deviation
metric for the design of a statistical process moni-
toring tool. To this aim, a synthetic index based on
the analysis of extreme values is proposed. Let di(j)
be the Euclidean distance between the j-th pixel of
the reconstructed contour and the closest point be-
longing to the nominal contour for the i-th layer. For
sake of simplicity, in this notation additional sub-
scripts indicating different parts printed in the same
layer is skipped. The minimum and maximum devi-
ations from the nominal contour in the i-th layer can
be estimated as follows:

dmax
i = max

j
di(j), dmin

i (j) = min
j

di(j). (8)

The proposed synthetic index is the maximum ab-
solute value of the two extreme deviations along the
reconstructed contour:

dminmax
i = max

{

|dmax
i | ,

∣

∣dmin
i

∣

∣

}

. (9)

The use of the absolute value in the definition of
dminmax
i allows one to signal any extreme deviation

from the nominal geometry regardless of the direc-
tion of the deviation itself. If dminmax

i =
∣

∣dmin
i

∣

∣,
the most extreme deviation is towards the inside of
the foreground region, which corresponds to a por-
tion of the reconstructed slice that is missing. If
dminmax
i = |dmax

i |, the most extreme deviation is to-
wards the outside of the foreground region, which
corresponds to a portion of the reconstructed slice
that is larger than the nominal shape. Both these
two conditions are of interest from a process monitor-
ing perspective, as a lack of material or an excess of
material in the slice are both potential symptoms of
an anomaly. Section 5 presents a comparison against
other conventional statistical indices (mean deviation
and standard deviation) to highlight the benefits of
using extreme value statistics.

3.4. Statistical process monitoring

Since the goal of the proposed method is to auto-
matically signal only anomalous large deviations from
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Figure 9: Segmentation of the build part (A) and value of the speed image (B) after removing the bright spots. The blue lines
represent the segmented objects, while the red lines represent the nominal mask

Figure 10: Nominal contour (A) and in-situ reconstructed contour (B) superimposed to the estimated deviation map. The
color bar corresponds to the signed distance from the closed pixel along the nominal contour

the nominal shape, a one-sided control chart is pro-
posed. It allows comparing the dminmax

i index value
in the i− th layer with an upper control limit (UCL)
and, whenever the computed value violates the limit,
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an alarm is signalled. The control limit can be es-
timated considering that the monitored index is the
extreme value within a set of random variables. One
way to model the distribution of an extreme statis-
tic involves referring to the Gumbel distribution [29],
whose probability density distribution is:

f(x) = exp

{

x− µ

σ
+ exp

{

−
x− µ

σ

}}

(10)

where µ is the location parameter and σ is the scale
parameter. These two parameters can be estimated
using the maximum likelihood (ML) estimation [30].
Let n be a small number of initial observations for the
dminmax index, i.e., a small number of initial layers,
the ML estimations of the location (µ) and the scale
(σ) parameters can be found maximizing:

L (X1, X2, . . . , Xn|µ, σ) =
n
∏

i=1

exp

{

xi − µ

σ
+ exp

{

−
xi − µ

σ

}}

(11)

with respect to µ and σ. By setting a false alarm
rate (also known as Type I error) α, the UCL of the
dminmax control chart is defined as the 1−α percentile
of the Gumbel distribution in the first n layers:

UCL =f1−α(x) (12)

being x = dminmax. However, the parameters and
the control limit estimated in the first n layers can
not be fully representative of the evolution of the
monitored statistic in the following layers. Indeed,
the deviation map may be affected by the geome-
try itself, as critical features like acute corners and
thin walls may be more difficult to reconstruct than
simpler features, and the geometry of the slice may
considerably change along the build direction. This
implies that the natural variability of the deviation
synthesized into the dminmax index may be influenced
by the layer-by-layer evolution of the slice geometry.
In this scenario, traditional statistical process moni-
toring approaches, see for example Montgomery [31],
based on a fixed training phase may be not fully effec-
tive, as they rely on the assumption of temporal inde-
pendence of the monitored statistic. To cope with the
geometry-dependent and adaptive nature of the mon-

itored index, an adaptive monitoring scheme based
on a so-called moving window updating procedure is
proposed. Let UCL0, µ0 and σ0 be the parameters
estimated on the basis of the first n layers. The con-
trol limit UCL0 is used to determine if the deviation
from the nominal geometry in the (n+ 1)− th layer
is in-control or not. If dminmax

n+1 > UCL0 an alarm is
signalled. If dminmax

n+1 ≤ UCL0, the parameters of the
control chart are recursively updated by maximizing
the likelihood of the most recent n layers, leading
to new estimates of UCL1, µ1 and σ1. Such updat-
ing scheme is known as “moving window”, where a
fixed number n of most recent observations is used
to determine if the following observation is in-control
or not, and older observations are discarded from the
updating scheme, as they are deemed to be less repre-
sentative of the current process pattern. This updat-
ing operation is repeated for each new layer unless an
alarm is signalled. Thanks to this approach, a mov-
ing window of size n is used to determine whether the
current value of dminmax

i is anomalous with respect
to the natural variability of the same descriptor in
the n most recent layers.

4. Discussion of results

4.1. Preliminary test under in-control conditions

The proposed approach was first tested by means
of a build including 3 simple cylindrical specimens
of 12mm diameter and 20mm height produced in
Ti6Al4V with the EOS M290 system. Default and
fixed process parameters for the Ti6Al4V powder
were used. A total of 333 layers were monitored for
each specimen. The powder bed camera embedded
into the EOS M290 system with default illumination
and image acquisition settings defined by the system
developer was used (see Section 2). The aim of this
first test was to characterize the performance of the
methodology in terms of false alarm rates, as the
cylindrical specimens were representative of regular
and in-control shapes produced without distortions.
A Python implementation of the morphological ac-
tive contours algorithm proposed by Márquez-Neila
et al. [32] was then implemented. Examples of the
segmentation of the analyzed specimens are shown in
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Figure 11. Three different values of the moving win-
dow size for the design of the proposed control chart
were tested, namely n = 20, n = 30 and n = 40. The
target false alarm rate was set at α = 1%.

Table 1 shows the resulting false alarm rates for all
the specimens and for different sizes of the moving
window. Table 1 also compares the performances
achieved by using the proposed statistic dminmax

against two other possible descriptors, namely the
sample mean µd and the sample standard deviation
σd of the deviation values along the reconstructed
contour. The control charts for the latter two in-
dexes were designed by setting the control limits in
correspondence of quantiles of their respective distri-
butions and applying the same moving window up-
dating scheme proposed for the dminmax index.

Table 1 shows that the control chart based on the
standard deviation yields a higher rate of false alarms
than the ones based on dminmax and µd. This may be
caused by the violation of the independent and iden-
tically distributed data assumption. All the statis-
tics used to quantify the deviation from the nominal
shape in each layer are auto-correlated, with a non-
stationary auto-correlation pattern that follows the
layerwise variation of the slice geometry. The stan-
dard deviation is particularly sensitive to these layer-
by-layer variations. Although the sample statistics
were normalized with respect to the contour length, a
change in the geometry affects the distribution of the
deviations from the nominal, especially its variability.
The sample mean and the proposed index are more
robust to layerwise geometry variations. The window
size in the considered range has no significant effect
on the false alarm rate when the dminmax index is
monitored, whereas a slightly larger false alarm rate
was observed when the µd index was monitored with
n = 20. This is caused by the fact that a larger
window size n is needed to achieve the target false
alarm rate α when the standard deviation is used as
synthetic index to monitor the deviation between the
reconstructed and the nominal contours. These re-
sults highlight that the proposed monitoring scheme
is suitable to keep the false alarm rate close to the
target value for simple and in-control geometries.

4.2. Monitoring of complex shapes

The proposed approach was then applied to the case
study involving the complex shapes introduced in
Section 2, with a further comparison between adap-
tive control charts based on dminmax and µd. In this
case, the moving window size was set at n = 30. Fig-
ure 12 shows the moving window control chart ap-
plied to the sample 1A. The control limits are shown
as dashed red lines, whereas the vertical green dashed
line separates the first n = 30 layers, where a constant
control limit was applied, from the following layers
where adaptive control limits were used. The control
chart in Figure 12 shows only one out-of-control layer:
the corresponding image segmentation is shown in
Figure 13, where the colors of pixels belonging to the
reconstructed contours represent the corresponding
deviation values. In the layer depicted in Figure 13,
an actual distortion occurred. Due to the thermal
stresses in a circular overhang region of the specimen,
a partial detachment of the part from the supports
occurred during the build. This caused a curling of
the border of the overhang region, leading to an out-
of-plane distortion that was properly captured by the
proposed approach.
The same distortion occurred in sample 1B, which
has the same orientation of sample 1A. Figure 14
shows the proposed control chart applied to sam-
ple 1B. In this second example, after a first macro-
deviation signalled in layer 348 and shown in Fig-
ure 15A, analogous to the one occurred in sample 1A,
another deviation related to the same thermal-stress
induced distortion was signalled few layers later.
This second deviation is depicted in Figure 15B,
where a curling of the overhang region created a
super-elevated area connected to the contour of the
scanned slice. This area was partially included into
the contour reconstruction and then signalled by the
control chart. This second anomaly, properly sig-
nalled by the proposed approach, did not occur in
sample 1A.
Figure 16 shows a detail of an ex-situ reconstruction
of the deviation between the outer geometry of sam-
ple 1A measured by means of X-ray computed tomog-
raphy (CT) and its nominal geometry. The voxel size
of the reconstructed CT volume was 39.48 µm. Fig-
ure 16B shows a larger distortion between the mea-
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Figure 11: Example of segmentation of three different circular slices of cylindrical specimens in one layer; the colour map of
the reconstructed contour indicates the local deviation - in pixels - from the nominal contour

Window
size

dminmax µd σd

Sample
number

Sample
number

Sample
number

1 2 3 1 2 3 1 2 3

20 0.3% 1.2% 0.6% 1.5% 2.1% 1.5% 2.4% 3.3% 0.6%
30 0.3% 1.2% 0.6% 0.6% 1.5% 0.9% 3.0% 3.3% 1.5%
40 0.3% 1.2% 0.3% 0.6% 1.5% 0.9% 6.6% 3.6% 1.5%

Table 1: False alarm rates as a function of the moving window size for different monitored indexes

Sample

1A 1B 2A 2B 1C 2C

False alarm 0 % 0 % 0.2 % 0 % 0 % 0.2 %
Actual distortion detection 100 % 100 % - - - -

Table 2: Summary of the performances of the proposed approach in terms of false alarms and detection of actual distortions

sured geometry and the nominal one in correspon-
dence of the circular overhang portions of the sample.
During the build, these distortions caused a partial
detachment from supports in both sample 1A and
1B, leading to the deviations reported by the pro-
posed approach based on layerwise images. With the
available spatial resolution, the signalled alarms cor-
responded to deviations in the order of about 1.5 - 3
mm. These deviation entities were in agreement with
the distortions observed via x-ray CT.

Figure 17 shows the control chart on the average de-
viation, µd, applied to sample 1A. Monitoring the

average deviation instead of the maximum deviation
does not allow the detection of the occurred distor-
tion. Indeed, the mean deviation index, µd, is much
less sensitive to the occurred distortion than the abso-
lute maximum deviation, dminmax. This confirms the
benefit of monitoring the extreme deviation rather
than its average value. Moreover, Figure 17 shows
that the control chart based on µd applied to sample
1A signalled other four alarms that were not related
to actual distortions, and hence they can be consid-
ered as false alarms. This further confirms the higher
robustness of the proposed approach based on the
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Figure 12: Proposed control chart applied to sample 1A

Figure 13: Example of image segmentation for the layer sig-
nalled as out-of-control by the control chart for sample 1A; the
color bar indicates the deviations from the nominal geometry
along the reconstructed contour

dminmax index.

Table 2 summarizes the performances of the proposed

approach in terms of false alarm rates and actual dis-
tortion detection capabilities. The false alarm per-
centage was computed as the number of false alarms
divided by the number of in-control layers, while the
actual distortion detection was computed as the per-
centage of the actual distortions reported as out-of-
control. Actual distortions occurred only in samples
1A and 1B, because of their orientation, and they
were properly detected. No distortion occurred in
sample 1C, although it was produced with the same
orientation of the former two. No distortion occurred
also in samples 2A and 2B. A false alarm rate in sam-
ple 2A and sample 2C correspond to a violation of the
control limit in one layer out of 475 for each sample.
These two violations are depicted in Figure 18. They
were labelled as false alarms because they caused no
visible defect on the final parts. However, Figure 18
shows that some dark regions connected to the con-
tour of the slice were actually present in the layerwise
images, and they caused an alarm. We believe that
those darker areas are shadows projected by out-of-
plane irregularities in the layer. Indeed, the low angle
illumination integrated into the EOS system used in
this study emphasizes surface irregularities, but it is
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Figure 14: Proposed control chart applied to sample 1B

Figure 15: Examples of image segmentations for the layers signalled as out-of-control by the control chart for sample 1B; the
color bar indicates the deviations from the nominal geometry along the reconstructed contour

known from previous studies (e.g., Caltanissetta et al.
[12]) that it is a non-optimal lighting condition for im-
age segmentation. Although detecting the presence

of large shadowed areas along the contour of the slice
may be of interest to identify severe surface irreg-
ularities, better segmentation performances may be
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Figure 16: Signed distance between the measured geometry and the nominal geometry of sample 1A (A) with a magnification
of the error in the region where the larger distortion occurred (B). The signed distance is expressed in mm

.

achieved by using a dark-field illumination. Gener-
ally speaking, there is a cost-benefit trade-off between
using illumination and machine vision equipment al-
ready available in the machine (like in this study) or
enhancing the performances at the cost of modifying
and tuning the equipment.

These examples show that the proposed control chart
can be used to automatically detect potential anoma-
lies on a layerwise basis. The signalled alarm may be
analysed in real-time through the human-machine in-
terface to support the operator in deciding whether
a process interruption is needed, or just at the end

Figure 17: Control chart for sample 1A based on the mean deviation µd
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of the build, as a diagnostic tool to support follow-
ing qualification steps. The method could be com-
bined with other existing powder bed monitoring
tools aimed at detecting contaminations in the pow-
der bed and errors in the powder bed recoating.

5. Conclusions and future developments

In-situ sensing and monitoring methodologies have
been gaining a continuously increasing attention in
L-PBF to anticipate the detection of defects during
the process, and to support the qualification of ad-
ditively produced parts. The layerwise production
paradigm enables the opportunity to gather a large
amount of data while the part is being produced.
This study proposed a methodology to take advan-
tage of layerwise imaging to identify, in an auto-
mated way, geometrical distortions in terms of macro-
deviations from the nominal geometry in each layer.
The proposed approach combines a robust image seg-
mentation technique based on active contours with
an in-process adaptive control chart to automatically
signal abrupt deviations from the nominal shape tak-
ing into account the natural geometry evolution from
one layer to another. The method was applied to

in-situ monitoring of both simple cylindrical speci-
mens and complex test specimens including various
critical geometrical features. The algorithm was im-
plemented by using an industrial equipment, without
any modification of the existing hardware. The re-
sults showed that the proposed approach is suitable
to properly detect the contours of the printed slice
and to identify actual modifications of the in-situ re-
constructed contours, either caused by local contam-
inations on the layer or by actual distortions in the
part. Such capability is particularly attracting from
an industrial implementation viewpoint, as almost all
industrial L-PBF systems are equipped with powder
bed cameras that can be used for the same purpose.
The layerwise geometry segmentation enables also
the reconstruction of a 3D surface of the whole part
at the end of the process.
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Figure 18: False alarms signalled in samples 2A (A) and 1C (B)
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the monitored layer has been produced. However,
if a major departure from the expected shape is ob-
served in one layer, it is worth signalling to let the
operator decide if actions are needed or, at least, to
support following post-process qualification steps.
Additional

✿✿✿✿✿✿✿

research
✿✿✿✿✿✿✿

efforts
✿✿✿✿

may
✿✿✿✿

be
✿✿✿✿✿✿✿

devoted
✿✿✿

to
✿✿✿✿

the

✿✿✿✿✿

in-line
✿✿✿✿✿✿✿✿✿

geometry
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction
✿✿✿✿✿✿✿✿✿✿✿✿

methodology
✿✿✿✿✿

and,
✿✿

in

✿✿✿✿✿✿✿✿✿

particular,
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿✿

the
✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿✿

uncertainty

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstruction,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿

currently
✿✿✿✿

not
✿✿✿✿✿✿✿✿

available

✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

segmentation
✿✿✿✿✿✿✿✿

methods
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿

level
✿✿✿

set
✿✿✿✿✿✿✿

theory.

✿✿✿✿✿✿✿

Further experiments may be needed to test the ro-
bustness of the proposed approach in the presence of
different geometries and different types of defects. It
is also interesting to investigate different illumination
and image acquisition settings as they may have an
effect on the in-situ geometry reconstruction perfor-
mances. Indeed, a relevant aspect for the industrial
use of in-line monitoring tools involves the general va-
lidity of the proposed methodology and its machine-
to-machine transferability, which can be investigated
in future studies.
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ASI-POLIMI “Attività di Ricerca e Innovazione” n.
2018-5-HH.0, collaboration agreement between the
Italian Space Agency and Politecnico di Milano.

References

References

[1] B. M. Colosimo, Q. Huang, T. Dasgupta,
F. Tsung, Opportunities and challenges of qual-
ity engineering for additive manufacturing, Jour-
nal of Quality Technology 50 (2018) 233–252.

[2] B. M. Colosimo, Modeling and monitoring meth-
ods for spatial and image data, Quality Engi-
neering 30 (2018) 94–111.

[3] M. Grasso, B. M. Colosimo, Process defects
and in situ monitoring methods in metal pow-
der bed fusion: a review, Measurement Science
and Technology 28 (2017) 044005.

[4] B. Foster, E. Reutzel, A. Nassar, B. Hall,
S. Brown, C. Dickman, Optical, layerwise mon-
itoring of powder bed fusion, in: Solid Freeform
Fabrication Symposium, Austin, TX, Aug, 2015,
pp. 10–12.

[5] L. T. Phuc, M. Seita, A high-resolution and large
field-of-view scanner for in-line characterization
of powder bed defects during additive manufac-
turing, Materials & Design 164 (2019) 107562.

[6] T. Craeghs, S. Clijsters, E. Yasa, J.-P. Kruth,
Online quality control of selective laser melting,
in: Proceedings of the 20th Solid Freeform Fab-
rication (SFF) symposium, Austin (Texas), 8-10
august, 2011, pp. 212–226.

[7] F. Imani, A. Gaikwad, M. Montazeri, P. Rao,
H. Yang, E. Reutzel, Process mapping and in-
process monitoring of porosity in laser powder
bed fusion using layerwise optical imaging, Jour-
nal of Manufacturing Science and Engineering,
Transactions of the ASME 140 (2018).

20



[8] Z. Li, X. Liu, S. Wen, P. He, K. Zhong, Q. Wei,
Y. Shi, S. Liu, In situ 3d monitoring of geomet-
ric signatures in the powder-bed-fusion additive
manufacturing process via vision sensing meth-
ods, Sensors 18 (2018) 1180.

[9] L. Scime, J. Beuth, Anomaly detection and
classification in a laser powder bed additive
manufacturing process using a trained computer
vision algorithm, Additive Manufacturing 19
(2018) 114–126.

[10] C. Gobert, E. W. Reutzel, J. Petrich, A. R. Nas-
sar, S. Phoha, Application of supervised ma-
chine learning for defect detection during metal-
lic powder bed fusion additive manufacturing us-
ing high resolution imaging., Additive Manufac-
turing 21 (2018) 517–528.

[11] M. Aminzadeh, T. Kurfess, Vision-based inspec-
tion system for dimensional accuracy in powder-
bed additive manufacturing, in: ASME 2016
11th International Manufacturing Science and
Engineering Conference, American Society of
Mechanical Engineers Digital Collection, 2016.

[12] F. Caltanissetta, M. Grasso, S. Petrò, B. M.
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Appendix A. Sensitivity analysis for the ker-

nel bandwidth selection

In this Section, a sensitivity analysis with respect to
the Gaussian kernel bandwidth is presented. The ker-
nel bandwidth selection is needed in the proposed
pre-processing phase to get rid of pixel intensity dis-
continuities along the offset between adjacent stripes
and other saturated bright spots. Kernel bandwidth
values between 0.5% and 10% were investigated. For
each bandwidth value the resulting segmentation of
the bright spots was analyzed. It is also worth men-
tioning that methods for the automatic selection of
kernel bandwidths have been proposed in the liter-
ature, although they work better in the presence of
uni-modal distributions. In addition to a-priori de-
fined bandwidth values, an automated selection ap-
proach based on the so-called normal reference was
applied as discussed in Hansen [34]. This result led to
a bandwidth very close to 1%. The resulting thresh-
old on pixel intensities and the images after the cor-
rection of bright areas are shown in Figures A.19,
A.20, A.21 and A.22 for the automated selection
method, 10%, 5% and 0.5% bandwidths, respec-
tively. Generally speaking, the higher is the value of
the bandwidth, the higher can be the risk to underes-
timate the actual bright areas. However, the results
showed that no significant difference was observed in
the corrected images for all tested bandwidth values.
This makes the proposed pre-processing step robust
with respect to the kernel density fitting. In this
study a bandwidth equal to 1% was used.

22



(a) Example of an estimated kernel density function of the pixels within the nominal mask (A), and computed density functions of the
dark and bright pixels within the same region, with the indication of the global threshold (B)

(b) Isolation of bright areas in the foreground region (A) and resulting image after the proposed pixel intensity correction operation
(B)

Figure A.19: Post-processing using the automated bandwidth selection method based on normal reference discussed in Hansen
[34]
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(a) Example of an estimated kernel density function of the pixels within the nominal mask (A), and computed density functions of the
dark and bright pixels within the same region, with the indication of the global threshold (B)

(b) Isolation of bright areas in the foreground region (A) and resulting image after the proposed pixel intensity correction operation
(B)

Figure A.20: Post-processing using a threshold equal to the 10% of the gray values’ range
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(a) Example of an estimated kernel density function of the pixels within the nominal mask (A), and computed density functions of the
dark and bright pixels within the same region, with the indication of the global threshold (B)

(b) Isolation of bright areas in the foreground region (A) and resulting image after the proposed pixel intensity correction operation
(B)

Figure A.21: Post-processing using a threshold equal to the 5% of the gray values’ range
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(a) Example of an estimated kernel density function of the pixels within the nominal mask (A), and computed density functions of the
dark and bright pixels within the same region, with the indication of the global threshold (B)

(b) Isolation of bright areas in the foreground region (A) and resulting image after the proposed pixel intensity correction operation
(B)

Figure A.22: Post-processing using a threshold equal to the 0.5% of the gray values’ range
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