1	Random Walk evaluation of Green's functions for groundwater flow in
2	heterogeneous aquifers
3	
4	Tongchao Nan ¹ , Jichun Wu ¹ , Alberto Guadagnini ² , Xiankui Zeng ¹ and Xiuyu
5	Liang ^{3,4}
6	¹ Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth
7	Sciences and Engineering, Nanjing University, Nanjing 210023, China.
8	² Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano,
9	Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
10	³ Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control,
11	School of Environmental Science and Engineering, Southern University of Science
12	and Technology, Shenzhen 518055, China.
13	⁴ State Environmental Protection Key Laboratory of Integrated Surface Water-
14	Groundwater Pollution Control, School of Environmental Science and Engineering,
15	Southern University of Science and Technology, Shenzhen 518055, China.
16	Corresponding authors: Tongchao Nan (<u>tenan@nju.edu.en</u>); Jichun Wu
17	(icwu@niu.edu.cn)

18 Highlights:

19	•	Quantitative link between WOG and Green's function for groundwater flow is
20		found.
21	•	Performance is assessed in five test cases with increased level of complexity.
22	•	The method is applicable to heterogeneity, various boundary conditions and
23		forcing.
24		

25 Abstract

26	The use of the Walk on Grid (WOG) approach for the reliable evaluation of
27	the Green's function associated with groundwater flow scenarios in heterogeneous
28	geologic media is explored. The study rests on the observation that, while the Green's
29	function method (GFM) is one of the most significant and convenient approaches to
30	tackle groundwater flow, Green's function evaluation is fraught with remarkable
31	difficulties in the presence of realistic groundwater settings taking place in complex
32	heterogeneous geologic formations. Here WOG approach is used to simulate pressure
33	dissipation by lattice random walk and establish a quantitative relationship between
34	space-time distribution of random walkers and the Green's function associated with
35	the underlying flow problem. WOG-based Green's function method is tested (a) in
36	three scenarios where analytical formulations are available for the Green's function
37	and (b) in two groundwater flow systems with increased level of complexity. Our
38	results show that WOG can (a) accurately evaluate the Green's function, being highly
39	efficient when the latter can be analytically expressed in terms of infinite series; and
40	(b) accurately and efficiently evaluate temporal evolutions of hydraulic heads at target
41	locations in the heterogeneous systems. As such, a WOG-based approach can be
42	employed as an efficient surrogate model in scenarios involving groundwater flow in
43	complex heterogeneous domains.
44	

45 **1 Introduction**

46	The Green's function method (GFM) is a convenient and powerful approach
47	to solve a variety of environmental and earth science problems. Its applications in the
48	context of groundwater flow scenarios are wide and numerous, including head
49	calculation, permeability scaling, uncertainty quantification, moment equation
50	solving, subsurface imaging, superimposition in time domain etc. (see, e.g., amongst
51	others, Borcea et al., 2002; Dagan, 1989; Gomez & Torres-Verdin, 2019; Hristopulos
52	& Christakos, 1999; Lembcke et al., 2016; Liu & Ball, 1998; Naff & Vecchia, 1986;
53	Nan et al., 2019; Neuman & Orr, 1993; Olsthoorn, 2008; Park & Zhan, 2001;
54	Sanskrityayn et al., 2017; Zhang, 2001). A key strength of the approach is that the
55	evaluation of the Green's function for a given set of boundary types enables one to
56	tackle a large variety of related flow scenarios subject to diverse strengths of the
57	corresponding boundary terms and a (potentially unlimited) range of source terms, a
58	feature which is appealing in the context of water management practices. Evaluation
59	of the Green's function also yields insights about the relative strength of the (possibly
60	competing) effects of diverse source terms on a target state variable throughout the
61	system.

In many groundwater problems, one is not interested in evaluating hydraulic heads everywhere in a subsurface formation and is otherwise focused on hydraulic heads at a few specified locations, for engineering and/or environmental studies. For example, hydraulic heads from some observation wells are used as constraints or

66	references in contaminant source identification / aquifer parameter estimation/ aquifer
67	management (see, e.g., Ayvaz & Karahan, 2008; Cheddadi, 2007; Hou & Lu, 2018;
68	Liang & Zhang, 2012; McKinney & Lin, 1994; Saffi & Liu et al., 2015). For such
69	cases, solutions formulated in terms of Green's function can constitute an efficient and
70	convenient tool to evaluate hydraulic heads and their temporal series.
71	Green's functions of analytical or semi-analytical form are generally obtained
72	through approaches based on (a) Laplace transform, (b) separation of variables, (c)
73	eigen-function expansion, or (d) the method of images (Cole et al., 2011 and reference
74	therein). By searching Green's function libraries (e.g., Cole, 2019), one may find out
75	whether a Green's function solution is available for a type of problems. However,
76	dealing with practical complex domain features, such as, e.g., irregular geometry and
77	heterogeneity of system attributes, can still constitute a formidable challenge. To the
78	best of our knowledge there is no Green's function available to assist solving
79	groundwater flow taking place in generally heterogeneous aquifers, potentially
80	characterized by boundaries of irregular shape. Scenarios linked to relative simple
81	heterogeneity patterns (e.g., stratified or block-heterogeneous media consisting of
82	non-overlapping homogeneous regions) can be tackled upon relying on a series of
83	basis functions to yield an approximate expression of Green's functions (Cole et al.,
84	2011; Hahn & Özişik, 2012). A key weakness of this approach is that ad-hoc basis
85	functions need to be constructed for each region forming the internal architecture of
86	the zoned system. The increased number of such basis functions can be a highly

87	limiting factor in media of complex zonal heterogeneity. In highly heterogeneous
88	aquifers, classic numerical approaches like finite difference or finite element methods
89	can be used to solve problem-dependent Green's function equation (Equation (5))
90	directly (Olsthoorn, 2008; Guadagnini & Neuman, 1999). However, the existence of
91	Dirac function greatly undermines the accuracy, stability and convergence of
92	numerical solutions of Green's functions (Barajas-Solano & Tartakovsky, 2013; Chen
93	et al., 2007), often leading to failure of convergence during numerical calculation. The
94	main objective of this study is to present a general numerical approach which can
95	resolve these difficulties stably and efficiently and then assess its potential through a
96	collection of test problems.
97	Backward random walk was applied to solve a diffusion-type partial
98	differential equation (PDE) based on the Feynman-Kac theorem (Marie & Nguyen,
99	2016; Nan & Wu, 2018; Nan et al., 2019). Some studies pointed out the relation
100	between the Green's function and the probability density of a walker that is absorbed
101	at a domain boundary in homogenous media (Deaconu & Lejay, 2006; Hwang &
102	Mascagni, 2003; and references therein), <i>i.e.</i> , in a Laplacian boundary-value problem
103	$\Delta u(\mathbf{x}) = 2f(\mathbf{x})$ on a domain Ω , where $u(\mathbf{x}) = \varphi(\mathbf{x})$ on boundary $\partial \Omega$. If the
104	corresponding Green's function $G^{(s)}(\mathbf{x} \mathbf{s})$ exists, the probability density $p_{\partial\Omega}(\mathbf{x} \mathbf{s})$,
105	at point \mathbf{x} of a Brownian particle starting from point \mathbf{s} and being absorbed at point
106	x on boundary $\partial \Omega$ is given by
107	$r_{\rm c}(\mathbf{x} \mathbf{s}) = \frac{\partial G^{(s)}(\mathbf{x} \mathbf{s})}{\partial G^{(s)}(\mathbf{x} \mathbf{s})} \mathbf{x} \in \partial \mathbf{O}, s \in \mathbf{O} $ (1)

107
$$p_{\partial\Omega}(\mathbf{x} \mid \mathbf{s}) = -\frac{\partial G^{(2)}(\mathbf{x} \mid \mathbf{s})}{\partial \mathbf{n}} \quad \mathbf{x} \in \partial\Omega, \, \mathbf{s} \in \Omega$$
 (1)

108 where \mathbf{n} is an outward unit vector normal to the domain boundary and the probability of finding the particle inside the domain, $p_{inside}(\mathbf{x} | \mathbf{s})$, satisfies the 109 diffusion equation and is proportional to Green's function $G^{(s)}(\mathbf{x} | \mathbf{s})$ of the problem, 110 111 i.e. $p_{\text{inside}}(\mathbf{x} \mid \mathbf{s}) \propto G^{(s)}(\mathbf{x} \mid \mathbf{s}) \quad \mathbf{x}, \mathbf{s} \in \Omega$ 112 (2) The solution to this problem is (Deaconu & Lejay, 2006) 113 $u(\mathbf{x}_0) = \int_{\Omega} p_{\text{inside}}(\mathbf{x}' | \mathbf{x}_0) f(\mathbf{x}') d\mathbf{x}' + \int_{\partial \Omega} p_{\partial \Omega}(\mathbf{x}' | \mathbf{x}_0) \varphi(\mathbf{x}') d\nu'$ 114 (3) 115 where v' is a spatial element (which coincides with a length or an area for one- and 116 two-dimensional boundaries in Euclidean space, respectively) on boundary $\partial \Omega$. 117 For a homogenous domain with a simple geometry such as rectangles, spheres and/or cylinders, analytical forms of $G^{(s)}(\mathbf{x} | \mathbf{s})$ are readily available to derive 118 $p_{\partial\Omega}(\mathbf{x} \mid \mathbf{s})$ and $p_{\text{inside}}(\mathbf{x} \mid \mathbf{s})$, thus forming the basis for random walk simulation 119 120 algorithms. The latter include, e.g., "Walk on Spheres" (WOS), "Walk on Rectangles" (WOR) and "Green's function first-passage method" (GFFP) (see, e.g., Muller, 1956; 121 122 Deaconu & Lejay, 2006; Hwang et al., 2001; Hwang & Mascagni, 2003; Milstein & 123 Tretyakov, 1999). Efforts have also been devoted to extend WOS and GFFP to stratified media (e.g., Lejay & Matinez, 2006; Lejay & Marie, 2013; Lejay & Pichot, 124 125 2012; Marie & Nguyen, 2016). Still, these methods are mainly effective for media 126 characterized by a relatively low number of zones/layers that are otherwise 127 demarcated by regular (straight or circular) internal boundaries, thus being somewhat

128 limited for routine applications to complex environmental scenarios (Lejay & Pichot,129 2016).

130 Expressing hydraulic heads in natural aquifers through a Green's function 131 approach entails Equations (1) and (2) to hold for general heterogeneity patterns. While noting that $p_{ab}(\mathbf{x} | \mathbf{s})$ was analytically derived in a two-phase material for a 132 very simplified internal geometry (Sahimi, 2003; Torquato et al., 1999), key questions 133 134 that are not yet fully addressed and now being tackled in this study are of the kind 135 "Do Equations (1) and (2) hold in media where heterogeneity patterns are not limited to some simplifying assumptions?" and "If so, how can one evaluate $G^{(s)}(\mathbf{x} | \mathbf{s})$ and 136 even transient $G(\mathbf{x}, t | \mathbf{s}, \tau)$ effectively and accurately?" 137

138 In this study, the relation between Green's function and walker density is 139 extended to general heterogeneous media by leveraging on the work of Nan and Wu 140 (2018) and relying on a grid-based random walk, *i.e.*, the so-called Walk on Grid (WOG), to estimate $p_{\text{inside}}(\mathbf{x} | \mathbf{s})$. And $G^{(s)}(\mathbf{x} | \mathbf{s})$ in heterogeneous aquifers is 141 computed by evaluating $p_{inside}(\mathbf{x} | \mathbf{s})$ via random walk simulations and provide test 142 143 examples with increased degrees of complexity, which start from simplified settings 144 associated with analytical Green's function formulations and then considering highly 145 heterogeneous aquifers in the presence of generally transient flow. The work is organized as follows. The methodology and test cases are 146 147 introduced in Section 2. Section 3 is devoted to validation of our WOG-based Green's

148 function method in five case tests. WOG-based Green's functions are firstly compared

- 149 to their analytical counterparts in three simple scenarios and then applied to (a)
- 150 estimate exchange rates between a one-dimensional unconfined heterogeneous porous
- 151 medium and a river, and (b) calculate temporal variations of heads in a two-
- 152 dimensional heterogeneous aquifer. Efficiency of our approach is discussed at the end
- 153 of Section 3 and conclusions are drawn in Section 4.

154 **2 Methodology**

155 2.1 Governing equations of groundwater flow and Green's function solution
156 Three-dimensional transient groundwater flow in a fully saturated geologic
157 medium can be described by the following equation:

158

$$\begin{cases} \nabla \cdot (K(\mathbf{x})\nabla h) + w(\mathbf{x},t) = S_{s}(\mathbf{x})\frac{\partial}{\partial t}h(\mathbf{x},t) & \mathbf{x} \in \Omega \\ h(\mathbf{x},t) = H_{0}(\mathbf{x}) & t = 0 \\ h(\mathbf{x},t) = \varphi(\mathbf{x},t) & \mathbf{x} \in \Gamma_{D} \\ K(\mathbf{x})\frac{\partial h}{\partial n} + b(\mathbf{x})h = r(\mathbf{x},t) & \mathbf{x} \in \Gamma_{R} \end{cases}$$
(4)

159 where $h(\mathbf{x},t)$ [L] is hydraulic head; $\mathbf{x} = [x, y, z]^{T}$ is spatial location vector within 160 domain Ω ; $K(\mathbf{x})$ [LT⁻¹] is hydraulic conductivity and $S_s(\mathbf{x})$ [L⁻¹] is specific 161 storage; $w(\mathbf{x},t)$ [T⁻¹] is a source/sink term; Γ_D and Γ_R are Dirichlet and Robin 162 boundaries, respectively; n is the outward normal to Γ_R , whose direction depends on 163 the shape of Γ_R .

164 By introducing a linear operator $\mathcal{L}(\cdot) = S_s(\mathbf{x}) \frac{\partial}{\partial t} - \nabla(K(\mathbf{x})\nabla \cdot)$, the first in

165 Equation (4) is rewritten as $\mathcal{L}h(\mathbf{x},t) = w(\mathbf{x},t)$. The corresponding Green's function, G

166 $[L^{-2}]$, associated with Equation (4) satisfies the following auxiliary equation:

167
$$\begin{cases}
\mathcal{L}G(\mathbf{x},t \mid \mathbf{s},\tau) = \delta(\mathbf{x}-\mathbf{s})\delta(t-\tau), & x, s \in \Omega, t > \tau \\
G(\mathbf{x},t \mid \mathbf{s},\tau) = 0, & t < \tau \\
G(\mathbf{x},t \mid \mathbf{s},\tau) = 0, & x \in \Gamma_{\mathrm{D}} \\
K(\mathbf{x})\frac{\partial G}{\partial n} + b(\mathbf{x})G(\mathbf{x},t \mid \mathbf{s},\tau) = 0, & x \in \Gamma_{\mathrm{R}}
\end{cases}$$
(5)

168 The solution to Equation (4) can then be expressed as (Cole et al., 2011)

169
$$h(\mathbf{x},t) = H_{\rm s} + H_{\rm R} + H_{\rm p} + H_{\rm I}$$
 (6a)

170 where

171
$$H_{\rm s} = \iint_{0\,\Omega}^{t} G(\mathbf{x},t \,|\, \mathbf{s},\tau) \cdot w(\mathbf{s},\tau) \,\mathrm{d}\mathbf{s}\mathrm{d}\,\tau \tag{6b}$$

172
$$H_{\rm R} = \int_{0}^{t} \int_{\Gamma_{\rm R}} G(\mathbf{x}, t \mid \mathbf{s}, \tau) \cdot r(\mathbf{s}, \tau) dv d\tau$$
(6c)

173
$$H_{\rm D} = \iint_{0}^{t} \iint_{0} K \varphi(\mathbf{s}, \tau) \cdot \frac{\partial}{\partial n} G(\mathbf{x}, t \mid \mathbf{s}, \tau) \mathrm{d}v \mathrm{d}\tau$$
(6d)

174
$$H_{I} = \int_{\Omega} G(\mathbf{x}, t \mid \mathbf{s}, 0) H_{0}(\mathbf{s}) S_{s} d\mathbf{s}$$
(6e)

175 Here, $H_{\rm s}$, $H_{\rm R}$, $H_{\rm D}$ and $H_{\rm I}$ [L] in Equations (6b-6e) represent the contributions to 176 $h(\mathbf{x},t)$ due to source/sink term, Robin boundary, Dirichlet boundary and the initial

177 condition, respectively. Note that Robin boundary includes Neumann boundary as a

178 special case, *i.e.*, when $b(\mathbf{x}) = 0$.

In two- and one-dimensional problems, the dimensions of Green's functions are
[L⁻¹] and [-] and the framework above still works.

181 2.2 Relation between expected passage frequency and Green's function

182 Following the Feynman-Kac theorem (see, *e.g.*, Nan & Wu, 2018; Lejay &

183 Marie, 2013), hydraulic head at a point
$$\mathbf{x} \in \Omega$$
 can be expressed as

184
$$h(\mathbf{x},t) = F_{\rm s} + F_{\rm R} + F_{\rm D} + F_{\rm I}$$
 (7a)

185 where

186
$$F_{\rm s} = \left\langle \int_{0 \wedge t_{\rm c}}^{t} w(\mathbf{Z}(\tau), \tau) / S_{\rm s} \mathrm{d}\tau \mid \mathbf{Z}(t) = \mathbf{x} \right\rangle$$
(7b)

187
$$F_{\rm R} = \left\langle \int_{0 \wedge t_{\rm c}}^{t} r(\mathbf{Z}(\tau), \tau) \mathrm{d}\tau \mid \mathbf{Z}(t) = \mathbf{x} \right\rangle$$
(7c)

188
$$F_{\rm D} = \left\langle \varphi(\mathbf{Z}_{\rm e}, t_{\rm e}) \mathbf{1}_{t_{\rm e}>0} \mid \mathbf{Z}(t) = \mathbf{x} \right\rangle$$
(7d)

189
$$F_{\mathrm{I}} = \left\langle H_{0}(\mathbf{Z}_{\mathrm{e}})\mathbf{1}_{t_{\mathrm{e}}\leq0} \mid \mathbf{Z}(t) = \mathbf{x} \right\rangle$$
(7e)

190 where Z(t) [L] is an Itô process described as

191
$$d\mathbf{Z}(t) = \left(\frac{\nabla K(\mathbf{x})}{S_s(\mathbf{x})}\right) dt + \sqrt{\frac{2K(\mathbf{x})}{S_s(\mathbf{x})}} d\mathbf{W}(t), \qquad (8)$$

192 Here,
$$W(t)$$
 [T^{1/2}] is a Wiener process; "exit time" t_e is the time at which $Z(t)$

193 arrives at boundary for the first time; $0 \wedge t_e = \max(0, t_e)$; $\langle \cdot | \mathbf{Z}(t) = \mathbf{x} \rangle$ represents

194 expectation with respect to random Z(t) conditional to Z being at location x at

195 time t. $1_{t_c>0}=1$ if $t_e > 0$ and 0 otherwise; similar for $1_{t_c\leq 0}$. The terms F_s , F_R , F_D

and F_1 [L] in Equation (7) represent the impact of sources/sinks, Robin boundary,

- 197 Dirichlet boundary and initial conditions, respectively. Noting that Equation (7a) is
- 198 virtually identical to Equation (6a), it follows that $F_{\rm s} \equiv H_{\rm s}$, $F_{\rm R} \equiv H_{\rm R}$, $F_{\rm D} \equiv H_{\rm D}$, and
- 199 $F_{I} = H_{I}$. In view of such equivalence, one may choose to evaluate the easier one in
- 200 Equations (6) and (7). When the Green's function is easier to obtain, Equation (7) can

201 be directly evaluated through Green's function formulation (6). For example, F_s in 202 (7b) can be rendered using Green's function by

203
$$F_{\rm s} = \iint_{\Omega 0}^{t} w(\mathbf{s},\tau) G(\mathbf{x},t \mid \mathbf{s},\tau) \mathrm{d}\tau \mathrm{d}v \,. \tag{9}$$

204 Conversely, if direct evaluation of Green's function is difficult, such as in irregular
205 domains of general heterogeneity, evaluation of Equation (7) is recommended which

206 requires a numerical approximation of the stochastic path integral. In this context, one

207 may take Z(t) in Equation (7) as, *e.g.*, a simple lattice random walk (denoted as

208 $Z^{*}(t)$ in Figure 1), where the walker can jump solely to neighboring sites which

209 coincide with centers of cells in Figure 1. An approximation of the path integral is

then evaluated along the lattice random path (see, *e.g.*, Klebaner, 2005). Note that the

211 lattice random walk $\mathbf{Z}^{*}(t)$ in Figure 1 is an approximation of the actual random walk

212
$$Z(t)$$
. For ease of notation, the lattice random walk is hereafter termed as $Z(t)$

214 time t, one has
$$\int_{t-\Delta t}^{t} w(\mathbf{Z}(\tau), \tau) / S_{s} d\tau \approx w(\mathbf{x}, t) \frac{\Delta V(\mathbf{x})}{C(\mathbf{x}, t)}$$
, where $\Delta V(\mathbf{x})$ is the volume of the

215 cell at **x**; $C(\mathbf{x},t) = \frac{S_s \Delta V}{\Delta t} + \sum_{i=1}^{n} C_{(i)}$, $C_{(i)}$ being hydraulic conductance between the

216 current cell and a neighboring cell (defined later; see, C_{x-} in Section 2.3). Quantity

217 $C(\mathbf{x},t)$ can be treated as a coefficient governing head variations under unit source

218 impulse. Increasing the value of C yields enhanced dampening of head variations

219 induced by water injection. The approximation above leads to the Lagrangian

220 formulation

221
$$\int_{0 \wedge t_{e}}^{t} w(\mathbf{Z}(\tau), \tau) / S_{s} d\tau \approx \sum_{j=1}^{N_{s}} w(\mathbf{Z}(t_{j}), t_{j}) \frac{\Delta V(\mathbf{Z}(t_{j}))}{C(\mathbf{Z}(t_{j}), t_{j})}$$
(10)

where N_s is the number of time steps of the lattice random walk. Note that $C(\mathbf{x},t)$ is time-invariant, *i.e.*, $C(\mathbf{x},t) \equiv C(\mathbf{x})$, if the time interval Δt is uniform. Equation (10) can be recast into its corresponding Eulerian form

(11)

225
$$\int_{0 \wedge t_{k}}^{t} w(\mathbf{Z}(\tau), \tau) / S_{\mathrm{S}} \mathrm{d}\tau \approx \sum_{m=1}^{N_{1}} \sum_{k=1}^{N_{\Omega}} I(k, m, \omega) w(\mathbf{x}_{k}, t_{m}) \frac{\Delta V(\mathbf{x}_{k})}{C(\mathbf{x}_{k})}$$

where N_{Ω} is the total number of cells in the computational grid; N_{t} is the total number of time steps in [0,t]; ω is the index identifying a random walk realization; the random passage frequency $I(k,m,\omega)$ is either zero or a positive integer and corresponds to the number of times the random walk realization of index ω passes through the cell of \mathbf{x}_{k} during the time window $[t_{m-1}, t_{m}]$. Hence, one has

231

$$F_{\rm S} = \left\langle \int_{0 \wedge t_{\rm c}}^{t} w(\mathbf{Z}(\tau), \tau) / S_{\rm S} \, \mathrm{d}\tau \, | \, \mathbf{Z}(t) = \mathbf{x} \right\rangle$$

$$\approx \frac{1}{N_{\rm MC}} \sum_{\omega=1}^{N_{\rm mc}} \sum_{m=1}^{N_{\rm c}} \sum_{k=1}^{N_{\rm c}} I(k, m, \omega) w(\mathbf{x}_{k}, t_{m}) \frac{\Delta V(\mathbf{x}_{k})}{C(\mathbf{x}_{k})}$$

$$= \sum_{m=1}^{N_{\rm c}} \sum_{k=1}^{N_{\rm c}} \overline{I}(k, m) w(\mathbf{x}_{k}, t_{m}) \frac{\Delta V(\mathbf{x}_{k})}{C(\mathbf{x}_{k})}$$
(12)

where the expected passage frequency

233
$$\overline{I}(k,m) = \frac{1}{N_{\rm MC}} \sum_{\omega=1}^{N_{\rm MC}} I(k,m,\omega)$$
(13)

234 represents the number of times on average the random walk passes the cell of \mathbf{x}_{k}

- 235 during time window $[t_{m-1}, t_m]$.
- 236 On the other hand, according to Equation (6b) one has

237
$$H_{\rm s} \approx \sum_{m=1}^{N_{\rm s}} \sum_{k=1}^{N_{\rm s}} w(\mathbf{x}_k, t_m) G(\mathbf{x}, t \mid \mathbf{x}_k, t_m) \Delta t \Delta V.$$
(14)

238 By recalling that $F_s = H_s$ and comparing Equations (12) and (14), one has

239
$$G(\mathbf{x},t \mid \mathbf{x}_{k},t_{m}) \approx \frac{1}{C(\mathbf{x}_{k})\Delta t}\overline{I}(k,m)$$
(15)

According to Cole et al. (2011, Equation (3.89) with $\alpha = 1$), Green's functions for

241 transient and steady-state scenarios are related as $G^{(s)}(\mathbf{x} | \mathbf{s}) = \lim_{t \to \infty} \int_{0}^{t} G(\mathbf{x}, t | \mathbf{s}, \tau) d\tau$; the

242 subscript "(s)" stands for steady-state. Thus, the Green's function associated with the

243 steady-state flow formulation is

244
$$G^{(s)}(\mathbf{x} \mid \mathbf{x}_{k}) \approx \frac{1}{C(\mathbf{x}_{k})} \sum_{m=1}^{\infty} \overline{I}(k,m).$$
(16)

245

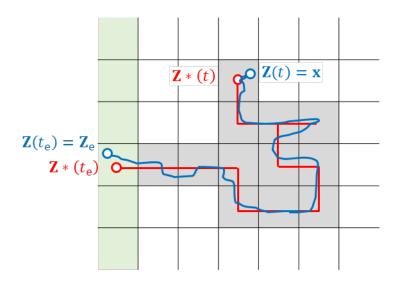


Figure 1. Lattice random walk (red) as an approximation of a general random walk (blue). Grey cells are visited by the random walks; Green cells are associated with known heads (potential exits of the walker); t_e is exit time, and \mathbf{Z}_e is exit location.

251	2.3 Numerical evaluation of Green's functions via WOG		
252	According to Equation (7), lattice random walk realizations have to be		
253	simulated on condition that Z passes through location x at time t . Conditional		
254	simulation of Z realizations can be circumvented by simulating Z realizations		
255	backwards, as suggested by Nan and Wu (2018). In this sense, random walk		
256	realizations start at (\mathbf{x}, t) , trace backwards in time, and stop at $t_e > 0$ on boundary or		
257	until $t = 0$.		
258	Taking a three-dimensional heterogeneous aquifer as an example, simulation		
259	of a WOG realization based on Equation (4) can be performed according to the		
260	following workflow:		
261	(1) discretize the domain into a lattice, whose nodes are centers of cells associated		
262	with a system of orthogonal coordinates (x, y, z) ;		
263	(2) Let p_{x+} , p_{x-} , p_{y+} , p_{y-} , p_{z+} , and p_{z-} be the probabilities that the walker		
264	jumps from cell (i, j, k) to cells $(i+1, j, k)$, $(i-1, j, k)$, $(i, j+1, k)$, $(i, j-1, k)$,		
265	$(i, j, k+1)$, $(i, j, k-1)$, respectively, and p_{t-} be the probability that the walker		
266	stays at (i, j, k) in time window $[t_{m-1}, t_m]$. Calculate the jump probabilities as		
267	follows,		
268	$p_{x-} = C_{x-} / C_s, \tag{17}$		
269	$p_{t-} = C_{t-} / C_s, \qquad (18)$		

$$270 C_{t-} = \Delta V_{i,j,k} S_s / \Delta t_m, (19)$$

$$C_{s} = C_{s-} + C_{s+} + C_{y-} + C_{y+} + C_{z-} + C_{z+} + C_{t-};$$

(20)

- 272 C_{x-} is the inter-cell conductance between cells (i, j, k) and (i-1, j, k), defined as
- 273 $C_{x-} = K_{(i-1);(i)} \cdot \Delta A_{(i-1);(i)} / |x_{i,j,k} x_{i-1,j,k}|$ in McDonald and Harbaugh (1988), where
- 274 $K_{(i-1);(i)}, \Delta A_{(i-1);(i)}$ and $|x_{i,j,k} x_{i-1,j,k}|$ is the effective hydraulic conductivity,
- interface area and distance between cells (i, j, k) and (i-1, j, k), respectively.
- 276 Similarly, C_{x+} , C_{y-} , C_{y+} , C_{z-} , C_{z+} represent inter-cell conductance along the
- 277 remaining 5 directions of a three-dimensional system. p_{x+} , p_{y-} , p_{y+} , p_{z-} , and p_{z+}
- 278 can be defined similar to Equation (17). C_{t-} represents the storage-induced inertia
- 279 which dampens head change in the cell; $\Delta V_{i,j,k}$ is the volume of cell (i, j, k).
- 280 (3) starting from a specific space-time point (\mathbf{x},t) , randomly displace a walker to a
- 281 neighboring cell according to values of local p_{x+} , p_{x-} , p_{y+} , p_{y-} , p_{z+} , p_{z-} and
- 282 p_{t-} ; the walker is then continuously displaced until it reaches the system
- boundaries or t = 0.
- 284 (4) simulate a large number of random walkers to estimate expected passage
- frequency according to Equation (13) at each cell and time step.
- 286 (5) evaluate Green's function G according to Equation (15) or (16).
- 287 Note that in steady-state problems, no initial condition exists, $p_{t-} \equiv 0$ and all random
- 288 walkers will be terminated on boundary.

289 2.4 Five test cases

290 To verify WOG-based Green's functions, five test problems of groundwater 291 flow are introduced. In the first three problems, the analytical Green's function can be 292 found and used as references to validate WOG-based Green's functions directly. The 293 other two problems involve pointwise heterogeneity in hydraulic parameters and no 294 analytical Green's function are available. Thus WOG-based Green's functions are 295 verified through their resulting hydraulic heads which are compared to numerical 296 solutions of head calculated by the widely used MODFLOW-2000 (Harbaugh et al., 297 2000).

298 2.4.1 Test Case 1

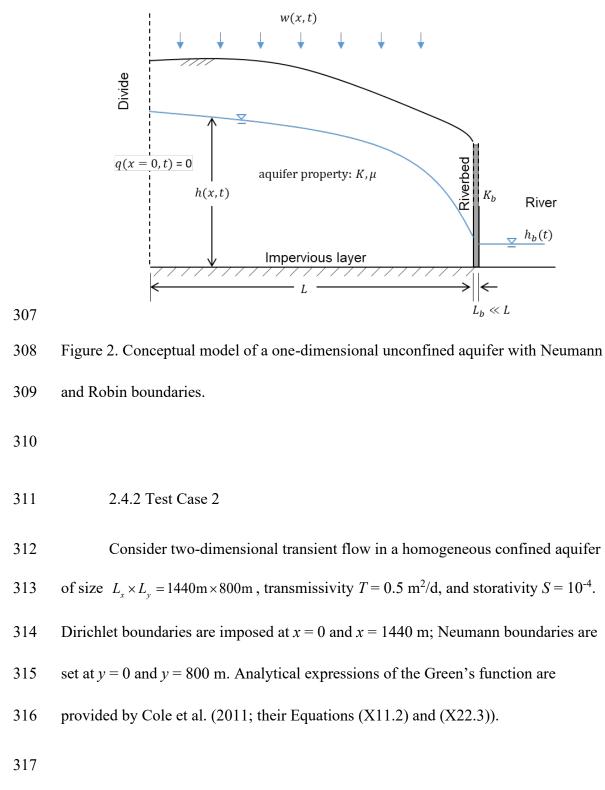
Figure 2 presents a one-dimensional homogeneous, unconfined aquifer.

300 Neumann and Robin boundaries are imposed at the left and right ends, respectively.

301 Transient groundwater flow in the aquifer shown in Figure 2 is described by

302
$$\begin{cases}
K \frac{\partial}{\partial x} \left(h \frac{\partial h}{\partial x} \right) + w_{u} \left(x, t \right) = \mu \frac{\partial h}{\partial t} \\
\frac{\partial h}{\partial x} = 0, \quad \text{at } x = 0 \\
-Kh \frac{\partial h}{\partial x} = \frac{K_{b}}{2L_{b}} \left(h \left(L, t \right) + h_{b} \left(t \right) \right) \left(h \left(L, t \right) - h_{b} \left(t \right) \right), \quad \text{at } x = L \\
h \left(x, t \right) = H_{0} \left(x \right), \quad \text{at } t = 0
\end{cases}$$
(21)

Assume that variations of *h* are small compared to average thickness of the aquifer.
Equation (21) can be linearized and analytically solved by Green's function. More
details can be found in Appendix A.



318 2.4.3 Test Case 3

Solving for Green's function analytically in the presence of a large number of interfaces (zones) and in higher dimensions with complex boundary conditions is problem-specified and typically challenging, especially in transient cases. For the sake of simplicity, consider a boundary-value problem in a one-dimensional aquifer, in which *K* may be homogeneous or block-heterogeneous. The analytical Green's function $G^{(s)}(x|s)$ corresponding to the homogeneous setting is (after Cole et al., 2011, Table X.3):

326
$$G^{(s)}(x|s) = \begin{cases} \left(1 - \frac{x}{L}\right)s / K, & s < x \\ \left(1 - \frac{s}{L}\right)x / K, & x < s \end{cases}$$
(22)

327 In the presence of multiple conductivity zones, $G^{(s)}(x|s)$ has to meet

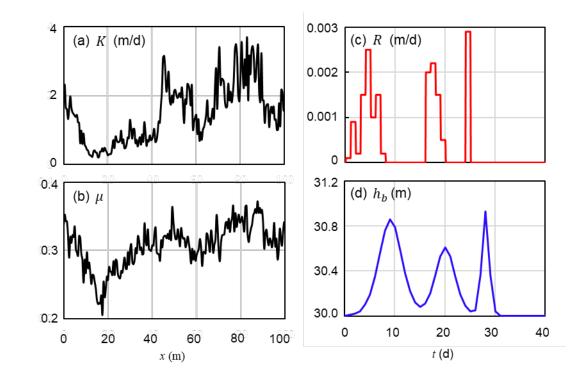
329
$$\begin{cases} \left. K \frac{\partial}{\partial s} G^{(s)} \left(x | s \right) \right|_{s-} = K \frac{\partial}{\partial s} G^{(s)} \left(x | s \right) \right|_{s+} \\ G^{(s)} \left(x | s \right) \right|_{s-} = G^{(s)} \left(x | s \right) \right|_{s+} \end{cases}$$
(23)

which are rooted in continuities of flux and hydraulic head, respectively. Expressions of $G^{(s)}(x|s)$ for two-zone and three-zone cases are shown in Section 3 below.

332

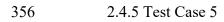
334 Test Case 4 is a heterogeneous version of Test Case 1, in which hydraulic
335 conductivity *K* and specific yield *µ* are point-wise heterogeneous (Figure 3 (a-b)).

336	Such a model is similar to the one Liang and Zhang (2013) tried to handle through
337	analytical formulation but much more general. The natural logarithm of K is
338	characterized by a mean value of 0.2, variance of 0.9 and an exponential variogram of
339	integral scale of 25 m. The spatial distribution of $\ln K$ is simulated by a sequential
340	Gaussian simulator (Deutsch & Journel, 1988). K and μ are treated to be correlated
341	according to $\mu = 0.3 + 0.04(\ln K + \xi)$, where ξ is a random variable following a
342	standard normal distribution and correlation between $\ln K$ and μ is ~0.7. Daily series
343	of precipitation events, $R(t)$, and river stage, $h_b(t)$, are synthetically generated to
344	reflect common hydrologic features and are depicted in Figure 3(c)-(d). The recharge
345	coefficient varies linearly between 0.7~0.9 from $x = 0$ to $x = L$ so that effective
346	recharge to the aquifer varies spatially and temporally. To calculate the flow rate per
347	unit width from the river to the aquifer as $q(t) = \frac{1}{2}K_b[h(L,t) + h_b(t)][h(L,t) - h_b(t)]/L_b$,
348	head on the right end $h(x = L, t)$ is calculated by both MODFLOW-2000 and WOG.
349	In both methods, time step length $\Delta t = 0.1d$ and discretization length $\Delta x = 0.5m$ are
350	used.



352

Figure 3. Spatial distribution of (a) hydraulic conductivity K(x) and (b) specific yield 4 $\mu(x)$; daily series of synthetic (c) precipitation events R(t) and (d) fluctuations of river 4 stage $h_b(t)$.



357	Test Case 5 considers a horizontal two-dimensional unconfined aquifer of
358	non-uniform hydraulic conductivity K and specific yield μ . Fields of $\ln K$ with mean
359	equal to 0.2 and variance 0.8 and μ with mean of 0.3 and variance 0.001 are
360	independently obtained by sequential Gaussian simulation (Deutsch & Journel, 1988)
361	using an exponential variogram of integral scale equal to 500 m. Figure 4 depicts the
362	conceptual model of the system and maps of the spatial distribution of $\ln K$ and μ .
363	There exists an active well with pumping rate $Q(t)$ [L ³ T ⁻¹] and a spatially uniform
364	but temporally varying areal recharge, $P(t)$ [LT ⁻¹]. The former is located at the center

365	of the domain, <i>i.e.</i> , at $(x_w, y_w) = (500\text{ m}, 400\text{ m})$, and is operated according to a
366	prescribed time schedule (Figure 5). Two observation boreholes are set at
367	$(x_1, y_1) = (450m, 400m)$ and $(x_2, y_2) = (550m, 400m)$. The East boundary is a
368	prescribed-head boundary with head equal to $\varphi(y,t)$, the remaining boundaries being
369	impervious. Even as both WOG and MODFLOW allow considering any functional
370	form for $\varphi(y,t)$, we set $\varphi(y,t) = 50$ m for simplicity. The initial head $H_0(x,y) = 50$ m
371	and the study period is of 20 d.

372 Groundwater flow is governed by $\begin{cases}
\frac{\partial}{\partial x} \left(Kh \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(Kh \frac{\partial h}{\partial y} \right) + w_{u} \left(x, y, t \right) = \mu \frac{\partial h}{\partial t} \\
\frac{\partial h}{\partial x} = 0, \qquad x = 0 \\
\frac{\partial h}{\partial y} = 0, \qquad y = 0 \text{ or } L_{y} \\
h(x, y, t) = \phi(y, t), \qquad x = L_{x} \\
h(x, y, t) = H_{0}(x, y), \qquad t = 0
\end{cases}$ (24)

Here $L_x = 1000 \text{ m}$, $L_y = 800 \text{ m}$, and the total thickness is $\overline{h} = 50 \text{ m}$.

375 $w_{\mu}(x, y, t) = P(t) + Q(t)\delta(x_{w}, y_{w})$. Case 5 can be numerically solved by MODFLOW-

376 2000, or WOG-based Green's function method below.

377 Similar to linearization technique illustrated in Appendix A, Equation (24) can

378 be rewritten as:

379

$$\begin{cases}
\frac{\partial}{\partial x} \left(K \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(K \frac{\partial u}{\partial y} \right) + 2w_u \left(x, y, t \right) = S_e \frac{\partial u}{\partial t} \\
\frac{\partial u}{\partial x} = 0, \text{ at } x = 0 \\
\frac{\partial u}{\partial y} = 0, \text{ at } y = 0 \text{ or } L_y \\
\frac{\partial u}{\partial y} = 0, \text{ at } y = 0 \text{ or } L_x \\
u \left(x, y, t \right) = \varphi^2 \left(y, t \right), \text{ at } x = L_x \\
u \left(x, y, t \right) = H_0^2 \left(x, y \right), \text{ at } t = 0
\end{cases}$$
(25)

380 WOG-based solution to Equation (25) is

381
$$u(x, y, t) = U_1 + U_D + U_S$$
 (26a)

382 where

383
$$U_{I} = \int_{0}^{L_{x}} dx' \int_{0}^{L_{y}} H_{0}^{2}(x', y') S_{e}(x', y') G(x, y, t \mid x', y', \tau = 0) dy', \qquad (26b)$$

384
$$U_{\rm D} = \int_{0}^{t} \mathrm{d}\tau \int_{0}^{L_{y}} K \varphi^{2} \left(y', \tau \right) \frac{\partial}{\partial x} G(x, y, t \mid x' = L_{x}, y', \tau) \mathrm{d}y', \qquad (26c)$$

385
$$U_{\rm s} = \int_{0}^{t} d\tau \int_{0}^{L_{\rm s}} dx' \int_{0}^{L_{\rm y}} 2w_{\rm u} (x', y', \tau) G(x, y, t \mid x', y', \tau) dy', \qquad (26d)$$

386 represent the contributions to u (or equivalently, h(x, y, t)) of initial condition,

387 Dirichlet boundary and source/sink terms, respectively. Recalling that

388
$$W_{u}(x, y, t) = P(t) + Q(t)\delta(x_{w}, y_{w}), \text{ then}$$

389
$$U_{\rm s} = \int_{0}^{t} 2P(\tau) \rho_P(x, y, t \mid \tau) \mathrm{d}\tau + \int_{0}^{t} 2Q(\tau) \rho_Q(x, y, t \mid x_w, y_w, \tau) \mathrm{d}\tau. \text{ Here,}$$

390
$$\rho_{P}(x, y, t | \tau) = \int_{0}^{L_{x}} dx' \int_{0}^{L_{y}} G(x, y, t | x', y', \tau) dy'$$
(27)

391 quantifies the influence to u(x, y, t) of areal recharge at time τ , and

$$\rho_{\varrho}\left(x, y, t | x_{w}, y_{w}, \tau\right) = G\left(x, y, t | x_{w}, y_{w}, \tau\right)$$
(28)

393 provides an indication of the influence to u(x, y, t) of pumping at time τ at location 394 (x_w, y_w) .

395 If
$$\varphi(y,t) = \varphi(t)$$
 i.e., independent of location, then $U_{\rm D} = \int_{0}^{t} \varphi^{2}(\tau) \rho_{D}(x, y, t | \tau) d\tau$,

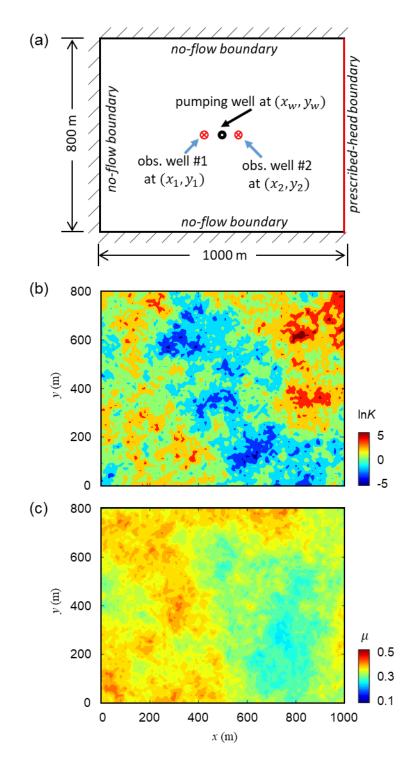
396 where

397
$$\rho_D(x, y, t \mid \tau) = \int_0^{L_y} K \frac{\partial}{\partial x} G(x, y, t \mid x' = L_x, y', \tau) dy'.$$
(29)

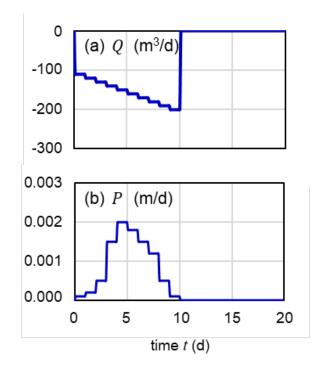
398 In other words, ρ_{Q} , ρ_{P} and ρ_{D} can be considered as the weights of source and

boundary histories to impact u(x, y, t). Once $G(x, y, t | x', y', \tau)$ is evaluated by WOG

- 400 method, ρ_{Q} , ρ_{P} and ρ_{D} can be found. Afterwards, h(x, y, t) can be calculated and
- 401 compared to MODFLOW simulation.



403 Figure 4. (a) Conceptual model of the two-dimensional unconfined aquifer; and
404 spatial distributions of (b) hydraulic conductivity *K* and (c) specific yield μ.



406 Figure 5. Time series of (a) the pumping well rate Q(t) and (b) precipitation 407 event P(t).

408 Table 1 summarizes the dimensions of quantities mentioned in this study,

409	which may help	validate the	correctness of	analyses	in this study.
-----	----------------	--------------	----------------	----------	----------------

Table 1. Dimensions of quantities in this study

variable	ele quantity dimension	
X, S	spatial vector	[L]
<i>t</i> , τ	time	[T]
G	transient Green's function	$[L^{-2}]$ in 3D cases;
		$[L^{-1}]$ in 2D cases;
		[-] in 1D cases
$G^{(\mathrm{s})}$	steady-state Green's function	[L ⁻² T] in 3D cases;

[L⁻¹T] in 2D cases;

[T] in 1D cases

L, L_x, L_y, L_z	domain size	[L]
h	hydraulic head	[L]
W	source term	[T ⁻¹]
Wu	source term in unconfined aquifers	[LT ⁻¹]
Κ	hydraulic conductivity	[LT ⁻¹]
Т	transmissivity	$[L^2T^{-1}]$
С	hydraulic conductance	$[L^2T^{-1}]$
Ss	specific storage	$[L^{-1}]$
S	storativity	[-]
μ	specific yield	[-]
Se	depth-scaled specific yield	[L ⁻¹]
$H_{\rm S}, H_{\rm R}, H_{\rm D}, H_{\rm I},$	head due to source, Robin or Dirichlet	[L]
	boundary and initial condition in Green's	
	function solution	
$F_{\rm S}, F_{\rm R}, F_{\rm D}, F_{\rm I}$	same as above but in Feynman-Kac	[L]
	solution	
$\mathbf{Z}(t)$	Itô process	[L]
$\mathbf{Z}^{*}(t)$	simple lattice random walk in space	[L]
$\mathbf{W}(t)$	Wiener process	$[T^{1/2}]$

ΔV	volume of discretization cell	[L ³]
Ι	passage frequency	[-]
R(t), P(t)	precipitation rate	[LT ⁻¹]
Q(t)	volumetric pumping rate	$[L^{3}T^{-1}]$
q(t)	flow rate per unit width	$[L^2T^{-1}]$

412 **3 Results and Discussion**

413 3.1 Test Case 1

414 WOG-based Green's function for Case 1 and its analytical counterpart are evaluated for a setting corresponding to $L = 100 \text{ m}, K = 1 \text{ m/d}, \mu = 0.3, \overline{h} \approx 30 \text{ m}, S_e$ 415 = 0.01 m⁻¹, K_b = 0.1 m/d, L_b = 0.1 m, and a 10 days temporal window. WOG-based 416 Green's function uses a uniform domain discretization length $\Delta x = 0.5$ m and time 417 step length $\Delta t = 0.05$ d; the number of random walk realizations is $N_{\rm MC} = 10^6$. On the 418 419 other hand, one hundred terms are included in the evaluation of the analytical expression (Equation (A3)). Figure 6 depicts results obtained at 4 illustrative locations, 420 421 x = 25 m, 50 m, 75 m, and 100 m, across the temporal range 0 < t < 10 d. While the 422 WOG-based results display some oscillations at low values, they virtually coincide with 423 the analytical solution. According to Equation (15), the observed numerical errors are related to the precision of \overline{I} , *i.e.* $1/N_{MC}$, and are noticeable only when \overline{I} is 424 comparable to $1/N_{MC}$. On these bases, one can note that the smallest non-zero value that 425

426 can be represented by Equation (15) in this example is $G = 4.9 \times 10^{-6}$, *i.e.*, $\ln(G) = -12.2$, 427 which provides sufficient precision for our purpose. The location corresponding to this 428 value corresponds to the right end in Figure 5(d), *i.e.*, the Robin boundary. This result 429 is consistent with a dampening impact of this boundary type. Note that the Green's 430 function at x = 100 m will always vanish when $K_b / L_b \rightarrow \infty$, in conformity with the 431 fact that the Robin boundary tends to a Dirichlet boundary for $K_b / L_b \rightarrow \infty$. Thus, 432 WOG-based Green's function matches its analytical counterpart with good accuracy.

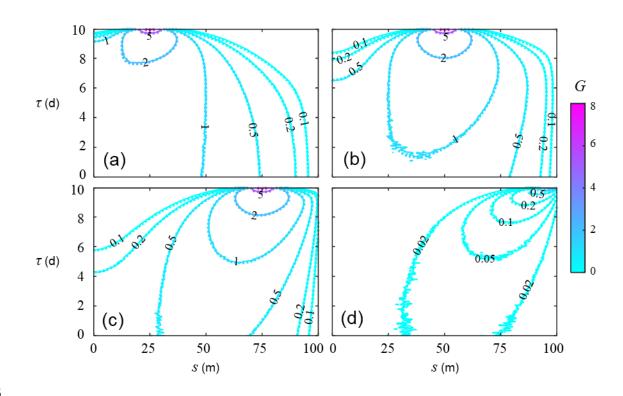
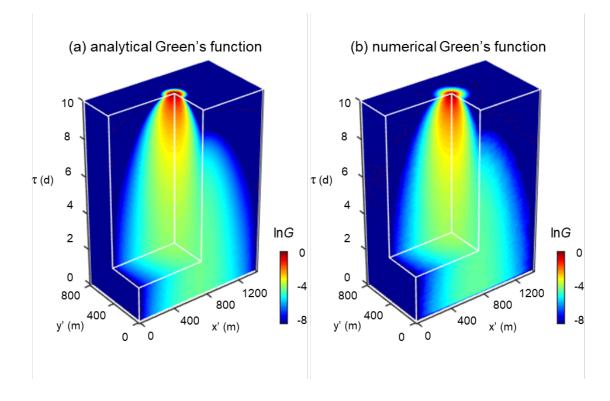


Figure 6. Transient Green's function at (a) x = 25 m; (b) x = 50 m; (c) x = 75 m, and (d) x = 100 m via analytical formulation (dashed curves) and WOG-based numerical method (solid curves).

438 3.2 Test Case 2

439 A uniform spatial discretization $\Delta x = \Delta y = 20 \text{ m}$ and time step $\Delta t = 0.1 \text{ d}$ 440 across a 10 days temporal window are used in WOG method. An example of the 441 comparison between the Green's function results obtained through analytical and 442 WOG methods is depicted in Figure 7, denoting a good agreement between them, 443 even in the presence of some numerical errors at low values. Results of the same 444 quality are obtained at other locations and observation times (not shown for brevity). 445 It suggests that WOG-based Green's function is reliable.

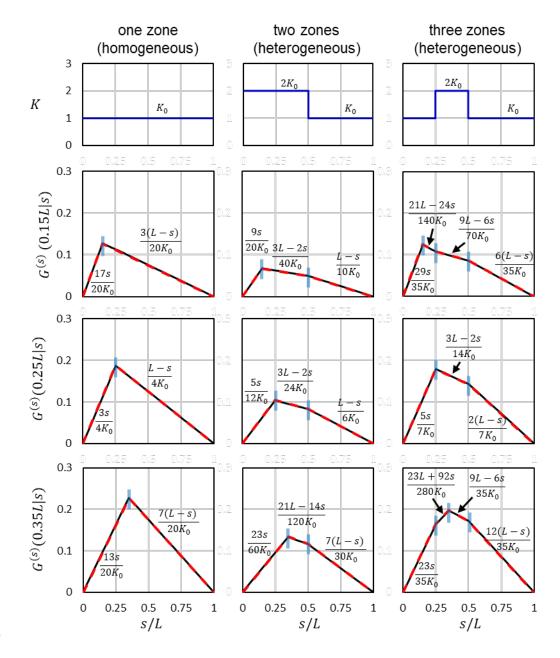


447 Figure 7. Logarithmic transform of $G(720m, 400m, 10d | x', y', \tau)$ evaluated by (a)

448 analytical and (b) WOG methods.

450	3.3 Test Case (3

451	By taking into account all interface conditions, mathematical expressions of
452	Green's functions $G^{(s)}(x s)$ in Case 3 for $x = 0.15 L$, 0.25 L, and 0.35 L are found and
453	plotted in Figure 8 by red dashed lines. Corresponding WOG-based $G^{(s)}(x s)$,
454	obtained with a uniform domain discretization $\Delta x/L = 10^{-3}$ are also depicted by black
455	lines. It is seen that WOG-based Green's function matches analytical counterparts
456	very well, thus supporting the validity of Equation (16) in both homogeneous and
457	heterogeneous media.

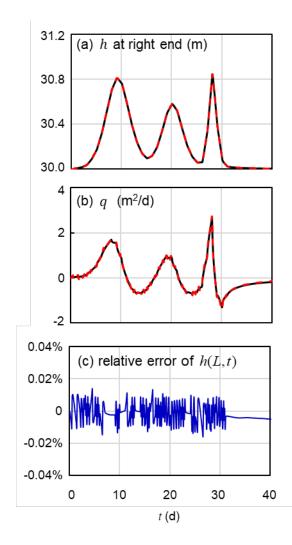


458

Figure 8. Analytical (red dashed) and WOG-based (black solid) Green's function for three different one-dimensional *K* fields, as depicted in the top row. Blue short lines show the joints of distinct segments of $G^{(s)}(x|s)$. Corresponding analytical expressions of $G^{(s)}(x|s)$ are also reported.

464 3.4 Test Case 4

Figure 9(a-b) reports head and flow rate at right end, h(x = L, t) and q(t), 465 computed through MODFLOW and WOG-based Green's function. These results are 466 complemented by Figure 9(c), which depicts the relative differences between 467 h(x = L, t) evaluated by WOG and MODFLOW. It is seen that differences in 468 469 h(x = L, t) from two methods are very limited. Results of q(t) are also very close. Thus, Green's function evaluated by WOG approach is able to yield accurate 470 471 solutions to groundwater flow in heterogeneous aquifers, and the effectiveness of 472 WOG-based Green's function method is further validated. 473



475 Figure 9. Results for (a) h(L,t) obtained by WOG approach (black solid) and

476 MODFLOW (red dashed); (b) aquifer-river exchange rate evaluated by WOG

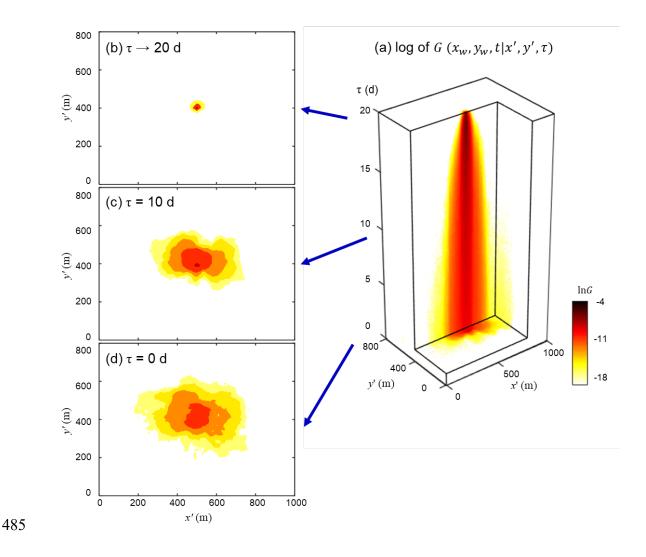
477 approach (black solid) and MODFLOW (red dashed); and (c) relative differences

478 between h(L,t) evaluated by WOG and MODFLOW.

479

480 3.5 Test Case 5

481 In both MODFLOW and WOG-based Green's function methods, $\Delta x = \Delta y = 10$ m 482 and time step $\Delta t = 0.1$ d. Figure 10(a) depicts the WOG-based Green's function 483 $G(x_w, y_w, t | x', y', \tau)$ at the pumping well until t = 20 d. Figure 10(b-d) depicts spatial

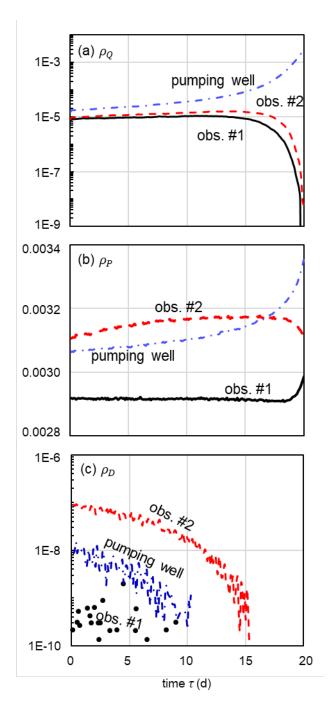


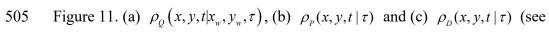
484 contours of $G(x_w, y_w, t | x', y', \tau)$ for $\tau \to 20 \,\mathrm{d}$, $\tau = 10 \,\mathrm{d}$, and $\tau = 0 \,\mathrm{d}$ when $t = 20 \,\mathrm{d}$.

486 Figure 10. Natural logarithmic of the Green's function $G(x_w, y_w, t = 20d | x', y', \tau)$ for 487 (a) $\tau = 0 \sim 20d$; the three insets correspond to contours of (b) $\tau \rightarrow 20$ d; (c) $\tau = 10$ d; 488 and (d) $\tau = 0$ d.

489

491	Figure 11 depicts the evolution of $\rho_Q(x, y, t x_w, y_w, \tau)$, $\rho_P(x, y, t \tau)$ and
492	$\rho_D(x, y, t \tau)$ across $0 \le \tau \le t$ for $t = 20 d$ at the pumping and observation wells
493	(Figure 4). Values of ρ_{ϱ} at the pumping well are consistently largest. It is in
494	agreement on the fact that pumping at (x_w, y_w) naturally affects heads at (x_w, y_w)
495	stronger than at other locations. It is also found that ρ_{ϱ} at observation well #2 is
496	close to but greater than its counterpart evaluated at observation well #1, implying an
497	stronger hydraulic connection between the pumping well and well #2 due to
498	heterogeneity. According to ρ_D , the impact of Dirichlet boundary is remarkable at
499	observation well #2 but almost negligible at observation well #1. Since ρ_{Q} , ρ_{P} and
500	$\rho_{\rm D}$ embed point-to-point hydraulic connections in a quantitative manner, a further
501	evolution of the study could be the analysis of the possibility to enhance our
502	understanding about aquifer connectivity upon relying on metrics derived from a
503	Green's function approach.

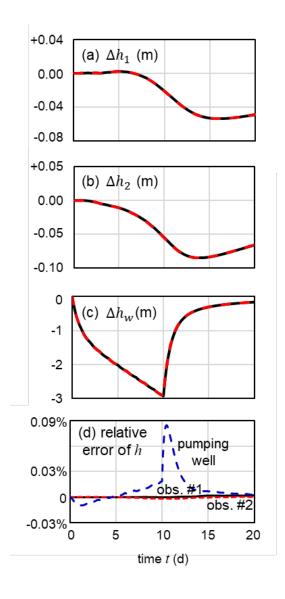




Equations (27)-(29)) for
$$t = 20 d$$
 at pumping location (x_w, y_w) , and observation

507 locations
$$(x_1, y_1)$$
 and (x_2, y_2) .

509	Head variation $\Delta h(x, y, t) = h(x, y, t) - H_0(x, y)$ evaluated at the two
510	observation wells and at the pumping well are denoted as Δh_1 , Δh_2 and Δh_w ,
511	respectively. Δh_1 , Δh_2 and Δh_w calculated through MODFLOW and WOG are
512	compared in Figure 12(a-c). Figure 12(d) depicts the relative differences between
513	heads obtained by the two methods at the three target locations. These results clearly
514	demonstrate the accuracy of the WOG-based Green's function method. Its
515	computational costs are discussed in Section 3.6, where it is shown that WOG-based
516	Green's function is very efficient when there is the need to assess the action of
517	various combinations of $\varphi(y,t)$, $H_0(x,y)$, $Q(t)$ and $P(t)$, once the Green's function
518	is found by WOG.



520 Figure 12. (a) Head variation at observation well #1, (b) at observation well #2, and

521 (c) at pumping well (red dash: MODFLOW, black solid: WOG). (d) relative

522 differences between heads from two methods at the three locations (blue dash:

523 pumping well, black solid: well #1, red dash: well #2).

524

526	Two of several major advantages WOG-based Green's function approach
527	bears are computational stability and efficiency. As mentioned in the introduction,
528	irregularity produced by Dirac function in Green's function PDE Equation (5) often
529	leads to difficulty in convergence and errors, which is further exacerbated by
530	discontinuous coefficients e.g. hydraulic conductivities in the PDE (Barajas-Solano &
531	Tartakovsky, 2013). Repeating failures of convergences have been observed while
532	attempting to solve Equation (5) directly by MODFLOW. That's the reason why we
533	don't compare Green's function from WOG to that from MODFLOW in Test Case 4
534	and Case 5. In contrast, WOG-based method seems work stably in all cases in our
535	investigation here.
536	The second advantage is computational efficiency of this approach. It is
537	mainly attributed to (a) parallelizability in simulating random walks and (b)
538	framework of Green's function method which allows efficient recalculations for
539	various combinations of boundary conditions and forcing terms.
540	Table 2 lists details of time costs in all of the computational studies illustrated
541	above. For the sake of accuracy, one hundred terms are included in the evaluation of
542	analytical expression of the Green's function in Test Case 1, a choice that yields
543	computationally intensive evaluations. One can note that in this case the WOG-based
544	Green's function evaluation is more efficient than its analytical counterpart.
545	Otherwise, analytical expressions associated with Test Case 2 and Case 3 are in

546	closed form and very efficient. In Test Case 4 and Case 5, the WOG-based approach
547	first evaluates numerically Green's functions and then calculate hydraulic heads based
548	on these Green's functions. The most computational cost is spent in the first step (<i>i.e.</i>
549	Green's function evaluation) and the second step is very fast (about 10^{-2} s or less).
550	Furthermore, the computational cost in the first step can be remarkably reduced
551	through parallelization and more efficient than using MODFLOW.
552	On the other hand, MODFLOW directly solves for heads at each time step.
553	While this computational suite is typically considered as an efficient tool, when
554	compared to other groundwater solvers, one can see that it is still not fast enough in
555	many scenario simulations which may require calling solver routines a large number
556	of times. For example, addressing data assimilation, uncertainty analysis, and/or
557	source identification problems (see, e.g., Ayvaz & Karhan, 2008; Nan & Wu, 2011;
558	Wu & Zeng, 2013; Yeh, 2015) in the presence of uncertain forcing terms and/or
559	boundary conditions often requires relying on a high number of direct solutions of the
560	flow scenarios. As such, surrogate models are developed to speed up the solution,
561	often at the cost of a decreased accuracy (see, e.g., Asher et al., 2015 and references
562	therein).
563	When considering a WOG-based Green's function approach, performing
564	multiple calls to scenario simulation (the second step above) is only a marginal issue

- because the first step (*i.e.*, Green's function evaluation) needs to be implemented only
- 566 once and the computational cost of the second step is negligible. Therefore, our

567	results evidence the potential benefit (in terms of computational cost) of relying on a
568	WOG-based Green's function approach when there is the need for a high number of
569	repeated solutions of the groundwater flow problem, as driven by uncertain forcing
570	and/or boundary terms.

572 Table 2. Summary of the analyses performed in this study and their computational

573 time costs

tast				reference t	ma aast	WO	G time
test case	dimension	transient	heterogeneous?	(in seco			ost econds)
				.1 1 1			
				method used	time cost	serial	parallel
1	1D	Yes	No	AGF*	~ 1200	~243	18
2	2D	Yes	No	AGF*	~ 1	~ 87	11
3	1D	No	Yes (zoned)	AGF*	negligible	~ 10	8
4	1D	Yes	Yes	MODFLOW	~ 4	~100	8
5	2D	Yes	Yes	MODFLOW	~ 25	~215	17

574

* AGF stands for analytical Green's function.

575

576 4 Conclusions

577 This study leads to the following major conclusions.

578	1.	The relation between Green's functions and random walk is extended to
579		heterogeneous aquifers upon deriving a quantitative relationship between
580		Green's function and expected passage frequency of random walk. This
581		enables one to numerically evaluate Green's functions of groundwater
582		flow problems in aquifer systems of complex geometries and spatial
583		heterogeneity patterns. This new method rests on the Walk on Grid
584		(WOG) approach and its capabilities are illustrated through a suite of five
585		test scenarios involving steady-state and transient flow, various boundary
586		conditions, the action of spatially and/or temporally varying source terms
587		of various nature, as well as diverse spatial distributions of system
588		attributes <i>e.g.</i> , hydraulic conductivity and storativity.
589	2.	Numerical Green's functions calculated by WOG are compared against
589 590	2.	Numerical Green's functions calculated by WOG are compared against exact analytical solutions under a variety of settings. Results (Figures 6, 7
	2.	
590	2.	exact analytical solutions under a variety of settings. Results (Figures 6, 7
590 591	2.	exact analytical solutions under a variety of settings. Results (Figures 6, 7 and 8) show that the WOG-based Green's functions are virtually
590 591 592	2.	exact analytical solutions under a variety of settings. Results (Figures 6, 7 and 8) show that the WOG-based Green's functions are virtually indistinguishable from their analytical counterparts, an exception being
590 591 592 593	2.	exact analytical solutions under a variety of settings. Results (Figures 6, 7 and 8) show that the WOG-based Green's functions are virtually indistinguishable from their analytical counterparts, an exception being given by values that are too low to be properly captured by expected
590 591 592 593 594	2.	exact analytical solutions under a variety of settings. Results (Figures 6, 7 and 8) show that the WOG-based Green's functions are virtually indistinguishable from their analytical counterparts, an exception being given by values that are too low to be properly captured by expected passage frequency of random walk. Numerical errors in the WOG-based

598		realizations are used in all of our examples, which is shown to be
599		sufficient to capture the main information in Green's functions.
600	3.	The findings corresponding to settings of increased level of complexity
601		where analytical solutions are not available reveal that relative differences
602		between heads calculated via our WOG-based approach and their
603		counterparts based on numerical solution of the widely tested
604		computational suite MODFLOW are very small (<i>i.e.</i> , <0.02% in Figure
605		9(c) and <0.09% in Figure 12(d)). These results strengthen our confidence
606		on the accuracy of WOG-based Green's functions for groundwater flow
607		scenarios.
608	4.	As compared against available analytical formulations, the WOG
608 609	4.	As compared against available analytical formulations, the WOG approach may be computationally more efficient in the evaluation of
	4.	
609	4.	approach may be computationally more efficient in the evaluation of
609 610	4.	approach may be computationally more efficient in the evaluation of Green's functions when the former are expressed in terms of infinite
609 610 611		approach may be computationally more efficient in the evaluation of Green's functions when the former are expressed in terms of infinite series.
609610611612		approach may be computationally more efficient in the evaluation of Green's functions when the former are expressed in terms of infinite series. The WOG-based Green's function method avoids limitations of
 609 610 611 612 613 		approach may be computationally more efficient in the evaluation of Green's functions when the former are expressed in terms of infinite series. The WOG-based Green's function method avoids limitations of applicability to complex media which are typical of traditional approaches
 609 610 611 612 613 614 		 approach may be computationally more efficient in the evaluation of Green's functions when the former are expressed in terms of infinite series. The WOG-based Green's function method avoids limitations of applicability to complex media which are typical of traditional approaches to the numerical evaluation of Green's functions, <i>i.e.</i>, it can efficiently

618	6.	While WOG-based Green's function method appears to be more
619		computationally demanding than MODFLOW, it is recalled that
620		evaluation of heads is associated with negligible computational time once
621		the Green's function is calculated. Thus, in terms of computational cost,
622		the potential benefit of relying on a WOG-based Green's function method
623		tends to increase when one has to perform a high number of repeated
624		solutions of the groundwater flow problem, as driven by uncertain forcing
625		and/or boundary terms. Potential application examples in this context,
626		which one could consider on future studies, include the assessment of the
627		evolution of groundwater resources as driven by various climatic
628		scenarios, or the quantification of the sustainability of multiple extraction
629		scenarios in a given aquifer system.
630	7.	Finally, this study allows discriminating clearly the contributions to head
631		distributions due to boundary and source terms. On these bases, our
632		results form the basis upon which one can build future studies to analyze
633		the concept of aquifer connectivity through metrics derived from a
634		Green's function method.

636 Acknowledgments, Samples, and Data

- This work is funded by the National Natural Science Foundation of China 637
- 638 (Grant Nos. 41972245, 41602250), China Postdoctoral Science Foundation (Grant
- 639 No. 2017M611782) and the Fundamental Research Funds for the Central Universities
- 640 (Grant Nos. 0206-14380032 and 0206-14380091). Part of the work was developed
- while Prof. A. Guadagnini was at the University of Strasbourg with funding from 641
- 642 Région Grand-Est and Strasbourg-Eurométropole through the 'Chair Gutenberg'. We
- 643 declare that we have no conflict of interest. Data included in this study can be
- downloaded at: https://www.researchgate.net/profile/Tongchao Nan/publications. 644

645

Appendix A. 646

647 We assume that the total saturated thickness is much larger than the amplitude of spatiotemporal variations of head. Setting $h^2 = u$ and $S_e = \mu / \overline{h}$ (where \overline{h} is the 648 spatially averaged saturated thickness, whose temporal variation we take as much 649 smaller than \overline{h}), Equation (23) can be linearized as 650

651

$$\begin{cases}
\frac{\partial^{2} u}{\partial x^{2}} + \frac{2w(x,t)}{K} = \frac{S_{e}}{K} \frac{\partial u}{\partial t} \\
\frac{\partial u}{\partial x} = 0, \quad x = 0 \\
K \frac{\partial u}{\partial x} + \frac{K_{b}}{L_{b}} u(x,t) = \frac{K_{b}}{L_{b}} h_{b}^{2}(t), \quad x = L \\
u(x,t) = H_{0}^{2}(x), \quad t = 0
\end{cases}$$
(A1)

Boundary conditions can be recast as: $\alpha_i \frac{\partial u}{\partial x}|_{x=x_i} + \beta_i u(x_i, t) = \gamma_i(t)$, with $x_1 = 0$

653 ,
$$\alpha_1 = 1$$
, $\beta_1 = 0$, $\gamma_1 = 0$; $x_2 = L$, $\alpha_2 = K$, $\beta_2 = \frac{K_b}{L_b}$, $\gamma_2 = \frac{K_b}{L_b}h_b^2(t)$.

The solution of Equation (A1) can be expressed as

$$u(x,t) = \int_{0}^{L} H_{0}^{2}(s) G(x,t \mid s,\tau = 0) S_{e} ds$$

655
$$+2 \int_{0}^{t} d\tau \int_{0}^{L} w(s,\tau) G(x,t \mid s,\tau) ds$$

$$+ \int_{0}^{t} d\tau \left(\sum_{i=1}^{2} \frac{\gamma_{i}(\tau)}{\alpha_{i}} G(x,t \mid s = x_{i},\tau) \right)$$
(A2)

656 where

657
$$G(x,t|s,\tau) = \frac{2}{S_e L} \sum_{m=1}^{\infty} \exp\left(-\frac{\lambda_m^2 K(t-\tau)}{S_e L^2}\right) \frac{\lambda_m^2 + D^2}{\lambda_m^2 + D^2 + D} \cos\left(\lambda_m \frac{x}{L}\right) \cos\left(\lambda_m \frac{s}{L}\right)$$
(A3)

658
$$\lambda_m$$
 being the m-th root of $\lambda_m \tan(\lambda_m) = D$ with $D = \frac{2\beta_2 L}{K} = \frac{2K_b L}{L_b K}$.

659

660 **References**

661 Ayvaz, M.T. and Karahan, H. 2008. A simulation/optimization model for the

662 identification of unknown groundwater well locations and pumping rates.

663 Journal of Hydrology, 357(1-2): 76-92. DOI: 10.1016/j.jhydrol.2008.05.003.

Asher, M. J., B. F. W. Croke, A. J. Jakeman, and L. J. M. Peeters (2015), A review of

- surrogate models and their application to groundwater modeling, Water
- 666 Resources Research, 51, 5957–5973. DOI: 10.1002/2015WR016967.

- 667 Barajas-Solano, D.A., Tartakovsky, D.M. 2013. Computing Green's Functions for
- 668 Flow in Heterogeneous Composite Media. International Journal for
- 669 Uncertainty Quantification, 3(1):39-46. DOI:
- 670 10.1615/Int.J.UncertaintyQuantification.2012003671.
- 671 Borcea, L., Papanicolaou, G., Tsogka, C., Berryman, J. 2002. Imaging and time
- 672 reversal in random media. Inverse Problems, 18(5):1247. DOI: 10.1088/0266673 5611/18/5/303.
- 674 Chen, L., Holst, M.J., Xu, J. 2007. The finite element approximation of the nonlinear
- 675 Poisson-Boltzmann equation. SIAM Journal of Numerical Analysis. 45(6):

676 2298-2320. DOI: 10.1137/060675514.

- 677 Cole, K.D. 2019. Green's Function Library.
- 678 http://www.greensfunction.unl.edu/home/index.html. Last access on 2019/5/5.
- 679 Cole, K.D., Beck, J.V., Haji-Sheikh, A., Litkouhi, B. 2011. Heat conduction using
- 680 Green's functions. 2nd edition. CRC Press. ISBN: 143981354X.
- 681 Deaconu, M., Lejay, A., 2006. A Random Walk on Rectangles Algorithm.
- 682 Methodology and Computing in Applied Probability. 8: 135-151. DOI:
- 683 10.1007/s11009-006-7292-3.
- 684 Dagan, G. 1989. Flow and Transport in Porous Formations. Springer-Verlag, Berlin
 685 Heidelberg.

686	Deutsch, C.V. and Journel, A.G. 1998. GSLIB Geostatistical Software Library and
687	User's Guide, 2nd ed. Oxford University Press, Oxford. DOI:
688	10.2307/1270548.
689	Gomez, J.D.E, Torres-Verdin, C. 2019. Permeability sensitivity functions and rapid
690	simulation of multi-point pressure measurements using perturbation theory.
691	Advances in Water Resources, 129: 198-209. DOI:
692	10.1016/j.advwatres.2019.05.015.
693	Guadagnini, A., Neuman, S.P. 1999. Nonlocal and localized analyses of conditional
694	mean steady state flow in bounded, randomly nonuniform domains. 1. Theory
695	and computational approach. Water Resources Research, 35(10): 2999-3018.
696	DOI: 10.1029/1999WR900160.
697	Hahn, D.W. and Özişik, M.N. 2012. Heat Conduction, Third Edition. John Wiley &
698	Sons, INC. Hoboken, New Jersey. DOI:10.1002/9781118411285.
699	Harbaugh, A.W., Banta, E.R., Hill, M.C., Mcdonald, M.G. 2000. MODFLOW-2000,
700	the U.S. geological survey modular ground-water flow model-User guide to
701	modularization concepts and the ground-water flow process. U.S. Geol. Surv.
702	Open File Rep., 00-92.
703	Hristopulos, D. T., Christakos, G. 1999. Renormalization group analysis of

permeability upscaling. Stochastic Environmental Research and Risk
Assessment, 13(1-2): 131-160. DOI: 10.1007/s004770050036.

706	Hou, Z.Y. and Lu, W.X. 2018. Comparative study of surrogate models for
707	groundwater contamination source identification at DNAPL-contaminated
708	sites. Hydrogeology Journal. 26(3):923-932. DOI: 10.1007/s10040-017-1690-
709	1.
710	Hwang, C. O., Given, J. A., Mascagni, M. 2001. The simulation-tabulation method
711	for classical diffusion Monte Carlo. Journal of Computational Physics. 174(2):
712	925-946. DOI: 10.1006/jcph.2001.6947.
713	Hwang, C.O. and Mascagni, M., 2003. Analysis and comparison of Green's function
714	first-passage algorithms with "Walk on Spheres" algorithms. Mathematics and
715	Computers in Simulation. 63(6): 605-613. DOI: 10.1016/S0378-
716	4754(03)00091-0.
717	Klebaner, F.C. 2005. Introduction to Stochastic Calculus with Applications, Second
718	Edition. Imperial College Press. London, UK. ISBN: 9781848168312.
719	Lejay A., Marie S., 2013. New Monte Carlo schemes for simulating diffusions in
720	discontinuous media. Journal of Computational and Applied Mathematics.
721	245: 97-116. DOI: 10.1016/j.cam.2012.12.013.
722	Lejay A., Martinez, M., 2006. A scheme for simulating one-dimensional diffusion
723	processes with discontinuous coefficients. Annals of Applied Probability.
724	16(1): 107-139. DOI: 10.1214/10505160500000656.

725	Lejay, A., Pichot, G., 2012. Simulating diffusion processes in discontinuous media: a
726	numerical scheme with constant time steps. Journal of Computational Physics.
727	231(21): 7299-7314. DOI: 10.1016/j.jcp.2012.07.011.
728	Lejay, A., Pichot, G., 2016. Simulating diffusion processes in discontinuous media:
729	Benchmark tests. Journal of Computational Physics. 314: 384-413. DOI:
730	10.1016/j.jcp.2016.03.003.
731	Lembcke, L.G.M., Roubinet, D., Gidel, F., Irving, J., Pehme, P., Parker, B.L. 2016.
732	Analytical analysis of borehole experiments for the estimation of subsurface
733	thermal properties. Advances in Water Resources, 91:88-103. DOI:
734	10.1016/j.advwatres.2016.02.011.
735	Liu C.X. and Ball W.P. 1998. Analytical modeling of diffusion-limited contamination
735 736	Liu C.X. and Ball W.P. 1998. Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous medium. Advances in Water
736	and decontamination in a two-layer porous medium. Advances in Water
736 737	and decontamination in a two-layer porous medium. Advances in Water Resources. 21(4): 297-313. DOI: 10.1016/S0309-1708(96)00062-0.
736 737 738	and decontamination in a two-layer porous medium. Advances in Water Resources. 21(4): 297-313. DOI: 10.1016/S0309-1708(96)00062-0. Liu, H. J., Hsu, N. S., Yeh, W. W. G. 2015. Independent component analysis for
736 737 738 739	 and decontamination in a two-layer porous medium. Advances in Water Resources. 21(4): 297-313. DOI: 10.1016/S0309-1708(96)00062-0. Liu, H. J., Hsu, N. S., Yeh, W. W. G. 2015. Independent component analysis for characterization and quantification of regional groundwater pumping. Journal
 736 737 738 739 740 	 and decontamination in a two-layer porous medium. Advances in Water Resources. 21(4): 297-313. DOI: 10.1016/S0309-1708(96)00062-0. Liu, H. J., Hsu, N. S., Yeh, W. W. G. 2015. Independent component analysis for characterization and quantification of regional groundwater pumping. Journal of Hydrology. 527: 505-516. DOI: 10.1016/j.jhydrol.2015.05.013.

Liang, X.Y. and Zhang, Y.K. 2013. Analytic solutions to transient groundwater flow
under time-dependent sources in a heterogeneous aquifer bounded by
fluctuating river stage. Advances in Water Resources. 58: 1-9. DOI:
10.1016/j.advwatres.2013.03.010.
McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-
difference ground-water flow model: U.S. Geological Survey Techniques of
Water-Resources Investigations, book 6, chap. A1. 586p.
McKinney, D.C. and Lin, M.D. 1994. Genetic Algorithm Solution of Groundwater-
Management Models. Water Resources Research. 30(6): 1897-1906. DOI:
10.1029/94WR00554.
Muller, M.E., 1956. Some continuous Monte Carlo methods for the Dirichlet
problem. Annals of Mathematical Statistics. 27: 569-589. DOI:
10.1214/aoms/1177728169.
Milstein, G.N., Tretyakov, M.V., 1999. Simulation of a space-time bounded diffusion.
Annals of Applied Probability, 9(3): 732-779.
Maire, S., Nguyen, G., 2016. Stochastic finite differences for elliptic diffusion
equations in stratified domains. Mathematics and Computers in Simulation,
121: 146-165. DOI: 10.1016/j.matcom.2015.09.008.

762	Naff, R. L. and Vecchia, A. V. 1986. Stochastic-Analysis of 3-Dimensional Flow in a
763	Bounded Domain. Water Resources Research. 22(5): 695-704. DOI:
764	10.1029/WR022i005p00695.
765	Nan, T.C., Wu, J.C., Li, K.X., Jiang, J.G. 2019. Permeability estimation based on the
766	geometry of pore space via random walk on grids. Geofluids. 2019. DOI:
767	10.1155/2019/9240203.
768	Nan, T.C. and Wu, J.C. 2018. Random walk path solution to groundwater flow
769	dynamics in highly heterogeneous aquifers. Journal of Hydrology. 563: 543-
770	559. DOI: 10.1016/j.jhydrol.2018.05.008.
771	Nan, T.C. and Wu, J.C. 2011. Groundwater parameter estimation using the ensemble
772	Kalman filter with localization. Hydrogeology Journal. 19(3): 547-561. DOI:
773	10.1007/s10040-010-0679-9.
774	Neuman, S.P., Orr, S. 1993. Prediction of Steady-State flow in Nonuniform Geologic
775	Media by Conditional Moments: Exact Nonlocal Formalism, Effective
776	Conductivities, and Weak Approximation. Water Resources Research,
777	29(2):341-364. DOI: 10.1029/92WR02062.
778	Olsthoorn, T.N. 2008. Do a bit more with convolution. Groundwater, 46(1): 13-22.
779	DOI: 10.1111/j.1745-6584.2007.00342.x.
780	Park, E. and Zhan, H.B. 2001. Analytical solutions of contaminant transport from
781	finite one-, two-, and three-dimensional sources in a finite-thickness aquifer.
	53

782	Journal of Contaminant Hydrology. 53(1-2): 41-61. DOI: 10.1016/S0169-
783	7722(01)00136-X.
784	Saffi, M. and Cheddadi, A. 2007. Explicit algebraic influence coefficients: a one-
785	dimensional transient aquifer model. Hydrological Sciences Journal. 52(4):
786	763-776. DOI: 10.1623/hysj.52.4.763.
787	Sahimi, M. 2003. Heterogeneous materials. I. Springer-Verlag, New York.
788	Sanskrityayn, A., Sul, H. and Kumar, N. 2017. Analytical solutions for solute
789	transport in groundwater and riverine flow using Green's Function Method
790	and pertinent coordinate transformation method. Journal of Hydrology. 547:
791	517-533. DOI: 10.1016/j.jhydrol.2017.02.014.
792	Torquato, S., Kim, I.C., Cule, D. 1999. Effective conductivity, dielectric constant, and
793	diffusion coefficients of digitized media via first-passage time equations.
794	Journal of Applied Physics. 85: 1560. DOI: 10.1063/1.369287.
795	Wu, J.C. and Zeng, X.K. 2013. Review of the uncertainty analysis of groundwater
796	numerical simulation. Chinese Science Bulletin. 58(25): 3044-3052. DOI:
797	10.1007/s11434-013-5950-8.
798	Yeh, W W-G. 2015. Review: Optimization methods for groundwater modeling and
799	management. Hydrogeology Journal. 23: 1051–1065. DOI: 10.1007/s10040-
800	015-1260-3.

- 801 Zhang, D. 2001. stochastic methods for flow in porous media: Coping with
- 802 Uncertainties. Academic Press. ISBN: 9780127796215.