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Abstract— In Robotics, especially in this era of autonomous
driving, mapping is one key ability of a robot to be able to
navigate through an environment, localize on it and analyze its
traversability. To allow for real-time execution on constrained
hardware, the map usually estimated by feature-based or semi-
dense SLAM algorithms is a sparse point cloud; a richer and
more complete representation of the environment is desirable.
Existing dense mapping algorithms require extensive use of
GPU computing and they hardly scale to large environments;
incremental algorithms from sparse points still represent an
effective solution when light computational effort is needed and
big sequences have to be processed in real-time. In this paper
we improved and extended the state of the art incremental
manifold mesh algorithm proposed in [1] and extended in [2].
While these algorithms do not achieve real-time and they embed
points from SLAM or Structure from Motion only when their
position is fixed, in this paper we propose the first incremental
algorithm able to reconstruct a manifold mesh in real-time
through single core CPU processing which is also able to modify
the mesh according to 3D points updates from the underlying
SLAM algorithm. We tested our algorithm against two state
of the art incremental mesh mapping systems on the KITTI
dataset, and we showed that, while accuracy is comparable,
our approach is able to reach real-time performances thanks
to an order of magnitude speed-up.

I. INTRODUCTION

Robot navigation and localization is a long studied topic
in Robotics. In the last decade, the advancements in Si-
multaneous Localization and Mapping (SLAM) algorithms,
especially since the proposal of the Parallel Tracking and
Mapping (PTAM) [3] paradigm, have led to algorithms
results in robot localization and environment mapping. The
most preeminent paradigms shown in the literature can be
classified in feature-based [4], [5], direct [6], [7], and dense
algorithms [8], [9].

Feature-based and direct approaches are able to reconstruct
a sparse or semi-dense map of large-scale environment on
a CPU On the other hand, even if dense algorithms have
been proved to be scalable, as in [10], they rely on GPU-
computing. However, in many robotics applications, such as
autonomous vehicle and cost-effective surveying, computa-
tional power is a limited resource and, when available, GPUs
are not as powerful as needed by dense mapping algorithms.

To propose a trade-off between accuracy and computation
effort and to have a dense output, some works in literature
have recently focused on incremental reconstruction of a
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Fig. 1. Mesh reconstruction in real-time with the proposed algorithm.

mesh from sparse feature point extracted by SLAM algo-
rithms [11], [1], [2]. These methods estimate a low resolution
model of the environment, represented by a dense mesh,
which is informative enough for traversability analysis and
path planning. Among these methods, the most advanced
enforce the manifold property1 which is needed for both
online improvement, e.g., in mesh smoothing [13], or offline
refinements, e.g., in photometric mesh optimization [14],
[15], [16], [17]. This property can be enforced incrementally
as in [1] and [2], but this makes the existing incremental
algorithms not able to run in real-time.

Starting from the previous works on incremental mesh
reconstruction [18], [2], in this paper we propose the
first real-time incremental algorithm that is able to recon-
struct a manifold mesh of the scene running on a single
CPU core, and leaving other cores available to perform
camera tracking and sparse data estimation via classical
feature-based SLAM. As a main contribution we improve
the computational effort of the methods proposed in [1]
and [2], reaching a comparable accuracy (see in Fig-
ure 1 an example of result). An open source implementa-
tion is available at https://github.com/Enri2077/
realtime-manifold-mesh-reconstructor

II. RELEVANT RELATED WORKS

Real-time 3D mapping has been addressed with many
different approaches. The seminal work in [19] fuses depth
maps and it creates an initial 3D rectangle mesh made by
two triangles that covers all the depth images, then each

1A mesh is manifold if each vertex v is regular, i.e., if and only if the
edges connecting the vertices opposite to v are homeomorphic to a disk
.i.e., they form path without loops and closed (see [12] for more details).
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triangle is subdivided iteratively where a discontinuity or
a non-planarity in the depth map region enclosed in the
triangle occurs. The meshes generated for each depth map are
finally registered and the redundant triangles are deleted. This
approach does not handle very well occlusions and it requires
GPU computing. Bandino et al. [20] reconstruct an urban
scene by approximating vertical 3D surfaces with adjacent
rectangular sticks; as in the previous case, they exploit depth
maps computed by means of GPU processing and do not
recover a complete model of the scene.

Recently, Vineet et al. [21] fuse semantic segmentation
and stereo data to obtain a robust estimate of the environment
model via Conditional Random Fields (CRF) optimization;
their work is close to real-time, but it still requires a
significant computational effort. Similarly, the authors of [22]
have proposed a real-time reconstruction algorithm which
fuses dense maps into a Truncated Distance Signed Function
(TDSF) represented by an octree data structure; they estimate
the surface only where strong evidence has been collected,
therefore the output is non continuous and more prone to
localization, and path planning errors, e.g., where the ground
is missing. Following a similar approach Klingensmith et al.
[23] fuses dense maps into a TDSF, but they use RGB-D
data not available in outdoor scenarios. In [24] the authors
propose an efficient real-time navigation platform that fuses
FPGA stereo disparities into an integer voxel-based maps.
Even if they build a local map on a CPU, it is very noisy
and prone to localization errors and it has been tested in
limited real-world scenarios.

A different class of reconstruction algorithms subdivides
the space into tetrahedra through Delaunay Triangulation;
this avoids unnecessary memory consumption and results
in fast and scalable algorithms. Online mesh reconstruction
of a small object from sparse data that relies on Delaunay
triangulation has first been proposed in [25], however this
method recomputes the map at each iteration, it is therefore
not suitable for large-scale environments. The first incremen-
tal approach was proposed by Lovi et al. [11]; in their work
they create a Delaunay Triangulation incrementally and they
update the labels of the tetrahedra according to the visibility
rays from cameras to points. The mesh extracted by the
proposed method is the sharp boundary between free space
and occupied tetrahedra. In a latter work, Hoppe et al. [26]
have been able to extract the mesh incrementally with a
graph cut algorithm, obtaining smoother results but without
reaching real-time performance. Teixeira and Chli [27] build
a 2D triangulation of image features, and project it in 3D;
they reconstruct a 3D mesh that covers the region of the
scene currently captured by the camera.

The previous incremental methods are not able to enforce
the manifold property and therefore further mesh refine-
ments, as a simple smoothing or the one proposed in [28],
would be problematic to obtain. For this reason Litvinov and
Lhuiller [1] proposed an algorithm to update incrementally
the mesh while keeping the manifold property valid in all the
iterations. The growing procedure, in that algorithm, carves
the 3D space sometimes resulting in visual artifacts that

TABLE I
STATE-OF-THE-ART 3D RECONSTRUCTION ALGORITHMS

[19] [20] [21] [22] [23] [24] [25] [11] [26] [27] [1] [2]

Real-time 3 3 3 3 3 3 3
CPU-only 3 3 3 3 3 3 3 3
Large-Scale 3 3 3 3 3 3 3 3 3 3 3
Manifold Mesh 3 3
Continuous Mesh 3 3 3 3 3 3 3 3

affect the quality of the final reconstruction. This issue was
faced in [29] where the same authors proposed an ad-hoc
method to explicitly remove visual artifacts and in [2] where
the authors changed the ordering of the carving procedure
in order to preemptively remove problematic tetrahedra, i.e.,
those most likely to result in visual artifacts.

The main issue with all these approaches is that they
are not able to reach real-time performance, even if their
main goal, beside mapping, is to support a robot while
navigating autonomously. Moreover, they are not able to
cope with modifications of the 3D points estimates which
is the common situation in SLAM algorithms; a first attempt
to overcome the latter issue was proposed in [18] where a
simple, but effective, heuristic has been proposed to update
the triangulation coherently when moving points already in
it. However it is still an approximation and in the long term
it may cause drifting of the tetrahedra labeling.

In Table I we summarized the features of the state-of-the-
art approaches presented in this Section. Since we are mainly
interested in 3D manifold meshes, in the following we focus
our comparison against the algorithms proposed in [1] and
improved in [2].

III. STATE OF THE ART INCREMENTAL
MANIFOLD RECONSTRUCTION

In this section we show a brief overview of the manifold
reconstruction algorithm first proposed in [1] and improved
in [2] and which is at the basis of our CPU-based real-
time approach. It relies on a volumetric representation of
the environment and it processes batches of points, cameras,
and visibility rays, which are estimated incrementally by a
feature-based SLAM algorithm, such as PTAM [3] or ORB-
SLAM [30].

The algorithm builds a 3D Delaunay triangulation of
the input SLAM points; the reconstructed surface, δ(O),
partitions the triangulation between the set O of Outside
tetrahedra, i.e., the manifold subset of the free space (not all
free space tetrahedra would be included in this set), and the
complementary set I of Inside tetrahedra, i.e., the remaining
tetrahedra that roughly represent the matter. The notation
δ(O) means the boundary of the set O. This manifold is
updated as new points and camera positions are estimated. In
this process, tetrahedra are associated to a weight w and they
are considered as free space if w > Tfree. Notice that in [1]
this weight is simply the counter of the rays that intersects
the tetrahedron while in [2] the weight is computed according
to the inverse cone heuristics.
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Fig. 2. Example of manifold growing. The red line is the manifold, numbers
represent the weights, in yellow are the tetrahedra in the queue Q, in dark
gray the tetrahedra not intersected.

(a) (b)
Fig. 3. Naive point insertion: a new point added to the triangulation triggers
a new triangulation of a subset of the tetrahedra; it is not trivial to infer
the new tetrahedra status (inside/outside) keeping the manifoldness valid
without a new ray tracing.

The first manifold at time tinit, named δ(Otinit), is estimated
in four steps. Point insertion: it adds all the 3D points
estimated up to time tinit and computes their 3D Delaunay
triangulation. Label initialization: it initializes all the tetra-
hedra weight to 0. Ray tracing: for each camera to point ray
it adds a weight w1 to the intersected tetrahedra and a weight
w2 to their neighbors, this to preemtively remove most visual
artifacts (see [2]); the list of free tetrahedra is named Ftinit .
Growing: it initializes a queue Q with the tetrahedron ∆1 ∈
Ftinit with the highest weight; then it iterates the following
procedure until Q is empty: (a) remove the tetrahedron ∆curr
with the highest weight from Q; (b) add it to Otinit only if the
resulting δ(Otinit ∩ ∆curr) is manifold; (c) add to the queue
Q neighboring tetrahedra of ∆curr that are not already in the
queue or in the Otinit set (see Figure 2). Finally, to handle
non-zero genus structures, it checks, for each vertex in the
boundary, if all the incident tetrahedra ∆curr are free-space
and it tries to remove them; if δ(Otinit ∩∆curr) is manifold,
i.e., all the vertices in ∆curr keeps the manifoldness, then
Otinit = Otinit ∩∆curr, otherwise it keeps Otinit unchanged.

Once the system is initialized, a new set of points Ptk is
estimated at time tk = tinit + k ∗ Tk, where k ∈ N+ is the
keyframe index, and Tk is the period (in our experiments
Tk varies and depends on the SLAM algorithm, however it
is usually about 4 frames). In this context with the term
keyframe we refer to a batch of points and cameras to
be inserted in the Delaunay triangulation. The insertion of
each point p ∈ Ptk would cause the removal of a set
Dtk of the tetrahedra that invalidates the Delaunay property
(Figure 3(a)); the surface δ(Otk) = δ(Otk−1

\ Dtk) is not
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(d) (e) (f)
Fig. 4. Incremental manifold reconstruction steps: (a) a new point is
estimated and it would invalidate the red tetrahedra (set Dtk ); (b) put a
subset of the tetrahedra in Etk ; (c) shrink the manifold; (d) add the point
into the triangulation; (e) perform the ray tracing; (f) grow the manifold.

guaranteed to be manifold anymore and any naive update
of the triangulation potentially invalidates the manifoldness
(Figure 3(b)).

To avoid manifoldness violation, the authors in [1] define
a new set of tetrahedra Etk ⊃ Dtk , named enclosing
set, (Figure 4(b)) and they apply the so called Shrinking
procedure first (Figure 4(c)), i.e., the inverse of Growing;
this procedure subtracts iteratively from Otk−1

the tetrahedra
∆ ∈ Etk keeping the manifoldness valid. After this process,
it is likely that Dtk ∩ Otk = ∅; however, in the case of
Dtk ∩Otk 6= ∅ the point p is not added to the triangulation
and it is discarded. In case of Dtk ∩ Otk = ∅ the point
is added into the triangulation with the Point Addition step
(Figure 4(d)), and once all points in Ptk have been added
(or dropped), the algorithm applies Ray tracing (Figure 4(e)),
and finally the Growing step (Figure 4(f)) similarly to what
is described in the initialization procedure.

To keep the reconstruction scalable, both [1] and [2] create
a grid of fictitious 3D points, named Steiner points, which
spans the entire space the map is supposed to occupy. Steiner
points partition the space using big cubes and the cube di-
agonal becomes the maximum diameter of the circumsphere
used to verify the Delaunay property of the triangulation;
during the estimation of the enclosing set, the cube diagonal
defines a bounded set of tetrahedra affected by the point
insertion.

IV. REAL-TIME MESH RECONSTRUCTION

In this section we illustrate the main contribution of this
paper, i.e., we describe how we build upon the previous
method in order to achieve real-time performances and to
extend it to moving point management. We redesigned some
steps of the reconstruction pipeline proposed in [1] and [2],
mostly by leveraging on the use of Steiner points, which are
arbitrary 3D points added to the 3D Delaunay triangulation
to bound the maximum dimension of the tetrahedra. Even if
some of the methods we propose are designed to optimize
[1] and [2], some of the concepts can be easily adapted to
improve the efficiency of other Delaunay-based reconstruc-
tion algorithms.



A. Incremental Steiner points insertion

The original method initializes the algorithm with a fixed
grid of Steiner points, instead, we estimate the Steiner points
grid iteratively keeping the manifold property valid and while
new parts of the scene are discovered.

Let us define lSteiner = 10m as the distance among the
Steiner points in the grid; we keep track of the bound-
aries of the current grid by saving (xmin

bound, y
min
bound, z

min
bound)

and (xmax
bound, y

max
bound, z

max
bound). We bootstrap with an initial grid

around the first camera pose c0, then, at each iteration i,
if the points visible by camera ci span outside the existing
grid, we expand it. More formally, before adding a point in
position p = (x, y, z), we check if xmin

bound < x < xmax
bound,

ymin
bound < y < ymax

bound and zmin
bound < z < zmax

bound; in case all
these conditions are verified, the point can be added without
extending the grid; otherwise we extend the grid along the
appropriate semi-axis, e.g., if x < xmax

bound, the grid is extended
on the positive x semiaxis by inserting a layer of Steiner
points with coordinate x = xmax

bound + lSteiner.

B. Shrink what you need

The efficiency of the shrinking procedure is strictly related
to the size of the enclosing set Ei. Indeed the set Ei contains
the tetrahedra that the algorithm need to shrink to keep the
manifold property valid before inserting a set of new points.
In the original method of [1] and [2] the authors fix rmax
as the maximum accepted distance between a camera and
point, and they define Ec with respect to a camera c, as the
tetrahedra contained in the sphere centered in c with radius
rmax + sqrt(3) ∗ lSteiner

The drawback of this approach is that the enclosing
volume is needlessly large, in fact, except for the case of an
omnidirectional camera or an omnidirectional laser sensor,
the point cloud visible from a camera is not evenly spread
in a sphere with radius rmax, but it is mostly clustered on
the actual surface of the scene perceived by the sensor.
Therefore unnecessarily large number of tetrahedra requires
to be shrunk before adding new points, even if they occupy
just a small part of the sphere. Shrinking huge regions of the
space can produce visual artifacts.

Instead, we propose to choose a smaller enclosing volume,
in particular, we define Ei as the set of tetrahedra exactly in
the neighborhood of the 3D points that have to be added to
the triangulation, regardless of the associated cameras. Given
a set P of new points that have to be inserted, the ideal
enclosing volume is the convex hull of P , i.e., the yellow
region in Figure 5, expanded by a radius of

√
3 · lSteiner, i.e.,

the red region in Figure 5.
We propose to approximate this volume by exploiting

the Steiner grid. Let p be a point contained in cell(i,j,k),
where (i, j, k) are the indexes identifying the cell inside the
Steiner grid. Since a cell diagonal is at most

√
3 · lSteiner,

the corresponding sphere would span over at most two cells
in each direction. The enclosing set Ep

i induced by p is
then obtained by selecting all the tetrahedra that have some
vertices inside cell(a,b,c), where i− 2 ≤ a ≤ i+ 2∧ j− 2 ≤

lSteiner

Fig. 5. Efficient enclosing proposed in this paper

b ≤ j + 2 ∧ k − 2 ≤ c ≤ k + 2. The final enclosing Ei set
for the i-th camera is Ei =

⋃
p∈Pi

Ep
i .

C. Boundary spatial hashing

In the original method both the shrinking and growing
procedure iterate over the boundary of the manifold mesh in
order to subtract or add new tetrahedra to the manifold set O.
The lookup procedure that checks if a free space tetrahedra
can be carved without invalidating the manifold property, and
keeps the boundary ordered, does not scale properly since it
has to consider the entire boundary of the mesh.

To improve on this lookup procedure, we propose to store
the boundary tetrahedra into a spatial hash representation
based on the Steiner grid cells. We create a hash function
B such that B(i, j, k) is a vector defined for a Steiner cell
cell(i, j, k); B(i, j, k) contains all the pointrs to the boundary
tetrahedra that intersects cell(i, j, k). Thanks to the hash
function we can quickly and directly retrieve the tetrahedra
needed to initialize the shrinking and growing procedures.

D. Next Tetrahedron Caching

The ray tracing described in Section III walks along the
triangulation to update the visibility information encoded in
the tetrahedra weights. It bootstraps from the ending point
(e.g., P in Figure 6) and checks which facets f11 of the set of
incident tetrahedra intersects the ray; as a consequence, the
tetrahedron containing the intersecting facet f11 is selected
and its visibility information updated; then ray tracing moves
to the tetrahedron adjacent to facet f11 and iterates the process
until the selected tetrahedron contains the camera (e.g., c in
Figure 6). Depending on the number of new points inserted
per frame, this step may require a big computational effort.

In a robotics scenario, especially when a surveying vehicle
explores the environment, the camera-to-point viewing rays
have often the same direction, e.g., we keep perceiving a
point in the front of the vehicle from the same direction while
the camera moves forward. By relying on this assumption,
we propose a method to speed up the identification of the
next traversed tetrahedron on the walk by Next Tetrahe-
dron Caching. While walking on a ray, for each traversed



c p

f11

Fig. 6. Ray tracing from camera c to point p

tetrahedron ∆i we store the index of the next tetrahedron
inext; then, when we trace any other ray, if in the current
tetrahedron the index inext has been saved, the cell inext
is checked first. Such process likely chooses the right next
tetrahedra first, and avoids to check the intersection between
the ray and the the other facets if not needed; moreover,
by simply prioritizing the tetrahedra checks this caching
mechanism is guaranteed to find the same solution of the
original ray tracing procedure.

E. Ray tracing scheduler

The authors in [1] and [2] do not manage moving points,
however, as new images are processed, the point positions
estimates are updated by the SLAM algorithm. Only in [18] a
simple heuristic to manage moving points has been proposed,
but it approximates the visibility updates induced by the
moving points.

To handle moving points in an exact way we use three
procedures, analogously to [11]: Ray tracing to increment
the weights according to the Inverse Cone Heuristic proposed
in [2]; Ray retracing, which is a particular ray tracing that
affects only the new tetrahedra added after point insertion or
removal; Ray untracing, which decrements the weights and
removes the stored ray. To avoid redundant computations,
especially when points positions change, we propose to
carefully schedule the ray tracing operations. When we add
a point p, we schedule the tracing procedure for all the
rays ending in p and we schedule the ray retracing of each
ray intersecting the conflicting tetrahedra, indeed they have
been removed and new tetrahedra have been added, therefore
they need to be updated. When we remove a point p, we
schedule ray retracing for each ray intersecting the tetrahedra
conflicting with p, the point is removed, and the ray untracing
procedure is scheduled for each ray that connects a camera to
the removed point. When we move a point, we first remove it
from the old position and we add it back to the new position.

After we processed a new frame we collect a list Li of
tracing untracing and retracing procedure for each ray ri.
To avoid redundancy, Li contains at most one occurrence
of each procedure. In general we execute the procedures in
Li in this order: ray untracing, ray tracing and ray retracing,
subject to the following rules. If LI contains both ray tracing
and ray retracing, only the ray tracing is executed, since
retracing is equivalent, but it only affects a subset of the
tetrahedra. If LI contains ray untracing and ray retracing,
without ray tracing, the ri is only untraced. This happens
when ri intersected at least one tetrahedron destroyed by

point insertion or removal, and it is then removed.
During the ray tracing or ray retracing procedures the

path of the traversed cells is stored for each ray, avoiding
recomputing the path from the camera to the point multiple
times. This reduces significantly the effort needed to move
and remove the points, indeed for each of them all the
corresponding rays must be untraced and then traced in the
new position.

V. EXPERIMENTAL RESULTS

We tested the proposed real-time incremental manifold
mesh reconstruction algorithm on the KITTI dataset [31];
in particular we used four stereo sequences of the visual
odometry dataset: 00, 01, 02, and 05, we discarded the
03 and 04 since they are relatively short. We executed the
experiments on a Intel(R) Core(TM) i7-4770S at 3.10GHz
with 8GB of DDR3 RAM with the reconstruction algorithm
running on a single core.

We estimated the 3D points, camera poses and visibility
rays through ORB-SLAM [30] which runs on the same
machine, using three threads, in real-time. Using the ORB-
SLAM output we have compared the proposed approach
against the two state of the art incremental manifold mesh re-
construction algorithms, i.e., [1] and [2]. In our experiments
we discarded the handle and artifacts removal algorithm
from [1] since it takes a big computational effort, the number
of handles created in these sequences is limited and the
smoothing operator mitigates the influence of the artifacts.
However some of the artifacts remains especially because
of the sparsity of the point cloud estimated with ORB-
SLAM. Since the compared algorithms do not manage loop
closures, we considered 1000, 1101, 2000 and 1300 frames,
respectively from the sequences 00, 01, 02, 05, which do not
have any loop closure.

The proposed algorithm has been able to reconstruct the
test sequences in real-time, improving substantially the com-
putational effort with respect to its competitors. As in most
mapping algorithms that decouple tracking and mapping [3],
[22], [32], we build the map every keyframe, i.e., batch of
points and cameras, while the ORB-SLAM algorithm tracks
the camera position. In our case, map updates happen at
3-4 Hz while the tracking threads run at the same frame-
frequency of the camera (10Hz). Comparing the different
steps of the reconstruction in Table II, we improved each of
them thanks to the novel algorithms described in Section IV.
In the last column of Table II we report also the frequency of
our algorithm with respect to the total number of frames; as
it it can be noticed, the proposed mapping approach is able
to process the frames at a frequency which is 4 times higher
than the actual data rate. All techniques used in the novel
algorithm have contributed to a substantial improvements,
we highlight just that the first tetrahedron proposed by the
Next Tetrahedron Caching was actually the correct one the
88% of the cases.

To visualize the improvement of the proposed method, in
Figure 7 and Figure 8, we report the time spent for each
keyframe extracted by ORB-SLAM. The run time of [2]
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Sequence 00 Sequence 01 Sequence 02 Sequence 05
Fig. 7. Comparisons of run times between our approach and [2] (x-axis number of keyframe, y-axis: timings in seconds).

TABLE II
RUN TIMES FOR EACH STEP ON KITTI SEQUENCES: TIMES ARE

EXPRESSED IN SECONDS, FREQUENCIES IN FRAME/SECOND

Initialize Point Ray
Steiner Shrink Insertion Tracing Grow Total freq

seq00
[1] 0.07 31.59 4.23 41.49 257.74 335.12 2.98
[2] 0.07 54.68 3.95 39.21 154.18 252.09 3.97

proposed 0.03 3.06 0.82 4.50 4.66 13.07 76.51

seq01
[1] 1.21 76.78 5.12 50.60 1165.37 1299.19 0.85
[2] 1.32 112.08 6.09 56.50 945.81 1121.8 0.98

proposed 0.84 7.23 1.83 7.78 6.6 24.28 45.35

seq02
[1] 0.56 144.60 11.17 116.16 1957.12 2229.61 0.90
[2] 0.38 239.51 13.00 137.89 1936.38 2327.16 0.86

proposed 0.19 13.53 4.16 18.51 11.35 47.74 41.89

seq05
[1] 0.10 84.14 6.50 58.69 480.83 630.26 2.06
[2] 0.07 181.79 8.93 76.42 386.72 653.93 1.99

proposed 0.03 8.46 1.95 8.19 11.99 30.62 42.46

grows linearly, especially because of the growing process
which execution time increases as the dimension of the map
increases. Instead, in our algorithm the boundary spatial
hashing bounds significantly the computational cost of the
growing procedure and the overall computational time results
almost constant.

We also tested the proposed approach on the KITTI full
sequences, i.e., including parts where a loop closure happens.
In this case we cannot handle explicitly the loop closures
and when they happen, small mesh misalignments occur;
however, this experiment was designed to proof that the
proposed method handles non-zero genus surfaces, and that
it scales with the whole sequence. In Fig. 11 we illustrate for
instance the reconstruction of the complete sequence 00, and
we plot the run time in Fig. 9. In Fig. 10 we illustrate the
correlation between the timings and the number of tetrahedra
contained in the enclosing volume, i.e., those tetrahedra
that required to be shrunk. This volume is bounded by the
Steiner points, however the peaks that appears in the graphs
corresponds to the regions where the trajectory overlaps with
a region previously mapped, therefore the number of the
tetrahedra contained in the the volume is higher. However
the number of enclosed tetrahedra is still O(1).

We tested also the accuracy of the reconstruction by
comparing the depth images of the reconstruction rendered
in each frame, against the distance of the velodyne points
projected on the same image. In this case we use the
velodyne data as ground truth for the 3D reconstructed mesh.
In addition to real-time performance, our algorithm also
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Fig. 8. Timings for each step: on the left [2]; on the right the proposed
algorithm (x-axis number of keyframe, y-axis: timings in seconds).

results in a more accurate reconstruction with respect both
to [2] and [1] (see Table III). This is mainly because the
shrink heuristic avoids shrinking big parts of meshes which
could remain shrunk after the successive growing process to
preserve manifoldness. Overall the experiments show that the
ORB-SLAM point cloud leads to similar results with respect
to the Harris-based Structure from motion point cloud.

Since both [2] and [1] are not able to manage moving
points, in the previous experiments we have integrated the
points positions after they have been observed by two
keyframes, and then they are not changed anymore. We
have also evaluated the performance of our algorithm in
presence of moving points, i.e., when ORB-SLAM updates
the estimate of a point already in the mesh we change its
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Grow Ray Tracing Insert Vertices Shrink Init Steiner Grid

Fig. 9. Timings for each step from the proposed algorithm on the complete
sequences (x-axis number of keyframe, y-axis: timings in seconds).

sequence 00 sequence 01

sequence 02 sequence 05
Fig. 10. Run time (blue) vs number of enclosing sets (orange). The
graphs shows the high correlation. (x-axis number of keyframe, y-axis (left):
timings in seconds, y-axis(right): number of tetrahedra)

position in the triangulation and we update its visibility
information; even if the presence of moving points more
likely causes the shrink procedure to get stuck in local
minima and the generation of small visual artifacts, the
resulting accuracy is not significantly diminished and still
remains comparable with respect to both [2] and [1].

In Fig. 12 we show how the moving points handling
affects the run times. The points which moved from their first
insertion in the triangulation correspond to the 9%, 3%, 7%
and 8% respectively in the 00, 01, 02, 05 sequences. In Table
IV we reported the complete average per keyframe statistics.
Since these points are usually very close to the vertex we
need to modify, the computational overhead is marginal:
indeed, Figure 12 shows very similar timings and variations
are only to be ascribed to experiment-specific latencies.

VI. CONCLUSION AND FUTURE WORKS

We proposed the first real-time incremental manifold re-
construction algorithm that runs on a single CPU and can
handle large scale scenarios; the proposed algorithm is able
to speed up the run time of state of the art algorithms

Fig. 11. Top view (without ceiling) of the reconstruction of the 00 sequence
of the KITTI dataset. The plot shows that in the correspondence of genus
changes the number of enclosing sets increases, therefore the total timing
increases

TABLE III
MEAN ABSOLUTE ERROR (MAE) OF THE RECONSTRUCTION FOR THE

KITTI SEQUENCES ERRORS IN METERS

seq00 seq01 seq02 seq05

[1] (w/o moving points) 1.32 0.79 0.70 1.48
[2] (w/o moving points) 1.13 1.22 0.72 1.50
proposed (w/o moving points) 0.91 0.72 0.62 1.14
proposed (w/ moving points) 1.05 1.14 0.74 1.21

significantly and, at the same time, it also improves on
the accuracy of the reconstruction. We were able to obtain
such results by redesigning few of the classical manifold
reconstruction steps proposing a novel shrinking method and
a novel ray tracing approach which leverage on hashing
and caching strategies. In contrast to existing algorithm our
algorithm is also able to manage moving points without any
approximate heuristics and with negligible overheads.

As a possible future development we plan to manage loop
closures and update the map shape accordingly, which means
handling also the change the mesh genus when needed.
We are also working on improving the accuracy of the
reconstruction by incorporating shape prior, such as planes,
through constrained Delaunay triangulation, still preserving
real-time execution.
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