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Abstract: Among the attractive properties of metamaterials, the capability of focusing and localizing
waves has recently attracted research interest to establish novel energy harvester configurations.
In the same frame, in this work, we develop and optimize a system for concentrating mechanical
energy carried by elastic anti-plane waves. The system, resembling a Fabry-Pérot interferometer,
has two barriers composed of Locally Resonant Materials (LRMs) and separated by a homogeneous
internal cavity. The attenuation properties of the LRMs allow for the localization of waves propagating
at particular frequencies. With proper assumptions on the specific ternary LRMs, the separation
of scales (between the considered wave lengths and the characteristic dimension of the employed
unit cells) enables the use of a two-scale asymptotic technique for computing the effective behavior
of the employed LRMs. This leads to a complete analytic description of the motion of the system.
Here we report the results achieved by optimizing the geometry of the system for obtaining a
maximum focusing of the incoming mechanical energy. The analytic results are then validated
through numerical simulations.

Keywords: locally resonant material; energy harvesting; homogenization

1. Introduction

The conversion of vibrations into low-power electricity has been extensively explored since
decades in view of the wide range of applications of the harvesters in distributed wireless sensors for
structural health monitoring and for security systems, in embedded and implanted medical sensors and
in recharging of batteries in various systems, see, e.g., the reviews [1,2]. To obtain an efficient energy
harvester, one has to focus the mechanical energy produced by external vibrations in a given region of
the system, where it can be then converted in electricity by means, e.g., of piezoelectric materials.

The use of structured materials for Energy Harvesters (EH) has more recently attracted the
attention of the researchers and a number of possible configurations have been proposed [3–7].
Localized defects in phononic crystals [8] and in micro-structured plates [9] have been exploited
to focus vibration energy in a small region where a piezoelectric material converts the mechanical
energy into the electric one. However, good performance is obtained only for frequencies close to the
defect eigen-frequency which is related with the typical size of the unit cell of the lattice. Even though
proper methods can be used to optimize the geometry of the cell [10], for small devices, this frequency is
very high when compared with the frequency of ambient vibrations in common applications. Localized
defects in tensegrity materials have also been studied in [11].

Locally resonant metastructures, which are structures that comprise Locally Resonant Material
(LRM) components, enable band gap formation at wavelengths much longer than the lattice size (see,
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e.g., [12–16]), therefore they can represent good candidates for efficient, small EH. In [17] the localized
deformation pattern achieved in the frequency neighborhood of the band gaps was employed in order
to harvest a certain amount of the kinetic energy available in the oscillating members of the lattice.
Recently [18] proposed a prototype of locally resonant energy harvesting-metastructure composed of a
primary beam with several small secondary cantilever beams with tip masses acting as mechanical
resonators. The design of innovative metasurfaces, with graded resonators, that trap waves was
proposed and developed in [5] for enhanced piezoelectric energy harvesting.

In the present work we explore the possibility to couple the advantage of the LRM mechanism
to create band gaps at low frequencies with the energy localization mechanism in local defects of
regular lattices to design and optimize a Resonant Energy Harvester (REH). An initial attempt in
this direction was presented in [19], considering binary LRMs. The ternary LRM here considered,
endowed with two-dimensional periodicity, is constituted by a stiff matrix with almost rigid cylindrical
inclusions coated by a compliant material. The two-scale homogenization approach, proposed in [20]
for high-contrast binary composite materials in the long wavelength regime and developed by many
authors ([21–23]), provides a powerful tool to define equivalent material properties. The authors
recently studied through homogenization the spectral properties and the band gaps of binary and
ternary LRM in [16,24], respectively. The REH here proposed is constituted by two barriers made
of the above LRM and a cavity, made of the matrix alone, which represents a line defect in the two
dimensional regular lattice. The use of barriers made of LMR and of phononic crystals was also
recently proposed to obtain an acoustic diode [25]. To optimize the REH, the behavior of the LRM is
here characterized by its homogenized properties and the dynamic response is analytically obtained.
The conditions to obtain the maximal mechanical energy inside the cavity are explicitly given and the
role of the different configurations of the unit cell of the metamaterial are highlighted.

Beside extending the analytic results obtained in [19] for a REH with binary LRM to the case of
a REH with three components LRM, the paper provides a new numerical validation, introduces the
concept of indexes of concentration and develops maps of these indexes at varying frequency and
geometry of the REH. The maps can be of practical use in the design of a real REH that, with a fixed
geometry, should work in a wide range of frequencies.

The paper is organized as follows. The proposed configuration of the REH and the dynamic
problem of shear wave propagation is set in Section 2. In Section 3 the energy in each part of the
system is computed and the optimal width of the cavity to maximize the energy trapped in the cavity
is obtained. Section 4 provides a comparison of the analytic results with the numerical results obtained
for a special choice of the LRM, thus validating the analytic results. These latter allows to perform a
parametric study of the system. Some conclusions are given in Section 5. The results of the asymptotic
homogenization, obtained in [24], which are used in the paper, are recalled in the Appendix A.

Notation, vectors and tensors are indicated by bold face letters. Complex numbers are denoted
with sans serif letters, while italic is utilized for the Real numbers. The complex conjugate of a complex
number is indicated by a superposed bar. The angular frequency ω is often called just frequency.
The notation 〈·〉 denotes the average over the period.

2. The Resonant Cavity in Metamaterials

2.1. Problem Formulation

We consider the system represented in Figure 1. It is composed of five domains: parts Ω1,
Ω3 and Ω5 are constituted by an isotropic homogeneous medium (defined as Ωh in the following),
whereas parts Ω2 and Ω4, which will be denoted as “barriers” (Ωb), are made of the same LRM.
This system, which is similar to a Fabry-Pérot interferometer in optics [26], will be referred to
as Resonant Energy Harvester (REH). A similar configuration has been already studied by the
authors in [19], although now the two barriers are made of a ternary LRM instead of the binary
heterogeneous material previously employed.
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Figure 1. Top-view of the studied system. The wave shown in the figure represents an out-of-plane
wave propagating throughout all the five domains. The dots denote the fact that the system must be
extended along the x2 direction.

The LRM is composed of a two dimensional periodic repetition of the square unit cell represented
in Figure 2, with a stiff matrix Ym containing an almost rigid circular fiber Yf , coated by a very
compliant layer Yc. The developed system has a thickness in the out-of-plane direction and along the
axis x2 which is much larger than the characteristic size L of the unit cell; parts Ω1 and Ω5 are infinitely
extended towards −∞ and +∞ along the axis x1.

Rc

Ym

Yc

L

Yf

Rf

Figure 2. Lattice of the LRM and zoom over a unit cell composing it. R f and Rc are respectively the
fiber and coating external radii.

We analyze the propagation of anti-plane waves along the x1 direction, allowing for the decoupling
from the in-plane wave propagation problem. In the harmonic regime, this results in the following
two dimensional Helmholtz scalar equation:{

divσ + ρ ω2u = 0, σ = µ grad u

with u(x, t) and σ · n continuous at each interface
(1)

where the elastic displacement u(x, t) has a time dependence eiωt, which from now on will be omitted
and σ collects the non vanishing stress components σ31 and σ32. The mass density ρ and the shear elastic
modulus µ are spatially varying parameters, depending on the position x in the system, as specified
in the following:

µ =


µm in Ym

µ f in Yf

µc in Yc

, ρ =


ρm in Ym

ρ f in Yf

ρc in Yc

(2)

Denoting by km = ω
√

ρm/µm the wave number in the matrix, we limit our study by considering
a low frequency regime such that the dimensionless parameter ε = kmL be very small (ε � 1).
This assumption can be equivalently set by requiring that the characteristic size L of the cell be much
smaller than the wave length, in the matrix, of the considered wave. This hypothesis enables the
application of a two-scale asymptotic homogenization technique for the description of the motion
of the barriers. By assuming ρm/ρc = O(1) and the ratio µc/µm of order O(ε2) the effective mass
density ρe f f and the effective shear modulus µe f f of the ternary LRM were computed in [24] through
homogenization. In the Appendix A we summarize the main results derived in [24], which are
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used for treating the problem here analyzed. The reader is thus addressed to that paper for a more
complete derivation.

2.2. Solution of the Homogenized Problem

By virtue of the homogenization, the REH can be treated as an equivalent system composed of five
homogeneous and isotropic parts. Since we are interested in the propagation of waves whose wave
front are perpendicular to the x1 direction, there is no dependence on the x2 direction, σ32 = 0 and the
problem becomes one-dimensional, obtaining the simplified system sketched in Figure 3 (from now on
thick lines will represent a LRM).

Ω3Ω1 Ω2 Ω4 Ω5

x

l l2d

Figure 3. One-dimensional counterpart of the two-dimensional homogenized problem. The system is
simplified by fixing a position along the x2 axis and by considering x1 = x. The dashed ends are used
to indicate that the domain is infinitely extended toward −∞ and +∞.

To summarize, we report here below the homogenized problem governing the motion inside each
of the five parts composing our system:

divσ(x) + ρm ω2U(x) = 0, σ = µm ∂U(x)/∂x in Ωh

divσ(x) + ρe f f (ω)ω2 U(x) = 0, σ = µe f f ∂U(x)/∂x in Ωb

with U(x) and σ(x) continuous at each interface

(3)

where U(x) is the first term in the expansion of the displacement field in the matrix (denoted by U0(x)
in the Appendix A) and σ = σ31 denotes the only non-zero stress component.

As specified in the Appendix A , the sign of the effective mass density ρe f f depends whether the
frequency ω is inside or outside a band gap; this means that within the barriers Ω2 and Ω4 the second
of the Equation (3) has a general solution whose form varies depending on the frequency, as follows:{

Uj(x) = Aj e−isx + Bj eisx when ρe f f ≥ 0

Uj(x) = Aj cosh sx + Bj sinh sx when ρe f f < 0
(4)

where s = ω

√
|ρe f f |
µe f f

, Aj and Bj (with j = 2, 4) are complex integration constants.

The general solution of the motion problem inside the regions Ωh is instead always given by:

Uj(x) = Aj e−ikx + Bj eikx (5)

with j = 1,3 or 5 and k = km = ω
√

ρm
µm

.
Considering a propagating input wave, the integration constants are obtained imposing the

continuity of the displacement and of the stress between the various regions and the conditions at
infinite. In particular, when considering an incoming wave which travels from the left toward the right
(see Figure 3) of amplitude 1, the displacement in the different parts Ωi reads (see [19] for details):
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U1(x) = e−ik(x+d+l) + R eik(x+d+l)

U2(x) = (1 + R) cosh s(x + d + l) + i a (R− 1) sinh s(x + d + l)

U3(x) =
T

2
β eik(x−d) +

T

2
α e−ik(x−d)

U3(x) = T cosh s(x− d− l) − i aT sinh s(x− d− l)

U5(x) = T e−ik(x−d−l)

(6)

where R and T are respectively the amplitudes of the reflected and transmitted wave:

T =
4

α2 e2ikd − β2 e−2ikd (7)

R =
αβ e2ikd − ᾱβ̄ e−2ikd

α2 e2ikd − β2 e−2ikd (8)

with

a =
µmk
µe f f s

, α = 2 cosh sl + i

(
a− 1

a

)
sinh sl, β = i

(
a +

1
a

)
sinh sl (9)

3. Energy Localization in the Cavity

3.1. Energy in the Homogeneous Parts

We are now interested in finding the mechanical energy density, averaged over a period, along the
whole REH 〈e(x, t)〉 and the total energy in parts Ω2, Ω3 and Ω4 again averaged over a time period,
〈E(t)〉.

The mechanical energy in regions Ωj with j = 1, 3 or 5 of homogeneous material, given by the
sum of the potential energy p and the kinetic energy c, reads:

ej(x, t) = pj + cj =
1
2

µmu′
2

j +
1
2

ρmu̇2
j (10)

where the dependency over time is again accounted for, a superimposed dot denotes the time
derivative and a prime denotes the space derivative; the displacement field uj is given by uj(x, t) =
Re{Uj(x) eiωt}.

Averaging Equation (10) over time gives:

〈ej〉 =
µm k2

2

[∣∣Aj
∣∣2 + ∣∣Bj

∣∣2] (11)

Notice that 〈ej〉 is independent from the position x. Finally, the total mechanical energy 〈E(t)〉
inside part Ω3 reads:

〈E3〉 = 2d 〈e3〉 (12)

While the energy inside the regions Ωh can be easily obtained, a particular treatment must be
devoted to the calculation of the energy inside the two barriers.

3.2. Energy Inside the LRM: Homogenization Approach

Each cell is composed of a matrix, a coating layer and a fiber considered as rigid, hence the
mechanical energy density of one cell reads:

ej(x, t) = pm
j + cm

j + pc
j + cc

j + c f
j (13)



Materials 2020, 13, 3016 6 of 16

The homogenization technique enables to find the displacement field and the stress over a
cell composing the metamaterial. It should be noted that, while at the macro-scale the problem is
one-dimensional, so that only the variable x1 = x must be retained, at the micro-scale (inside each cell)
the problem remains 2D and the coordinates y = y1, y2 or the polar coordinates r, ϑ must be retained.
Similarly, inside the cell the stress σ32 is non-zero and a stress vector should be considered. At the
leading order, one has:

u(x, t) ' u0 =


U(x) eiωt in Ym

U(x)η(r) eiωt in Yc

U(x)η(R f ) eiωt in Yf

(14)

and

σ(x, t) ' σ0 =

µm

(
gradyχ + e1

) ∂U(x)
∂x

eiωt in Ym

0 in Yc

(15)

with η(r) and χ defined in the Appendix A.
Considering a frequency inside the band gap of the metamaterial, in regions Ωj, j = 2, 4, one has

U(x) = Uj(x), j = 2, 4, with Uj given by Equation (6). Denoting the real part of the displacement in the
matrix by uj(x, t) = Re{Uj(x) eiωt} the contributions to the energy density in Equation (13) read

pm
j =

1
2

µe f f u′
2

j (16)

cm
j =

|Ym|
|Y|

ρm

2
u̇2

j (17)

pc
j =

µc

2

∫
Yc

gradyη · gradyη dy
u2

j

|Y| (18)

cc
j =

ρc

2

∫
Yc

η2 dy
u̇2

j

|Y| (19)

c f
j =

ρ f

2
η(R f )

2

∣∣∣Yf

∣∣∣
|Y| u̇2

j (20)

From Equations (16) to (20), after some manipulation, the energy 〈ej〉, with j = 2 or 4, can be
written as:

〈e2〉 =
1
4

{
µe f f s2 |(1 + R) sinh sl + a i (R− 1) cosh sl|2 +

ω2γ |(1 + R) cosh sl + a i (R− 1) sinh sl|2
} (21)

〈e4〉 =
1
4

{
µe f f s2 |T sinh sl − a iT cosh sl|2 +

ω2γ |T cosh sl − a iT sinh sl|2
} (22)

where γ is given by:

γ = ρe f f +
2
|Y|

[
ρc

∫
Yc

η2 − η dy + ρ f

∣∣∣Yf

∣∣∣ η(R f )
(

η(R f )− 1
)]

(23)
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The averaged mechanical energy density for the barriers is thus dependent on the position x
along them. Integrating over their thickness l, one can derive the averaged total mechanical energies
〈E2〉 and 〈E4〉 as:

〈E2〉 =
1
4

{ [
l
2
(a2 − 1)(µe f f s2 −ω2γ) +

sinh 2sl
4s

(a2 + 1)(µe f f s2 + ω2γ)

]
+

− 2 Re{R}
[

l
2
(a2 + 1)(µe f f s2 −ω2γ) +

sinh 2sl
4s

(a2 − 1)(µe f f s2 + ω2γ)

]
+

− a Im{R}(1− cosh 2sl)(µe f f s2 + ω2γ)

}
(24)

〈E4〉 =
1
4
|T|2

[
l
2
(a2 − 1)(µe f f s2 −ω2γ) +

sinh 2sl
4s

(a2 + 1)(µe f f s2 + ω2γ)

]
(25)

3.3. Optimal Cavity Width

Our objective is now to exploit the attenuation capabilities of the employed LRMs for obtaining a
concentration of mechanical energy inside the cavity. Let us focus our attention on frequencies inside a
band gap for the analyzed LRM.

Fixing the materials used for the system, the width l of the barriers and the frequency of the
propagating wave, the modulus of the coefficient T given in Equation (7) is maximized and becomes
equal to 1 for a discrete set of optimal cavity widths d̃n, n ∈ N∗ and, at the same time, |R| is null.
The optimal cavity widths d̃n can be found from the following relation (see [19] for the details):

tan 4kd =
2 [2 cosh sl]

[(
a− 1

a

)
sinh sl

]
[(

a− 1
a

)
sinh sl

]2
− [2 cosh sl]2

(26)

One should notice that Equation (26) gives also the set of d that minimize T.
Using the expression of the displacement U3 into Equation (11), the total mechanical energy

Equation (12) inside part Ω3 reads:

〈E3〉 = d
µm k2

4
|T|
[
|α|2 + |β|2

]
(27)

From Equation (27), as both α and β are independent from d, the mechanical energy inside part
Ω3 is maximized whenever T = 1, i.e., when T is maximum.

When d = d̃n, the total energy of the regions Ω2, Ω3 and Ω4 reads:
〈E2〉 = 〈E4〉 =

1
4

[
l
2
(a2 − 1)(µe f f s2 −ω2γ) + sinh 2sl

4s (a2 + 1)(µe f f s2 + ω2γ)

]
〈E3〉 = d

µm k2

4

[
|α|2 + |β|2

] (28)

3.4. Limit Case of the Well

By extending the barriers toward −∞ and +∞ the homogeneous parts Ω1 and Ω5 disappear and
the above system tends to a well, as sketched in Figure 4.

l → ∞l → ∞

Ω4Ω2 Ω3

x

2d

Figure 4. Sketch of the studied limit case. The barriers are infinitely extended toward −∞ and +∞.
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The difference with respect to the REH case, expressed by Equation (3), is that now the two
conditions at x → −∞ and x → +∞ are imposed to the metamaterial. Since no energy can be
accumulated at +∞ and −∞, the motion inside parts Ω2 and Ω4 of the well must respect the following
statements:

U2(x → −∞) = 0 U4(x → +∞) = 0 (29)

By applying the above conditions to the general solution of Equation (3), two of the six unknown
integration constants can be given as functions of the remaining four. Furthermore, the continuity
of displacements and stresses at each interface leads to a homogeneous system of four equations.
This system admits a non-trivial solution only for a set of kd values, which can be found from the
following relation:

tan 2 k d =
2 a

a2 − 1
(30)

By fixing for instance the amplitude W of the left-wards traveling wave inside the well,
the remaining three amplitudes are found and the motion inside each part is finally defined.

The only solutions are now modes for which the frequency is a resonant frequency given by
Equation (30). Note that condition Equation (30) can also be obtained directly from Equation (26) by
taking the limit for l → ∞. The total mechanical energy stored by each part can be expressed as a
function of |W| and reads:

〈E3〉 = 2 θ |W|2

〈E2〉 = 〈E4〉 = δ |W|2
(31)

with

θ = µmk2d, δ =
a2

2s(1 + a2)
(µe f f s2 + ω2γ) (32)

Fixing the amount of total energy of the system, one can find the coefficient |W| and, thus,
the motion inside each part.

4. Results

The results of the previous sections are valid provided several hypotheses on the materials
composing the REH are fulfilled. For clarity, we summarize them here below:

• Parts Ω1, Ω3 and Ω5 are constituted by the same material utilized for the matrix composing
the LRM;

• The coating layer of the fibers must be very compliant with respect to the matrix;
• The fibers must be very stiff so that they can be treated as rigid in the homogenization procedure.

Since we are now interested in considering a real possible application, the material properties
shall be fixed by respecting the three conditions just specified. We choose to use the following
combination: an epoxy material is employed for the matrix, with lead inclusions coated by a layer of
rubber. The material properties are specified in Table 1.

Table 1. Material properties.

Material E [MPa] ν ρ [Kg/m3]

Epoxy 3600 0.370 1180
Rubber 0.118 0.469 1300

Lead 14000 0.420 11340
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We consider a lattice with square unit cells with side L = 1 mm, the radius of the coated circular
inclusion is Rc = 0.415L, while the radius of the internal part is R f = 0.7Rc. A scaling of the cell
would simply scale the effective mass density when plotted with respect to the frequency, without
changing the band gap structure; considering different filling fractions (πR2

c /L2) or thicknesses of the
coating, (Rc − R f ) would instead modify the dynamic behavior and the band structure (see [24] for
other examples ).

4.1. Energy Localization: Analytic and Numerical Results

To check the validity of the analytic expressions derived in the previous sections, we have carried
out some numerical analyses by using the commercial software COMSOL Multiphysics 5.4.

First of all, for the chosen material constants, from the homogenization technique we expect the
presence of band gaps, as one can see from Figure 5a, where we have plotted the ρe f f for a range
of frequencies ω from 0 to 25 kHz. The effective mass density becomes indeed negative between
2.4 and 5.7 kHz and between 22.5 and 24.1 kHz (within the range of frequencies shown by the plot).
These intervals correspond to the band gaps obtained numerically by applying Bloch-Floquet’s periodic
conditions at the unit cell boundaries of the LRM, as shown in Figure 5b. For the dispersion analysis,
the cell is meshed with 2D triangular quadratic Lagrange finite elements and the formal analogy
with the acoustic problem is exploited. The real stiffness of lead, see Table 1, is used, nonetheless the
agreement with the analytic prediction, with the rigid inclusion assumption, is very good. One should
remark that in the second band gap there are two flat modes which correspond to local resonances of
the coated inclusion endowed with almost zero displacements in the matrix as already shown in [16].

(a)

Γ

X M

(b)
Figure 5. (a) Effective mass density vs. frequency, shaded areas correspond to negative effective mass,
(b) dispersion plot with shaded band gaps obtained from the numerical Bloch-Floquet’s analysis;
Irreducible Brillouin Zone and path followed for the numerical analysis is reported in the inset.

Fixing to 40 the number of cells employed for each of the two barriers (hence fixing the thickness
l) and optimizing the REH to work at a mid-band gap frequency ω̃ = 4.07 kHz, Equation (26) gives
a set of d̃n, each of them giving a value of 〈e3〉 23 times bigger than the energy 〈ein〉 carried by an
incoming wave of unit amplitude. The energy of the incoming wave is obtained from Equation (11)
and for a REH with the optimal cavity reads:

〈ein〉 =
µm k2

2
(33)

The dynamic behaviour of this REH and the energy densities in the different domains were
also numerically computed. In the numerical analyses, the actual two-dimensional system sketched
in Figure 1 is considered. In the x2 direction, only one row of the metamaterial is discretized and
symmetry boundary conditions are imposed to simulate the ideal case. In the x1 direction perfectly
matched layers (PML) are added to consider the extension of the matrix towards infinity. 2D triangular
quadratic elements are used to mesh the barriers, while 2D rectangular quadratic Lagrange finite
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elements are employed for the remaining homogeneous parts. Use is made again of the formal analogy
with the acoustic problem, hence a background pressure field, analogous to the incoming out of plane
wave, is imposed inside part Ω1 and the energy density is integrated in x2 and in time over a period to
be compared with the analytic results.

The plot in Figure 6 shows 〈ej〉/〈ein〉 (with j from 1 to 5) along the whole system
⋃5

j=1 Ωj for
d̃1 = 19.9 mm. The orange lines represent the energy density computed by the analytic Equations (11)
and (21), while the results of the numerical analysis are shown in blue. The oscillations of the numerical
response are due to the intrinsic heterogeneity of the LRM composing the barriers, the analytic results,
based on an homogenized material, give a mean value in good agreement.

Ω3Ω1 Ω2 Ω4 Ω5

d0-d-d-l d+l

ein

ej

Figure 6. Ratio of the averaged mechanical energy density along the whole system, with respect to the
incoming one. Orange: analytic results and blue: numerical results. Each part composing the REH is
separated by the vertical dashed lines.

In Figure 7a, we report the transmission coefficient modulus |T| vs. frequency, from a transmission
analysis of our REH. The results coming from the asymptotic technique agrees very well with those of
the real case numerically studied. The expected peak of transmission at the frequency ω̃ inside the
band gap is well captured both by the analytic and numerical results

For showing how the presence of a cavity modifies this behavior, we have plotted in Figure 7b the
results coming from a transmission analysis in absence of the cavity, i.e., for a simple layer of LRM
with a thickness equal to 2l (obtained by attaching together the two barriers and getting rid of the
cavity in the middle). Comparing these results with those in Figure 7a, it is clear how the peak inside
the band gap disappears when no cavity is present.

|T|

Frequency [KHz]

(a)

|T|

Frequency [KHz]

(b)
Figure 7. Transmission coefficient modulus |T| as a function of the frequency ω in presence of the cavity
(a) and without any cavity (b). The vertical red lines define the band gap. Orange: analytic results and
blue: numerical results of analyses in the frequency domain, considering a sweep of frequencies from 0
to 20 KHz.
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4.2. Towards the Optimization of the Harvester: Parametric Study

The results of the previous subsection refer to a particular case, with all the parameters involved
in the problem fixed. In this subsection we consider the effect of different possible configurations of the
system and, to compare them, we introduce two indexes as a “measure” of the harvesting capabilities
of the REH.

By keeping for the unit cell the same geometric dimensions employed in the previous subsection,
there are three parameters which can be left free to vary, namely the barrier width l, the optimal
cavity width d̃n and the frequency ω. To compare different configurations we introduce the following
two indexes:

IC =
〈E3〉

〈E2〉+ 〈E3〉+ 〈E4〉

AIC =
〈E3〉/(d̃n)

(〈E2〉+ 〈E3〉+ 〈E4〉)/(d̃n + l)

(34)

where IC stands for “index of concentration” and AIC for “averaged index of concentration”.
The former represents a measure of the concentration level of energy reached by the system, whereas the
latter gives a ratio between values of energy averaged over the dimensions of the corresponding REH
components.

As stated previously, Equation (26) gives a set of optimal cavity widths 2d̃n, n ∈ N∗, that maximize
the focused energy for a given frequency inside the band gap. In the contours of Figure 8, we show
the variation of the two smallest elements of this set d̃1 and d̃2 with respect to the frequency ω

inside the band gap and the width l of the barriers. One can observe that the optimal cavity width
is almost independent from the width of the barriers l while it strongly depends on the frequency.
This dependence is slightly attenuated when considering thin barriers. This is important for the real
design of an harvester, with a fixed cavity width, which should work in a wide range of frequencies.

Keeping the frequency inside the band gap and the barrier width as variables, the two indexes IC
and AIC are plotted in Figure 9 using the first two optimal cavity widths 2 d̃1 and 2 d̃2. The index IC
(panels Figure 9a,c) which measures the quantity of energy localized in the cavity with respect to the
global energy in the metamaterial with the cavity is higher when considering the larger cavity (2 d̃2).
The dependence on the width of the barriers l is very limited when considering a frequency close to
the band gap opening, while IC decreases with l when considering a higher frequency, close to the
band gap closing. A different pattern is exhibited by the index AIC (Figure 9b,d) which measures the
density of energy localized in the cavity with respect to mean energy density in the metamaterial with
the cavity. Values of AIC greater than one correspond to systems effectively concentrating energy in
the cavity. High concentration is obtained, for both cavity dimensions, considering high frequency and
large barriers; the smaller cavity gives a higher concentration (see Figure 9b,d).
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Figure 8. First (a) and second (b) optimal d̃n plotted with respect to the the frequency ω inside the first
band gap and the width l of the barriers.
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Figure 9. The contours (a,b) show respectively the indexes IC and the AIC for the first optimal cavity
widths 2d̃1, while (c,d) for the second optimal cavity widths 2d̃2. The plots are obtained using analytic
expressions.

As stated before, a change of the geometry of the unit cell, in terms of both filling fraction and
coating thickness, would change the expression of the effective mass density (hence the frequencies
of the band gap). Moreover, a change in the filling fraction (or equivalently in the ratio between the
radius Rc and the cell size L) would also modify the value of the effective stiffness of the barriers.
To explore the effect of these variations on the energy localization of the system, we study, in particular,
the four cases specified in Table 2.

Table 2. Chosen geometry for the unit cell.

Case Rc/L R f /Rc

a 0.475 0.9
b 0.475 0.4
c 0.355 0.9
d 0.355 0.4

Figure 10 shows the effect of the geometric modifications of the cell on the indexes IC and AIC;
the cavity width is fixed to 2d̃1 in all cases. Note that the change of the cell also affects the band gap
frequencies. In Figure 10 the represented frequency range always corresponds to the first band gap of
the LRM. By comparing Figure 10 a,b with Figure 10 c,d, one can observe that the concentration of
energy is improved by increasing the filling fraction of the LRM. At equal filling fraction, a smaller
thickness of the coating (Figure 10 a,c) also leads to a higher concentration with respect to the case
with a large thickness of the coating (Figure 10 b,d, respectively).
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Figure 10. Each panel (a–d) shows the index IC on the first row and AIC on the second row, for the first
optimal cavity widths 2d̃1. The following geometrical dimensions are used: (a) Rc = 0.475L, R f = 0.9Rc,
(b) Rc = 0.475L, R f = 0.4Rc, (c) Rc = 0.355L, R f = 0.9Rc and (d) Rc = 0.355L, R f = 0.4Rc.

5. Conclusions

This paper investigates the possibility to localize the vibration mechanical energy in a cavity
between two barriers constituted by ternary LRMs. The concentration of energy is possible for
waves having frequency inside the bandgap of the LRM. The proposed system can be reduced
to a one-dimensional problem of wave propagation, thus allowing for a complete analytic solution.
We consider the long-wave length regime, and we apply the asymptotic homogenization to obtain the
dynamic effective properties of the LRM. The optimal dimension of the cavity for energy localization is
given in close form. Results are applied to a specific LRM and validated by comparison with numerical
results. The analytic solution allows to highlight the influence of the different material and geometric
parameters of the metamaterial on the energy concentration. In particular it is shown that, high filling
fraction and small coating thickness of the LRM, besides resulting in a larger band gap at low frequency
as shown in [24], improve the energy concentration.

The results obtained in this paper could represent a first step to design a REH with optimal
performance in terms of localization of the mechanical energy carried by waves within a specific
frequency interval.

The analysis was here restricted to the out-of-plane wave propagation, the case of in-plane
propagation, even though leading to more complex expressions, could be treated in a similar way.

The treatment of a real REH, with finite out-of-plane dimension, deserves further studies, as the
decoupling between the two cases does not hold anymore. The experimental validation should then
be carried out.
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Appendix A. Dynamic Effective Properties of the LRM

In the sub-wavelength regime, the motion problem of the ternary LRM is characterized by a
macroscopic scale x and by a microscopic scale y = x/ε, see [21,24,27]. This means that both the
displacement field u and the stress field σ can be expanded in the following way:

u(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · · (A1)

σ(x) = σ0(x, x/ε) + εσ1(x, x/ε) + ε2σ2(x, x/ε) + · · · (A2)

By substituting Equations (A1) and (A2) and their derivatives in Equation (1), an effective
description of the LRM is achieved. The terms of the same order in ε are then considered. At order −1
one obtains that the displacement field u0

m(x, x/ε) of the matrix is independent from the microscopic
variable and will be denoted as U0(x). At the leading order, and considering the symmetry of the
lattice, the homogenized problem is thus governed by the following equation:

µe f f div gradU0(x) + ρe f f (ω)ω2 U0(x) = 0 (A3)

where µe f f is the effective shear modulus. This latter is defined as

µe f f =
1
|Y|

∫
Ym

µm

(
gradyχ + e1

)
·
(

gradyχ + e1

)
dy (A4)

where e1 is the unit vector of axis x1 and χ is the solution of the cell problem, associated to the
matrix only 

div gradyχ = 0 in Ym

µm

(
gradyχ + e1

)
· n = 0 on ∂Yc

χ periodic, µm gradyχ · n anti-periodic on ∂Y

(A5)

Note that for a general case of a 2D lattice, without the symmetries of the present case, an effective
2× 2 stiffness matrix intervenes in Equation (A3) whose entries are defined similarly to Equation (A4)
by introducing the solution χ2 of a second cell problem (with e2 instead of e1 in Equation (A5))

In Equation (A3), ρe f f (ω) is the effective mass density, given by:

ρe f f (ω) = ρm
|Ym|
|Y| + ρ f

∣∣∣Yf

∣∣∣
|Y| η(R f ) +

ρc

|Y|2π
∫ Rc

R f

η(r)dr (A6)

where the function η(r) reads:

η(r) =

kcR f ρ f (J0(kcr)Y0(kcR f )−Y0(kcr)J0(kcR f ))

+ 2ρc(Y0(kcr)J1(kcR f )− J0(kcr)Y1(kcR f ))

kcR f ρ f (J0(kcRc)Y0(kcR f )−Y0(kcRc)J0(kcR f ))

+ 2ρc(Y0(kcRc)J1(kcR f )− J0(kcRc)Y1(kcR f ))

(A7)

where J0 and J1 are Bessel functions of the first kind, Y0 and Y1 are Bessel functions of the second kind
and kc = ω

√
ρc/µc.

Denoting by ωn the set of frequencies which make the denominator of Equation (A7) equal to
zero, the Equation (A6) tends to −∞ and to +∞ when ω tends to ωn from above and from below
respectively. The intervals where the effective mass is negative represent band gaps, i.e., intervals of
frequencies where waves traveling across the metamaterial are attenuated.
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