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Abstract. This paper is devoted to the analysis of an optimal control
problem for stochastic integro-differential equations driven by a non-
gaussian Lévy noise. The memory effect in the equation is driven by
a completely monotone kernel (thus covering, for instance, the class of
fractional time derivative of order less than 1).

We suppose that the control acts on the jump rate of the noise.
We show that this allows to tackle the problem through a backward
stochastic differential equations approach, since the structure condition
required by this approach is naturally satisfied. We solve the optimal
control problem of minimizing a cost functional on a finite time horizon,
with both running and final costs. We finally prove the existence of a
weak solution of the closed-loop equation and we construct an optimal
feedback control.

Mathematics Subject Classification (2010). Primary 45K05; Secondary
60H30, 93E20.

Keywords. Optimal control; integro-differential Volterra equations; com-
plete monotone kernels; Lévy processes.

1. Introduction. Statement of the problem

The main aim of this paper is to extend the theory developed in the context
of classical optimal control for diffusion processes -constructed as solutions
to stochastic differential equations of Ito type driven by Browian motion- to
the framework of the processes costructed as solutions of stochastic integro-
differential equations driven by a non-gaussian Lévy noise. The majority of
those results requires that only the drift coefficient of the stochastic equation
depends on the control parameter, see e.g. [29]. Generally, in this case the
laws of the corresponding controlled processes are all absolutely continuous
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with respect to the law of a given, uncontrolled process, so that they form a
dominated model.

In the present paper we adopt a similar framework. We start by describ-
ing our setting in an informal way.

Let H be a real separable Hilbert space endowed with the Borel σ-field
H. Let {Lt, t ≥ 0} be a pure jump Lévy process on a filtered probability space
(Ω,F, {Ft}t≥0,P) where {Ft}t≥0 is the completed, right-continuous filtration
generated by the Lévy process (see Section 2). Denote with π̃(dt,dξ) :=
π(dt,dξ)(ω) − ν(dξ) dt its compensated Poisson random measure under P
with compensator given by ν(dξ) dt.

We denote with U the space of controls, which we assume be equal to
a countable union of compact metrizable subsets of itself, for example R or
N. We write A for the space of the admissible controls γ which are {Ft}t≥0-
predictable processes taking values in U .

We introduce a function r : [0, T ]×H ×H ×U →]0,∞[, and define the
measure Pγ through the Dolans-Dade exponential

dPγ

dP
= exp

[∫ t

0

∫
H\{0}

(r(s, us, ξ, γs)− 1) [π(ds,dξ)− ν(dξ) ds]

−
∫ t

0

∫
H\{0}

(r(s, us, ξ, γs)− 1− ln(r(s, us, ξ, γs)))π(ds,dξ)

]
Under suitable assumptions on r (for instance if r is positive and uni-

formly bounded), this defines a true probability measure Pγ equivalent to P.
By Girsanov’s theorem the compensator of π under Pγ is given by νγ(dξ,dt) :=
r(t, ut, ξ, γt)ν(dξ) dt.

We are concerned with the following controlled stochastic integral Volter-
ra equation under Pγ

d

dt

∫ t

−∞
a(t− s)u(s) ds

=Au(t) +

∫
H\{0}

ψ(t, ξ, u(t)) (r(t, ut, ξ, γt)− 1) ν(dξ)

+

∫
H\{0}

ψ(t, ξ, u(t)) π̃γ(dt, dξ), t > 0

u(t) =u0(t), t < 0

(1.1)

where a is a completely monotone kernel and A is a m-dissipative operator
defined on a domain D(A) ⊂ H and

π̃γ(dt, dξ) := π(dt,dξ)− r(t, ut, ξ, γt) ν(dξ) dt

is the compensated Poisson random measure under Pγ .
In the equation, the function ψ is a Lipschitz continuous function in u

uniformly in t ∈ [0, T ] and ξ ∈ H. The past of the system up to time t = 0 is
a given function u0(s) which satisfies certain regularity conditions; a precise
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statement of all the assumptions concerning the memory terms is given in
Section 3.

The aim is to choose a control process γ, within a set of admissible
controls, in such way to minimize a cost functional of the form

J(u0, γ) = Eγ
[∫ T

0

l(t, u(t), γ(t)) dt+ g(u(T ))

]
(1.2)

where Eγ denotes the expectation under Pγ , T > 0 is a given deterministic
finite horizon and l, g are given real function, representing the running cost
and the terminal cost, respectively.

Remark 1.1. Under the probability P, equation (1.1) becomes

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t)

+

∫
H\{0}

ψ(t, ξ, u(t)) (r(t, ut, ξ, γt)− 1) ν(dξ) dt

+

∫
H\{0}

ψ(t, ξ, u(t)) (π(dt, dξ)− r(t, ut, ξ, γt)) ν(dξ) dt,

=Au(t) +

∫
H\{0}

ψ(t, ξ, u(t)) π̃(dt, dξ) t > 0

u(t) =u0(t), t < 0

(1.3)

This means that we have a reference dynamics for u under the reference
probability P and we can add a drift to the dynamics of u, in probabilistic weak
sense. Using Girsanov’s theorem, this corresponds to a change of measure. So
we can formulate the control problem in an alternative way by considering
a control which affects the probability measure directly. The function r, the
controller, modifies the measure P under which our system evolves, replacing
it with the measure Pγ . By Girsanov’s theorem, the compensator of π under
Pγ is given by νγ(dξ,dt) := r(t, ut, ξ, γt)ν(dξ) dt. Therefore, our controller is
effectively modifying the solution u by modifying the drift and the jumps (by
controlling both the intensity and the amplitude) of the noise.

There has been recently a large interest in the analysis of Kolmogorov’s
equations associated to path-dependent stochastic differential equations,
mainly motivated by the applications to optimal control problems [21, 22, 31,
23]. These papers deal with functional Kolmogorov’s equations associated to
forward-backward stochastic functional equations, i.e., equations with path-
dependent coefficients. This approach allows to study non-Markovian control
problems, where the state of the system and the control are allowed to depend
on the past [22].

However, in the analysis of equation (1.1), it is possible to associate to
the solution a Markovian system, thus the associated Kolmogorov’s equation
can be solved via a (classical) system of forward-backward stochastic differ-
ential equations. This Markovian representation of the solution, that is called
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state space setting, follows the classical ideas first introduced in [40, 28] and
recently revised, for the stochastic case, in [32, 10, 7]. According to this ap-
proach, the original equation (1.1) is shown to be equivalent to an equation
in a (different) Hilbert space X:



dv(t) = Bv(t) dt+

+ (I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) (r(t, Jv(t), ξ, γ(t))− 1) ν(dξ)dt

(I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) π̃γ(dt, dξ),

v(0) = v0

u(t) = Jv(t) t ∈ (0, T ].

(1.4)

As opposite to other reformulations of functional equations, the state
space setting does not have an intuitive interpretation of the transformed
equation.
On the Hilbert space X, the internal state of the system at time t is recorded
into a random variable v(t). The operator B : D(B) ⊂ X → X which governs
the evolution from past to future, is related to the Laplace transform of the
state equation rather than its value in the spaceH. What makes this approach
more powerful is that B generates an analytic, strongly continuous semigroup
on X, which allows the use of the tools of interpolation theory. P : H → X
is a linear operator which acts as a sort of projection into the state space X.
The core of this approach is the existence of the linear operator J : D(J) ⊂
X → H which maps the solution of the state equation (1.4) into the (unique)
solution of (1.1). A precise statement of the definitions and results that we
need will be given in Section 3; for further details see [32, 10]. Therefore, once
we prove the existence of a solution of the state equation, with a little effort
we also get the existence of a solution of the Volterra equation (1.1).

Remark 1.2. There is a huge literature concerning integro-differential equa-
tions; see, for instance, the monograph [47]. Other semigroup approaches have
been developed, too, among them the history function approach, which also
appears in the study of stochastic equations (see, for instance, [9, 19]). In
general, stochastically perturbed problems have been treated with the aid of
the resolvent operator; compare, for instance, the paper [13]. However, this
approach misses the semigroup property and cannot be applied here.

The existence and uniqueness of the solution of the equation (1.4),
which, by the equivalence of the formulation between the two problems, trans-
late into an analog result for the equation (1.1), are contained in Section 4.
Let us remark that equation (1.4) contains an unbounded operator in the
stochastic term. This introduces some further technical difficulties; here, we
follow the approach of [7, 8, 20] to the case of a pure jump Lévy noise.
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Remark 1.3. Classically, in the literature, diffusion term driven by unbounded
operators arise in very distant fields, e.g., the analysis of Zakai equation
[39, 43], or stochastic equations with boundary noise [25, Chapter 11].

Given the Markovian solution of (1.4), we can translate the original
control problem in the state space setting. Here we have to minimize the cost
functional

J(v0, γ) = Eγ
[∫ T

0

l(t, Jv(t), γ(t)) dt+ g(Jv(T ))

]
(1.5)

where we use the linear operator J in order to express the cost functional
(1.2) in terms of the state v.

We can proceed to find the solution of the optimal control problem
by using the forward-backward system approach, well-known in the diffusive
case (see e.g. [48]. It is worth noting that the connection between BSDEs and
optimal control has been fundamental since the early work of Bismut [5].)

On the filtered probability space (Ω,F, {Ft}t≥0,P) we consider the equa-
tion 

dv(t) = Bv(t) dt+ (I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) π̃(dt, dξ),

v(0) = v0

u(t) = Jv(t) t ∈ (0, T ].

(1.6)

to which we associate the backward stochastic differential equation P-a.s.

Yt +

∫ T

t

∫
H\{0}

Zr(ξ) π̃(ds,dξ) = g(vT ) +

∫ T

t

f(s, Jvs, Zs(·)) ds, t ∈ [0, T ],

(1.7)
with unknown processes (Yt, Zt)t∈[0,T ]. The generator f is the Hamiltonian
function related to the above problem (1.5), defined in the usual way (see
e.g. [15], Chapter 21)

f(s, v, z(·)) = inf
γ∈U

{
l(s, Jv, γ) +

∫
H\{0}

z(ξ) (r(s, Jv, ξ, γ)− 1) ν(dξ)

}
.

(1.8)

Remark 1.4. This type of equation was first considered by Pardoux and Peng
[44] in the diffusion case with a finite-dimensional Brownian motion. Since
then, many generalizations have been considered, see in particular [29, 30, 11]
where the Wiener process was replaced by more general continuous processes.
Also the case where both the diffusion and jump term are present has been
considered, see e.g. [53, 4]. A notable extension to the case of a probability
space endowed with a general filtration (instead of the filtration generated
by the Brownian motion) has been presented in [14].
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Under our assumptions on l, g and r, the Hamiltonian function is Lip-
schitz continuous and the backward stochastic differential equation (1.7) ad-
mits a unique solution (see Proposition 5.4) (Y,Z) which are Borel measur-
able functions of (t, v), as they come from the solution of a Markovian back-
ward stochastic differential equation. Our main result, Theorem 5.5, proves
that under appropriate assumptions the optimal control problem has a solu-
tion and that the value function and the optimal control can be represented
by means of the solution to the backward stochastic differential equation
(1.7).
Finally we address the problem of finding a weak solution to the so-called
closed loop equation. If we assume that the infimum in (1.8) is attained, we
can prove that there exists a measurable function γ̄ of t, v such that

f(t, v, z) = l(t, J(v), γ̄(t, v)) +

∫
H\{0}

z(ξ) (r(s, Jv, ξ, γ̄(t, v))− 1) ν(dξ).

The closed loop equation is

dv(t) = Bv(t) dt+

+ (I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) (r(t, Jv(t), ξ, γ̄(t, vt)− 1) ν(dξ)dt

+ (I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) π̃γ̄(dt,dξ),

v(0) = v0

u(t) = Jv(t) t ∈ (0, T ].

(1.9)
We prove that there exists a weak solution of the closed loop equation and
we construct an optimal feedback control: if v is a solution to (1.9) and we
set γ∗s = γ̄(s, v(s)), then J(v0, γ

∗) = Y0, and consequently v is an optimal
state, γ∗s is an optimal control, and γ̄ is an optimal feedback.

1.1. Motivation of the problem

The analysis of problems which take into consideration the past history of
the system have been stimulated by the applications to many physical phe-
nomena, in viscoelasticity, heat conduction in materials with memory, elec-
trodynamics with memory [47]; further, memory terms naturally enter in the
description of other natural (e.g., epidemiological models [49]), social (e.g.,
population dynamics [34]) and economical (e.g., financial markets with sto-
chastic volatility [12]) phenomena. Of a similar shape, but arising from differ-
ent motivations, are fractional diffusion equations Dαu = Au + f(u), which
extends the parabolic diffusion equation to model long range dependence of
the solution [2]. Since uncertainty is often an important characteristic of the
models, the introduction of a stochastic term is a necessary step in their
formulation. Empirical data from many phenomena suggest that Brownian
motion is often not an effective process to use in their models. For instance,
the classical Black-Scholes model does not fit well with the data, and it is
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necessary to adjust any price obtained from the Black-Scholes model in order
to be realistic. There are several models based on Lévy processes that offer
better model fit, since Lévy processes give a very wide modeling freedom [51].
In the applications, an important procedure in the analysis of a system is the
introduction of an optimal control (for several examples of application in the
study of heating processes, see the standard monographs by Lions [36] or
Troeltzsch [54].) Despite the interest in modeling the noise in such systems
through a Lévy-type one instead of a Gaussian one, which has motivations
in all the areas which have been mentioned, apparently there were no efforts
in the literature to study this problem.

Example 1.5. In this example, we discuss a model of cash flow with con-
sumption. Let u(t) denotes the cash amount at time t. If we assume the
presence of memory effects in the economic process, a typical model in the
literature requires the introduction of fractional order derivatives [50, 35].
Here we consider the left sided Riemann-Liouville fractional derivative:

Dα
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1f(s) ds

where n is the smallest integer larger than α and Γ(z) is the Gamma function.
We assume that u(t) follows the stochastic fractional equation

Dα
t u(t) = A(t)u(t) +

∫
R\{0}

C(t, z)Ñ(dt,dz)

(for similar models, compare [41, 42]). Suppose that the consumption rate
γ(t) influences the growth of u(t) by affecting the intensity measure of the
jumps. By Girsanov’s theorem, we know that this is equivalent (in the sense
of weak solutions) to add a drift to the dynamics of u(t). In this setting, the
consumer may want to maximize the combined utility of the consumption up
to the terminal time T and the terminal wealth. Then the problem is to find
γ(t) such that the expected utility

J(γ) = Eγ
[∫ T

0

l(t, γ(t)) dt+ g(u(T ))

]
is maximal (l and g are given utility functions).

2. Stochastic integration for Lévy processes

In this section we recall some basic results concerning Lévy processes. For a
thorough presentation and additional material on Lévy processes we refer to
[45].

We are given a complete probability space (Ω,F, {Ft, t ≥ 0},P) that
satisfies the so called usual assumptions: Ft contains all null sets of F, for ev-
ery t ≥ 0, and the filtration is right-continuous. The σ field of Fs−predictable
sets in [0, T ]× Ω will be denoted by P.
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Recall that by definition L = {L(t), t ≥ 0} is a (càdlàg) Lévy process
on the Hilbert space H if L(0) = 0, L is stochastically continuous and it
has stationary, independent increments. It is known (compare for instance
[45, Theorem 4.3]) that every Lévy process has a càdlàg modification. Notice
that Brownian motion with drift is the only Lévy process with continuous
paths.
We associate to L(t) the process of jumps Xt = ∆L(t) = L(t) − L(t−) =
L(t)− lim

s↑t
L(s). The random counting measure

Nt(B) = π((0, t]×B) =
∑
s≤t

1B(∆L(s)), B ∈ B(H \ {0})

is called the Poisson random measure of the process L. The intensity measure
ν associated to the process L under the probability P is the measure

ν(B) = E[N1(B)].

ν is a measure that is finite on sets separated from 0 and satisfies (see [46,
Theorem 4.23]) ∫

H

(|y|2 ∧ 1) ν(dy) <∞.

The (family of) random measures

π̃([0, t]×B) = π([0, t]×B)− t ν(B), t ≥ 0, B ∈ B(H \ {0}),

is called the compensated Poisson random measure.

From this point on we shall assume that

L is a pure jump process with finite first moment E[|L(t)|] <∞ and
intensity measure ν that is supported by the ball BR(0),

(2.1)

hence its Lévy exponent is given by

ψ(x) =

∫
{|y|<R}

(
1− ei〈x,y〉 + i〈x, y〉

)
ν(dy)

and the process is identified by the formula

L(t) =

∫ t

0

∫
H\{0}

ξ π̃(ds,dξ).

In order to define stochastic integrals with respect to the compensated
Poisson random measure π̃(dt,dξ), we introduce the space

L2
ν,T = L2([0, T ]× Ω×H,P⊗H,dtdPdν)

which is the space of P⊗H-measurable functions ψ(ω, s, ξ) on Ω× [0, T ]×H
with values in H such that

E
∫

[0,T ]

∫
H\{0}

|ψ(t, ξ)|2 ν(dξ)dt <∞.
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Then the Itô stochastic integral∫
[0,T ]

∫
H\{0}

ψ(t, ξ) π̃(dt,dξ) :=

∫
[0,T ]

∫
H\{0}

ψ(t, ξ)π(dt,dξ)

−
∫

[0,T ]

∫
H\{0}

ψ(t, ξ) ν(dξ)dt

is a linear bounded operator from L2
ν,T into L2(Ω,FT ,P).

Remark 2.1. The stochastic integral is defined as the difference of ordinary
integral with respect to π(dt,dξ) and ν(dξ)dt.

The following Bichteler-Jacod inequality for Poisson integrals (see for
instance [38, Lemma 3.1]) will result useful in the sequel.

Proposition 2.2. If ψ ∈ L2
ν,T , then one has

E sup
t∈[0,T ]

∣∣∣∣∣
∫

(0,t]

∫
H\{0}

ψ(s, ξ) π̃(ds,dξ)

∣∣∣∣∣
2

≤ C E
∫

(0,T ]

∫
H\{0}

|ψ(s, ξ)|2ν(dξ) ds.

2.1. Girsanov’s change of probability formula

In the sequel, we shall be dealing with more than a probability measure on
the filtered space (Ω,F, {Ft}). For the sake of clearness, we recall some basic
facts about change of measure theorem.
Let Z = {Z(t), t ∈ [0, T ]} be a positive martingale of the form

Z(t) = exp

[∫ t

0

∫
H\{0}

(Y (s, ξ)− 1) [π(ds,dξ)− ν(dξ) ds]

−
∫ t

0

∫
H\{0}

(Y (s, ξ)− 1− ln(Y (s, ξ)))π(ds,dξ)

]
for a measurable, non-negative, deterministic process Y satisfying∫ t

0

∫
H\{0}

|ξ(Y (s, ξ)− 1)| ν(dξ) ds <∞, 0 ≤ t ≤ T. (2.2)

Then we can define a measure PY on the space (Ω,F, {Ft}) using the Radon-
Nikodym derivative

dPY

dP
= Z(T ).

The measure PY is equivalent to P on the space (Ω,F, {Ft}), i.e., PY (A) = 0
if and only if P(A) = 0 for all A ∈ F.

Recall that under the measure P, the process L has the canonical form

L(t) =

∫ t

0

∫
H\{0}

ξ [π(ds,dξ)− ν(dξ) ds] .
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Then we have that

νY (ds,dξ) = Y (s, ξ) ν(dξ) ds

is the PY compensator of π(ds,dξ) and L has the following canonical decom-
position under PY :

L(t) =

∫ t

0

∫
H\{0}

ξ(Y (s, ξ)− 1) ν(dξ)ds

+

∫ t

0

∫
H\{0}

ξ
[
π(ds,dξ)− νY (ds,dξ)

]
. (2.3)

Remark 2.3. We can give a heuristical interpretation of formula (2.3). If the
original Lévy process L(t) experiences a jump ξ at time t with probability
ν(dξ)

ν(H\{0}) , then the transformed process jumps at the same time t and the size

of the jump is ξ but with probability Y (s,ξ)ν(dξ)∫
H\{0} Y (s,ξ)ν(dξ)

.

Notice that the random measure of jumps of L did not change under
the change of measure from P to PY . That happens because π is a paths
property of the process and do not change under an equivalent change of
measure. Intuitively speaking, the paths do not change, the probability of
certain paths occurring changes.

3. The state space setting. Statement of the results

In the past years an important approach to the analysis of equations with
memory was provided by Desch and Miller [28] for deterministic Volterra
equations arising in linear viscoelasticity, see also [27, 52], and further devel-
oped by several authors also in the stochastic case, see [32, 7, 8, 10].

This approach introduces a state v(t) of the system, which contains
all information about the solution up to time t required to predict the fu-
ture development. The state of the system is then governed by an abstract
differential equation in a large Hilbert space.

In the following, we shall apply this technique to the analysis of problem
(1.1). In order to avoid some technicalities, we discuss in this section the
equation 

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) + f(t), t > 0

u(t) = u0(t), t < 0

(3.1)

Here we state the assumptions on the kernel a, the operator A and the
initial condition u0 which also apply to equation (1.1).

Hypothesis 3.1. A : D(A) ⊂ H → H is a sectorial operator in H. Thus A
generates an analytic semigroup etA. Interpolation and extrapolation spaces
Hγ of H will always be constructed with respect to A.
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Hypothesis 3.2. The convolution kernel a : (0,+∞)→ R is completely mono-
tone with Bernstein measure ν. Furthermore, a satisfies

1. a(0+) =∞, equivalently
∫

[0,∞)
ν(dκ) =∞;

2.
∫ T

0
a(t) dt <∞ for all T ∈ (0,∞),equivalently:

∫
[0,∞)

(κ+ 1)−1 ν(dκ) <
∞;

3. there exists ωa ∈ (0, π − ωA) such that for all s ∈ C+ we have sâ(s) ∈
Σωa

;
4. the coefficient α(a) (first introduced in [32] to measure the singularity

of a at t = 0+)

α(a) = sup

{
ρ ≤ 1 :

∫ ∞
1

sρ−2 1

â(s)
ds <∞

}
(3.2)

satisfies

α(a) >
1

2
. (3.3)

Remark 3.3. A classical example of equations arising from physical appli-
cation having the form (3.1) are those governed by a fractional order time-
derivative. Recall that the Riemann-Liouville derivative of order α ∈ (0, 1) is
defined by

Dαf(t) =
1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−α f(τ) dτ.

The kernel a(t) = 1
Γ(1−α) t

−α satisfies Hypothesis 3.2: it is completely mono-

tone, and since â(s) = sα−1 it follows that α(a) = α, provided we choose
α > 1

2 (in order to satisfy condition (4)).

Hypothesis 3.4. The initial condition u0 belongs to the space of admissible
initial conditions X̃

X̃ =

{
ϕ : (−∞, 0)→ H,

there exist M > 0 and ω > 0 such that |ϕ(t)| ≤Me−ωt
}
.

We shall further assume that there exist η > 1−α(a)
2 , ε > η

2α(a) and ρ > 2η

such that u0(0) belongs to Hε and there exist M2 > 0 such that |u0(−t) −
u0(0)| ≤M |t|2ρ for all t ∈ [−1, 0].

Definition 3.5. A function {u(t), t ∈ [0, T ]} is a weak solution of (3.1) if it
belongs to L2([0, T ];H) and for any z ∈ D(A∗) it satisfies the identity∫ t

−∞
〈a(t− s)u(s), z〉Hds = 〈

∫ 0

−∞
a(−s)u0(s)ds, z〉H

+

∫ t

0

〈A∗z, u(s)〉Hds+

∫ t

0

〈z, f(s)〉H ds. (3.4)

We quote from [10] the main result concerning the state space setting
for stochastic Volterra equations in infinite dimensions.
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Theorem 3.6 (State space setting). Let A, a, α(a) be given above and sat-
isfying Hypotheses 3.1, 3.2, 3.4; choose numbers η ∈ (0, 1), θ ∈ (0, 1) such
that

η >
1

2
(1− α(a)), θ <

1

2
(1 + α(a)), θ − η > 1

2
(3.5)

Then there exist

1. a separable Hilbert space X (the state space) and an isometric isomor-

phism Q : X̃ → X,
2. a densely defined sectorial operator B : D(B) ⊂ X → X generating an

analytic semigroup etB with growth bound ω0,
3. its real interpolation spaces Xρ = (X,D(B))(ρ,2) with their norms | · |ρ,
4. linear operators P : H → Xθ, J : Xη → H

such that the following holds: the analysis of problem (3.1) can be reduced to
that of the evolution equation{

v′(t) = Bv(t) + (I −B)Pf(t)

v(0) = v0 = Qu0

(3.6)

in the sense that if u0 ∈ X̃ and v(t; v0) is the weak solution to Equation
(3.6) with v0 = Qu0, then u(t;u0) = Jv(t; v0) is the unique weak solution to
Problem (3.1).

Remark 3.7. According to Lemma 3.16 in [10], the second part of Hypothesis
3.4 implies that v0 = Qu0 ∈ Xη.

4. The state equation

In this section we prove the relevant existence result for the solution of equa-
tion (1.1)

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) +

∫
H\{0}

ψ(t, ξ, u(t)) dL(t), t > 0

u(t) = u0(t), t < 0

(1.1)
in the framework described above. Thus, we let L be a pure jump Lévy pro-
cess with compensated random measure π̃(dt,dξ) := π(dt,dξ)(ω)− ν(dξ)dt
defined on a given filtered probability space (Ω,F, {Ft}t≥0,P). From now on
we suppose that {Ft}t≥0 is the completed, right-continuous filtration gener-
ated by the Lévy process.

The operator A and the convolution kernel a satisfy Hypothesis 3.1 and
3.2 respectively. On the coefficient ψ we formulate the following

Hypothesis 4.1. ψ : [0, T ] × H × H → H is a well defined, continuous and
Lipschitz continuous mapping.
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The following definition extends in a natural way the notion of weak
solution for Volterra equations with stochastic forcing term from the one in
the deterministic case given in Definition 3.5.

Definition 4.2. A process {u(t), t ∈ [0, T ]} is a weak solution of (1.1) if it
belongs to L2

ad(Ω × [0, T ];H) and for any z ∈ D(A∗) it satisfies P-a.s. the
identity∫ t

−∞
〈a(t− s)u(s), z〉H ds = 〈

∫ 0

−∞
a(−s)u0(s) ds, z〉H +

∫ t

0

〈A∗z, u(s)〉H ds

+ 〈z,
∫ t

0

∫
H\{0}

ψ(t, ξ, u(t)) dL(s)〉H . (4.1)

If we apply to problem (1.1) the machinery introduced in previous sec-
tion, we obtain that in the state space setting, on the separable Hilbert space
X, the state v(t) and the solution u(t) of (1.1) will be governed by a system
of the form

dv(t) = Bv(t) dt+ (I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) π̃(dt,dξ), t ∈ [0, T ]

v(0) = v0

u(t) = Jv(t),

(4.2)
with an initial condition v0 ∈ Xη. is an unbounded operator, where the
interpolation space (X,D(B))η,2 ⊂ D(J) if η is sufficiently large. Recall that
B is the generator of an analytic semigroup S(t) on X; the coefficient ψJ is
defined by ψJ(v) = ψ(J(v)), where J : Xη → H is defined in Theorem 3.6.

Lemma 4.3. Assume Hypothesis 4.1. Let us define

G(t, ξ, v) = (I −B)PψJ(t, ξ, v) (t ∈ [0, T ], ξ ∈ H, v ∈ Xη).

Then G : [0, T ] × H × Xη → Xθ−1 is a Lipschitz continuous mapping with
respect to the relevant norms.

The stochastic equation in (4.2) is only formal in Xη since the coef-
ficients do not belong to the state space. We shall deal with the following
concept of solution for equation (4.2).

Definition 4.4. A predictable process v : [0, T ] → Xη is a mild solution for
(4.2) if it satisfies

v(t) = etBv0 +

∫ t

0

∫
H

e(t−s)B(I −B)PψJ(s, ξ, v(s)) π̃(ds,dξ) (4.3)

P-a.s. for all t ∈ [0, T ], where at the same time we assume that the stochastic
integral on the right-hand side exists.
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For each p ≥ 2 we shall denote Hp(0, T ;Xη) the spaces of all predictable
processes v : [0, T ]→ Xη such that

‖v‖p =

(
sup
t∈[0,T ]

E|v(t)|pη

)1/p

<∞.

The following well-posedness result in H2(0, T ;Xη) is our main result in
this section. We follow the approach in [38], see also [1, 45], with suitable
modifications in order to handle the unboundedness of the coefficients in
(4.3).

Remark 4.5. As opposite to [38], we are not able to prove well-posedness
of the stochastic convolution process in the smaller space Sp(0, T ;Xη) of all
predictable processes v : [0, T ]→ Xη such that the following norm is finite:

|||v|||p =

(
E sup
t∈[0,T ]

|v(t)|pη

)1/p

<∞,

due to the unboundedness of the coefficient involved in the stochastic convo-
lution integral.

Theorem 4.6. Assume that Hypotheses 3.1, 3.2, 3.4 and 4.1 are satisfied; there
exists a unique mild solution of problem (4.2) in the space H2(0, T ;Xη).

Proof. We shall use a fixed point argument in the space H2(0, T ;Xη) where
we introduce the following equivalent norm

‖v‖{2,β},η =

(
sup
t∈[0,T ]

Ee−2βt|v(t)|2η

)1/2

,

for some β > 0 to be chosen later.
Let us introduce the mapping

K : H2 → H2, K(v)(t) =

∫ t

0

∫
H

e(t−s)BG(s, ξ, v(s)) π̃(ds,dξ)

where we define as before

G(t, ξ, v) = (I −B)PψJ(t, ξ, v).

In particular, we want to prove that this mapping is a well-defined contraction
on H2(0, T ;Xη).
The key point is the following inequality, that is a consequence of Itô formula
(see for instance [38, Lemma 3.1])

E
∣∣e−βt(K(v1)(t)−K(v2)(t)

∣∣2
η

= E

∣∣∣∣∣
∫ t

0

∫
H\{0}

e−2βte(t−r)B [G(r, ξ, v1(r))−G(r, ξ, v2(r))] π̃(dr, dξ)

∣∣∣∣∣
2

η

≤ C E
∫ t

0

∫
H\{0}

∣∣∣e−2βte(t−r)B [G(r, ξ, v1(r))−G(r, ξ, v2(r))]
∣∣∣2
η
ν(dξ) dr
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since B is the generator of an analytic semigroup, we can use standard
estimates from [37]: |etBg|η ≤ tθ−η|g|θ, where |x|θ (resp., |x|η) stands for

the norm in Xθ (in Xη). Then
∣∣e(t−r)B [G(r, ξ, v1(r))−G(r, ξ, v2(r))]

∣∣
η
≤

(t−r)θ−η−1 |G(r, ξ, v1(r))−G(r, ξ, v2(r))|θ−1 and, by using the Lipschitz con-

tinuity of G, this quantity is bounded by LG(t− r)θ−η−1 |v1(r)− v2(r)|η

E
∣∣e−βt(K(v1)(t)−K(v2)(t)

∣∣2
η

≤ C E
∫ t

0

∫
H\{0}

∣∣e−2βt(t− r)θ−η−1[v1(r)− v2(r)]
∣∣2
η
ν(dξ) dr

Then, using ν(H \ {0}) < +∞, and Young’s inequality, we get

E
∣∣e−βtK(v1(t)−K(v2)(t)

∣∣2
η

= C

(∫ t

0

∣∣∣e−2β(t−r)(t− r)θ−η−1
∣∣∣2
η

dr

)
E
∫ t

0

∣∣e−2βr[v1(r)− v2(r)]
∣∣2
η

dr

≤ C 1

Γ[2(θ − η)− 1]

1

β2(θ−η)−1
‖v1 − v2‖{2,β},η

and we conclude that

‖e−βtK(v1)(t)−K(v2)(t)‖{2,β},η ≤ C
1

β2(θ−η)−1
‖v1 − v2‖{2,β},η. (4.4)

Then, by taking β large enough, the mapping K above defines a contraction
in the space H2(0, T ;Xη) and the theorem is proved. �

Now we deal with existence and uniqueness of the stochastic Volterra
equation. The following result extends to the stochastic case Theorem 3.6.
We don’t give the proof here, since it is a direct extension of the result given
in [10, Theorem 1.23], see also the bibliography quoted before.

Proposition 4.7. Assume that Hypotheses 3.1, 3.2, 3.4 and 4.1 hold; choose
numbers η ∈ (0, 1), θ ∈ (0, 1) such that (3.5) holds. Given the process

v(t) = etBv0 +

∫ t

0

∫
H

e(t−s)B(I −B)PψJ(s, ξ, v(s)) π̃(ds,dξ)

we define the process

u(t) :=

{
Jv(t), t ≥ 0
u0, t ≤ 0

Then u(t) is a weak solution to problem
d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t) +

∫
H\{0}

ψ(t, ξ, u(t)) dL(t), t > 0

u(t) = u0(t), t < 0
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5. The control problem

In this section we address the optimal control problem associated with the
solution of a stochastic integral Volterra equation.

We shall denote T > 0 the time horizon of the control problem. The data
specifying the optimal control problem that we will address are a measurable
space U , called the action (or decision) space, endowed with a σ-field U;
a running cost function l; a terminal cost function g, and the function r
specifying the effect of the control process.
We define an admissible control process, or simply a control, as an {Ft}-
predictable process γ with values in U . The set of admissible control processes
is denoted by A. We will make the following assumptions.

Hypothesis 5.1.

1. (U,U) is a topological space which is the union of countably many com-
pact metrizable subsets of itself.

2. r : [0, T ] ×H ×H × U → R is B([0, T ]) ⊗H ⊗H ⊗ U-measurable and
there exists a constant Cr > 0 such that

0 < r(t, x, ξ, γ) ≤ Cr, t ∈ [0, T ], x, ξ ∈ H, γ ∈ U. (5.1)

3. g : H → R is H-measurable and

E|g(u(T ))|2 <∞. (5.2)

4. l : [0, T ]×H ×U → R is B([0, T ])⊗H⊗U-measurable, and there exists
α > 1 such that for every t ∈ [0, T ], x ∈ H and any admissible control
γ(·) we have

inf
χ∈U

l(t, x, χ) > −∞, E
∫ T

0

| inf
χ∈U

l(s, u(s), χ)|2 ds <∞, (5.3)

E

(∫ T

0

|l(s, u(s), γ(s))|ds

)α
<∞. (5.4)

Remark 5.2. We note that the cost functions g and l need not be bounded.
Clearly, (5.4) follows from the other assumptions if we assume for instance
that

E
∫ T

0

| sup
χ∈U

l(s, u(s), χ)|ds <∞.

Using the function r, for each control process γ, we define the measure
Pγ through the Dolans-Dade exponential

dPγ

dP
= exp

[∫ t

0

∫
H\{0}

(r(s, u(s), ξ, γ(s))− 1) [π(ds,dξ)− ν(dξ) ds]

−
∫ t

0

∫
H\{0}

(r(s, u(s), ξ, γ(s))− 1− ln(r(s, u(s), ξ, γ(s))))π(ds,dξ)

]
.
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For ease of notation, we define

Λγt :=
dPγ

dP

∣∣∣∣
Ft

.

It is a well-known result that Λγ is a nonnegative supermartingale rel-
ative to P and Ft (see [33, Proposition 4.3] or [6]). Since the function r is
uniformly bounded, which guarantees this defines a true probability measure
Pγ equivalent to P, the process Λγ is a strictly positive martingale (relative to
P and Ft). By applying Girsanov’s theorem we see that while the compensator
of π under Pγ is given by νγ(dξ,dt) := r(t, ξ, γ(t))ν(dξ) dt.

We are concerned with the following controlled stochastic integral Volterra
equation under Pγ

d

dt

∫ t

−∞
a(t− s)u(s) ds = Au(t)

+

∫
H\{0}

ψ(t, ξ, u(t)) (r(t, ut, ξ, γt)− 1) ν(dξ) dt

+

∫
H\{0}

ψ(t, ξ, u(t)) π̃γ(dt, dξ), t > 0

u(t) = u0(t), t < 0

(5.5)
where π̃γ(dt,dξ) := π(dt,dξ)−r(t, ut, ξ, γt) ν(dξ) dt is the compensated

Poisson random measure under Pγ .
According to the results in Section 4, there exists a unique solution

u = {u(t), t ∈ [0, T ]} to it.
If the control γ ∈ A is used the total expected cost is given by the

functional

J(u0, γ) = Eγ
[∫ T

0

l(t, u(t), γ(t)) dt+ g(u(T ))

]
(1.2)

where Eγ denotes the expectation with respect to Pγ .
Taking into account (5.2), (5.4), and using the Hölder inequality it is

easily seen that the cost is finite for every admissible control. The stochastic
optimal control problem consists in minimizing J(u0, γ) over all γ ∈ A.

Likewise as in Section 4, we associate to the stochastic Volterra equation
(5.5) the state equation



dv(t) = Bv(t) dt+

+ (I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) (r(t, Jv(t), ξ, γt)− 1) ν(dξ)dt

+ (I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) π̃γ(dt, dξ),

v(0) = v0

u(t) = Jv(t) t ∈ (0, T ].

(5.6)
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We notice that the process Lγ associated to the random measure πγ is a Lévy
process relatively the probability Pγ .

Theorem 5.3. For any fixed control γ ∈ A the state equation (5.6) admits a
unique mild solution (in the analytical sense), in weak probabilistic sense on
the probability space (Ω,F,Ft,P

γ), compare Definition 18.0.5 in [15].

Proof. We can use the same reasonings outlined in the proof of Theorem 4.6,
the only difference here being that there is a second term to be treated. Let

L : H2 → H2, L(v)(t) =

∫ t

0

∫
H

e(t−s)BΓ(s, ξ, v(s)) ν(dξ) ds

where we set

Γ(s, ξ, v) = (I −B)PψJ(t, ξ, v) (r(s, Jv, ξ, γs)− 1),

s ∈ [0, T ], ξ ∈ H, v ∈ H2.

We have that

E|e−βt(L(v1)− L(v2))(t)|2η

≤ C
∫ t

0

∫
H

∣∣∣e−βte(t−s)B [Γ(s, ξ, v1(s))− Γ(s, ξ, v2(s))]
∣∣∣2
η
ν(dξ) ds

and inequalities similar to those leading to (4.4) implies that the bound

‖e−βtL(v1)(t)− L(v2)(t)‖{2,β},η ≤ C
1

β2(θ−η)−1
‖v1 − v2‖{2,β},η (5.7)

holds as well.

Then, by taking β large enough, the mapping K + L (K was defined
in the proof of Theorem 4.6) defines a contraction in the space H2(0, T ;Xη)
and the theorem is proved.

�

The original control problem can be translated in the state space setting:
we have to minimize over all γ ∈ A the cost functional

J(v0, γ) = Eγ
[∫ T

0

l(t, Jv(t), γ(t)) dt+ g(Jv(T ))

]
(5.8)

where the state v of the system evolves, under Pγ , according to the equation
(5.6). We next provide the solution of the optimal control problem formulated
above. As stated in the introduction, in order to solve the control problem in
the state space setting we associate to this equation a backward stochastic
equation and we try to solve the control problem via this forward-backward
system. Nonlinear BSDEs were first introduced by Pardoux and Peng [44]
and are currently used in the field of the stochastic control theory : see, e.g.,
[29, 55]. Recently BSDEs driven by random measures have been introduced
to solve optimal control problem for marked point processes [16, 17, 20, 18, 3].
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We define in a classical way the Hamiltonian function relative to the
above problem: for all s ∈ [0, T ], v ∈ Xη, z ∈ L2(H,H, ν(dξ))

f(s, v, z) = inf
χ∈U

{
l(s, Jv, χ) +

∫
H\{0}

z(ξ) (r(s, Jv, ξ, χ)− 1) ν(dξ)

}
. (5.9)

The (possibly empty) set of minimizers will be denoted

Γ(s, v, z) =

{
χ ∈ U :

f(s, v, z) = l(s, Jv, χ) +

∫
H\{0}

z(ξ) (r(s, Jv, ξ, χ)− 1) ν(dξ)

}
. (5.10)

Let us consider, on the probability space (Ω,F, {Ft}t≥0,P), the forward equa-
tion

v(t) = etBv0 +

∫ t

0

∫
H\{0}

e(t−s)B(I −B)PψJ(s, ξ, v(s)) π̃(ds,dξ). (5.11)

The solution of (5.11) is a {Ft}-predictable process, which exists and is unique
by the results in Section 4. Next we consider the associated backward equation
of parameters (f, T, g(J(v(T ))) and driven by the random measure π̃(ds,dξ)
associated to the pure jump Lévy process L

Yt +

∫ T

t

∫
H\{0}

Zs(ξ) π̃(ds,dξ) = g(Jv(T )) +

∫ T

t

f(s, v(s), Zs) ds. (5.12)

BSDEs of this type can be considered as a case of BSDE driven by a general
Lévy processes (see [53] or [15, Chapter 19]).

Proposition 5.4. Under Hypothesis 3.1, 3.2, 3.4, 4.1, 5.1 there exists a unique
pair (Y, Z) which solves equation (5.12) such that Y is real-valued, càdlàg
and adapted, Z : Ω× [0, T ]×H → R is P⊗H-measurable and

E
∫ T

0

|Ys|2 ds+ E
∫ T

0

∫
H\{0}

|Zs(ξ)|2ν(dξ) ds <∞.

Moreover there exists a deterministic function V : [0, T ]×H → R such that

Ys = V (s, Jv(s)) and Zs(ξ) = V (s, ξ)− V (s, Jv(s−)). (5.13)

Proof. We start by showing that, under our assumptions, the Hamiltonian
function is Lipschitz continuous in the last variable, i.e., there exist L ≥ 0
such that for every s ∈ [0, T ], v ∈ Xη, z, z′ ∈ L2(H,H, ν(dξ)):

|f(s, v, z)− f(s, v, z′)| ≤ L

(∫
H\{0}

|z(ξ)− z′(ξ)|2 ν(dξ)

)1/2

. (5.14)
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The boundedness assumption (5.1) implies that for every s ∈ [0, T ], v ∈ Xη,
z, z′ ∈ L2(H,H, ν(dξ)), γ ∈ U ,∫

H\{0}
z(ξ) (r(s, Jv, ξ, γ)− 1) ν(dξ)

≤
∫
H\{0}

|z(ξ)− z′(ξ)| (r(s, Jv, ξ, γ)− 1) ν(dξ)

+

∫
H\{0}

z′(ξ) (r(s, Jv, ξ, γ)− 1) ν(dξ)

≤(Cr + 1) ν(H \ {0})1/2

(∫
H\{0}

|z(ξ)− z′(ξ)|2 ν(dξ)

)1/2

+

∫
H\{0}

z′(ξ) (r(s, Jv, ξ, γ)− 1) ν(dξ),

so that adding l(s, Jv, γ) to both sides and taking the infimum over γ ∈ U it
follows that

f(s, v, z) ≤ L

(∫
H\{0}

|z(ξ)− z′(ξ)|2 ν(dξ)

)1/2

+ f(s, v, z′)

where L = (Cr+1) ν(H \{0})1/2 <∞; exchanging z and z′ we obtain (5.14).

We conclude the proof by applying Lemma 19.1.5 in [15], which can
be applied here since we are assuming that (5.2) and (5.3) hold and we have
proved the estimate in (5.14). Since the backward stochastic differential equa-
tion (5.12) is Markovian in v, the connection with a deterministic function is
given by Theorem 19.4.5 in [15]. �

We are now able to state our main result.

Theorem 5.5. Suppose that Hypotheses 3.1, 3.2, 3.4, 4.1, 5.1 hold. Let (Y, Z)
be the unique solution to the BSDE (5.12). For any admissible control γ ∈ A

and for the corresponding trajectory v starting at v0, we have Y0 ≤ J(v0, γ)
and the equality holds if and only if the following feedback law is verified by
γ and v, P-a.s. for almost every t ∈ [0, T ]:

γ(t) ∈ Γ(t, v(t−), z), where z(ξ) = V (t, ξ)− V (t, Jv(t−)), ξ ∈ H.
(5.15)

Suppose in addition that the minimizer sets Γ(t, v, z) introduced in (5.10)
are non empty, for dP×dt-almost all (ω, t) and all v ∈ Xη and z ∈ L2(H,H, ν),
i.e., there exists γ′ ∈ U such that

f(t, v, z) =l(s, Jv, γ′) +

∫
H\{0}

z(ξ) (r(s, Jv, ξ, γ′)− 1) ν(dξ)

= inf
γ∈U

{
l(s, Jv, γ) +

∫
H\{0}

z(ξ) (r(s, Jv, ξ, γ)− 1) ν(dξ)

}
.

(5.16)
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Then there exists a feedback control, that is, a map γ̄ : [0, T ]×Xη → U such
that the process γ∗t = γ̄(t, v(t−)) is optimal among all predictable controls.

Finally the closed loop equation

dv(t) = Bv(t) dt+

+ (I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) (r(t, Jv(t), ξ, γ̄(t, vt)− 1) ν(dξ)dt

+ (I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) π̃γ̄(dt, dξ),

v(0) = v0

u(t) = Jv(t) t ∈ (0, T ].

(5.17)
admits a solution in weak probabilistic sense, compare Definition 18.0.5 in
[15].

Remark 5.6. The existence of an element γ′ ∈ U satisfying (5.16) is crucial
in order to apply the theorem and solve the optimal control in a satisfactory
way. It is possible to formulate general sufficient condition for the existence
of γ′. For instance, if r(s, x, ξ, ·), l(s, x, ·) : U → R are continuous for every
s ∈ [0, T ], x ∈ H and U is a compact metric space with its Borel σ-algebra
U, then condition (5.16) is immediately satisfied.

Using the structure of the FBSDE system, we can then see that, if an
optimal control exists, then an optimal feedback control exists, that is, the
optimal control depends only on the current values of the state variables
(t, v(t)).

Proof. Under the reference probability P the process L is a pure jump {Ft}-
adapted Lévy process with compensated random measure π̃ and relatively to
L the dynamic (5.6) of v can be rewritten

dv(t) = Bv(t) dt+ (I −B)P

∫
H\{0}

ψJ(t, ξ, v(t)) π̃(dt,dξ),

v(0) = v0

u(t) = Jv(t) t ∈ (0, T ]

(5.18)

The process v is adapted to the filtration {Ft} generated by π̃ and
completed in the usual way. In the space (Ω,F, {Ft}t≥0,P), we can consider
the system of forward-backward equations

v(t) = etBv0 +

∫ t

0

∫
H\{0}

e(t−s)B(I −B)PψJ(s, ξ, v(s)) π̃(ds,dξ)

Yt +

∫ T

t

∫
H\{0}

Zs(ξ) π̃(ds,dξ) = g(v(T )) +

∫ T

t

f(s, v(s), Zs(·)) ds

(5.19)
where the generator f is the Hamiltonian function associated to the control
problem and defined in (5.9). Writing the backward equation in (5.19) for
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t = 0 and with respect to the Pγ probability we obtain

Y0 +

∫ T

0

∫
H\{0}

Zs(ξ) π̃
γ(ds,dξ)

+

∫ T

0

∫
H\{0}

Zs(ξ)(r(s, ξ, Jvs, γs)−1)ν(dξ) ds = g(vT )+

∫ T

0

f(s, vs, Zs(·)) ds

(5.20)

We observe that the stochastic integral has mean zero with respect to Pγ . In
fact

Eγ
∫ T

0

∫
H\{0}

|Zs(ξ)| r(s, ξ, Jv(s), γs)ν(dξ) ds

≤Cr Eγ
∫ T

0

∫
H\{0}

|Zs(ξ)| ν(dξ) ds

=Cr E

[
ΛγT

∫ T

0

∫
H\{0}

|Zs(ξ)| ν(dξ) ds

]

≤Cr
(
E|ΛγT |

2
) 1

2

E

∣∣∣∣∣
∫ T

0

∫
H\{0}

|Zs(ξ)| ν(dξ) ds

∣∣∣∣∣
2
 1

2

≤Cr
(
E|ΛγT |

2
) 1

2

(
Tν(H \ {0})E

∫ T

0

∫
H\{0}

|Zs(ξ)|2 ν(dξ) ds

) 1
2

.

So, if we take in (5.20) the expectation with respect Pγ , adding and subtract-

ing Eγ
∫ T

0
l(s, Jvs, γs) ds and recalling (5.13), we conclude

Y0 = EγJ(v0, γ) + Eγ
∫ T

0

f(s, v(s), V (s, ·)− V (s, Jv(s))) ds

+ Eγ
∫ T

0

{
−l(s, Jv(s), γs)

−
∫
H\{0}

(V (s, ξ)− V (s, Jv(s))) (r(s, ξ, Jv(s), γs)− 1) ν(dξ)

}
ds. (5.21)

The above equality is sometimes called the fundamental relation and imme-
diately implies that Y0 ≤ J(v0, γ) and that the equality holds if and only if
(5.15) holds.

Assume now that the set Γ defined in (5.10) is not empty. Using Filip-
pov’s implicit function theorem (see Theorem 21.3.4 in [15]) and taking into
account (5.13) we see that there is a B([0, T ] ×Xη)-measurable map γ̄(t, v)
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such that

l(t, Jv, γ̄(t, v)) +

∫
H\{0}

(V (t, ξ)− V (t, Jv)) (r(t, ξ, Jv, γ̄(t, v))− 1) ν(dξ)

= inf
γ
{l(t, Jv, γ) +

∫
H\{0}

(V (t, ξ)− V (t, Jv)) (r(t, ξ, Jv, γ)− 1) ν(dξ)

for all t ∈ [0, T ] and v ∈ Xη. Then the process γ∗t = γ̄(t, v(t−)) satisfies
(5.15), hence it is optimal.

Finally the existence of a solution weak in probabilistic sense (compare
Definition 18.0.5 in [15]) to equation (5.17) is again a consequence of the
Girsanov’s theorem. Namely let v be the mild solution of (5.11) and Pγ̄ be the
probability under which the compensator of the random measure π̃ is given
by r(t, ξ, Jv(t), γ̄(t, v(t))) ν(dξ) dt. Then v is the mild solution of equation
(5.17) relatively to the probability Pγ̄ and the Lévy process Lγ̄ . �
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tial equations driven by càdlàg martingales. Theory Probab. Appl. 52:304–314,
2008.

[12] M.-H. Chang and R. K. Youree. Infinite-dimensional Black-Scholes equation
with hereditary structure. Appl. Math. Optim. 56(3):395–424, 2007.

[13] P. Clément, G. Da Prato, and J. Prüss. White noise perturbation of the equa-
tions of linear parabolic viscoelasticity. Rend. Istit. Mat. Univ. Trieste 29:207–
220, 1997.

[14] S. N. Cohen and R. J. Elliott. Existence, Uniqueness and Comparisons for
BSDEs in General Spaces. Ann. Probab. 40:2264–2297, 2012.

[15] S. N. Cohen and R. J. Elliott. Stochastic calculus and applications. Second
edition. Probability and its Applications. Springer, Cham, 2015.

[16] F. Confortola and M. Fuhrman. Backward stochastic differential equations and
optimal control of marked point processes. SIAM J. Control Optim. 51:3592–
3623, 2013.



Optimal control for stochastic Volterra equations with Lévy noise 25
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