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A B S T R A C T

Quantitative research evaluation requires measures that are transparent, relatively simple, and free of dis-
ciplinary and temporal bias. We document and provide a solution to a hitherto unaddressed temporal bias –
citation inflation – which arises from the basic fact that scientific publication is steadily growing at roughly 4%
per year. Moreover, because the total production of citations grows by a factor of 2 every 12 years, this means
that the real value of a citation depends on when it was produced. Consequently, failing to convert nominal
citation values into real citation values produces significant mis-measurement of scientific impact. To address
this problem, we develop a citation deflator method, outline the steps to generalize and implement it using the
Web of Science portal, and analyze a large set of researchers from biology and physics to demonstrate how two
common evaluation metrics – total citations and h-index – can differ by a remarkable amount depending on
whether the underlying citation counts are deflated or not. In particular, our results show that the scientific
impact of prior generations is likely to be significantly underestimated when citations are not deflated, often by
100% or more of the nominal value. Thus, our study points to the need for a systemic overhaul of the counting
methods used evaluating citation impact – especially in the case of researchers, journals, and institutions – which
can span several decades and thus several doubling periods.

1. Introduction

Whether for merit review, tenure and promotion of academics or for
the assessment of national research systems, the evaluation of scientific
productivity and impact increasingly relies on quantitative measures
(Moed et al., 1985; Luukkonen, 1991; Moed, 2006; Vinkler, 2010; Hicks
et al., 2015; Wildson, 2015; Wilsdon et al., 2015). In particular, the use
of bibliometrics has been a boon for objective evaluation, but never-
theless requires statistical normalization, astute application, and careful
inference (Bornmann and Marx, 2015; Stephan et al., 2017). That is,
despite the improved quality, quantity and diversity of quantitative
evaluation measures – in particular, a proliferation of publication and
patent-based citation measures – many have made the case for caution
in order to address the risk of promoting bad practice in commonplace
evaluation and decision-making scenarios (Hicks et al., 2015; Wildson,
2015; Wilsdon et al., 2015; Stephan et al., 2017). By way of example,
recent efforts to predict researchers’ future bibliometric impact (Acuna

et al., 2012) have been shown to suffer from cohort and autocorrelation
bias (Penner et al., 2013a,b), making the proposed predictive methods
unreliable for quantitative faculty evaluation.

Against this backdrop, here we address a more fundamental and
under-appreciated bias in bibliometric evaluation – ‘citation inflation’ –
a systematic measurement problem that arises from the persistent se-
cular growth of the scientific system (Lariviere et al., 2008; Althouse
et al., 2009). While the extant literature has primarily focused on de-
veloping methods to overcome field-normalization bias (Radicchi et al.,
2008; Radicchi and Castellano, 2012b; Waltman and van Eck, 2013;
Bornmann and Marx, 2015), the problem of citation inflation may in-
deed be even more fundamental. The problem is rather simple – when
citations are produced in distinct historical periods their ‘nominal va-
lues’ are inconsistent and thus cannot simply be added together. The
ramifications of this problem have been noted in recent work analyzing
the citation dynamics of individual careers and publications across the
citation life-cycle (Petersen et al., 2014a; Parolo et al., 2015; Yin and
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Wang, 2017; Pan et al., 2018). To the extent that citation inflation is
evident even over such short time periods, aggregating citation counts
across several decades even further exacerbates this statistical mea-
surement error. As such, it is likely to affect quantitative evaluation in
hiring and promotion decisions as well as the science of the scientific
endeavor (Fealing, 2011; Fortunato et al., 2018) when underling
methods draw on cumulative citation counts or longitudinal citation
analysis. As an example of the widespread use of citation counts in
research evaluation studies, we used article-level keywords to estimate
that roughly 6% (119 articles) of Research Policy's publications over the
period 2000–2018 have used research article or patent citations as a
substantive measure. In addition to the increasing use of citation
measures in science policy evaluation, another significant factor is the
proliferation of rapid-publication online-only megajournals in the last
decade. This paradigm shift in the production of scientific research
(Solomon and Bjork, 2012; Binfield, 2013; Solomon, 2014; Bjork, 2015;
Wakeling et al., 2016; Petersen, 2018a) is sustaining the 3–4% annual
growth of science output, the net result of which is a substantial inter-
generational flow of references made to prior literature, as illustrated in
Fig. 1. When also taking into account the growth of reference lists, the
growth rate of the reference supply is growing even faster at roughly
5.6% annual growth rate, which has implications for the structure and
function of the science citation network (Pan et al., 2018). At this
growth rate, the total number of references doubles roughly every 12
years; as such, it is possible that newer citations rather quickly out-
number the citations received by articles decades in the past. Thus, it is
possible that a seminal research article from decades ago may feel a
second wind – gaining more contemporary citations than received in
the initial decade after its publication – not necessarily because of a
delayed appreciation as in the case of “sleeping beauties” (Ke et al.,
2015), but merely due to the growth of science.

In what follows, we start with a review of the literature on citation
normalization methods for citation-based research evaluation, illus-
trating why various methods do not account for citation inflation. We
proceed to identify and measure secular growth in science by analyzing
the annual growth rates for both inputs and outputs of scientific re-
search. We then derive a straight-forward method for defining a citation
deflator index, drawing on the simple fact that an article can only cite
another article once in its reference list, and demonstrate how to obtain
a generic citation deflator using the public front end of the Clarivate
Analytics Web of Science portal.

To assess the degree to which citation inflation might impact real-
world evaluation, we apply our method to three typical units of analysis
– individual researchers, journals, and institutions. In the case of the
former, we apply our method to the publication profiles of 551 re-
searchers, indexed by i, calculating each researcher's total citations Ci

and Hirsch-index hi (Hirsch, 2005) – with and without the citation

deflator. Our results show that measurement errors upwards of 100% of
the traditional nominal citation value can arise when citations are not
deflated properly, which is especially exacerbated when comparing
researchers from different age cohorts, as is customary in “all-time” lists
(ACUMEN, 2018). We conclude with a discussion of our results and
policy recommendations.

2. Literature review

Contemporary studies conceptualizing science as a growing and
evolving complex system (Fortunato et al., 2018) owe much to Eugene
Garfield's entrepreneurial efforts in developing the Science Citation
Index for bibliometric data management, and Derek de Solla Price's
theoretical efforts in formalizing the bibliometric citation network
(Garfield, 1955; de Solla Price, 1965). In seminal work studying the
growth of scientific production, De Solla Price used publication data
collected over the 100-year period 1862–1961 to calculate a doubling
time of τ2×= 13.5 years for the scientific corpus, corresponding to a
5.1% annual growth rate, gn= ln(2)/τ2×=0.051 (de Solla Price,
1965).

This persistent doubling of the total volume of scientific output
every 13.5 years poses institutional, technological, and cognitive
challenges. While advances in information technology may have dra-
matically increased the accessibility of knowledge, the sheer volume of
scientific knowledge production may have at the same time stretched
individuals’ cognitive abilities to browse, search, read, and re-use the
information contained in scientific literature (Pan et al., 2018). Despite
advances in search and retrieval algorithms, this represents a funda-
mental ‘myopia problem’ that occurs when search algorithms use as
inputs, or sort outputs, primarily according to cumulative centrality or
popularity measures (Mariani et al., 2015; Liao et al., 2017; Vaccario
et al., 2017). In the particular context of citation-based document
search, e.g. Google Scholar, older database items may appear to be less
relevant if the search algorithm does not account for the secular growth
of the system – i.e. does not account for the generic inflation of popu-
larity measures as the population of both users and entities increases.

Moreover, De Solla Price's calculation does not take into account the
increasing length of reference-lists, and the subtle but important im-
plications this has for the connectivity of the citation network. Indeed,
scientific articles are becoming longer, partly as a result of the online-
only e-journal paradigm, whereby page-length limits are less stringent;
it is also commonplace for print journals to allow online-only “sup-
plementary materials” to accompany articles, thereby adjusting to the
demand for more flexible research article lengths. Other explanations
for reference list growth, e.g. self-citing behaviors, are more subtle and
difficult to quantify, as traditional reasons to cite prior literature – i.e.
attributing priority and explicitly demonstrating how one's research
builds on prior knowledge – have become offset by the citation-based
attention economy in science which incentivizes self-citation (Hellsten
et al., 2007; Fowler and Aksnes, 2007; Costas et al., 2010; Zaggl, 2017;
Petersen, 2018a; Biagioli et al., 2019; Seeber et al., 2019). In all, the
increase in reference lists accounts for one-third of the growth rate gR
for the total number R(t) of references produced by the scientific lit-
erature published in any given year t.

Yet citation-based measurement studies continue to treat the ob-
jective significance of the total citation count cp of a given publication p
as though the nominal value of individual citations are steady over
time, despite the steady growth of the production system. Failing to
account for citation inflation results in significant measurement error
δ(cp), and thus a problematic noise-to-signal ratio δ(cp)/cp.

This class of measurement problem is the motivation for various
field-normalization procedures that address the problem of comparing
citation counts for articles from different fields and subdisciplines
(Radicchi et al., 2008; Radicchi and Castellano, 2012a,b; Waltman and
van Eck, 2013, 2018; Bornmann et al., 2013; Bornmann and Marx,
2015; Wilsdon et al., 2015; Waltman, 2016; Vaccario et al., 2017).

Fig. 1. Intergenerational flow of citations. The number of backward references
R(t) produced by scientific literature is growing steadily, due to growing pub-
lication rates and longer reference lists. Combined, these two effects correspond
to a retroactive intergenerational effect (i.e. represented by the variable citation
flows indicated by the arrows), the result of which is ‘citation inflation’. Thus,
when combining citations into tallies for scientific evaluation, a “deflator
index” is needed in order to adjust for the growth of R(t), thereby standardizing
citations from different time periods to a common ‘real’ value. Source: Authors’
elaboration (Color online).
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Indeed, the problem of field normalization is quite similar to the pro-
blem of citation inflation, because different fields vary in the volume of
literature produced by the researchers within the community, and so
the citation supply also varies across fields. In order to appropriately
compare research articles across fields according to their citation tallies,
one must first establish a common baseline for citation measurement.
By way of example, consider the task of comparing (or adding together)
the citation count cp,y for two articles from two different fields but same
publication year y. A straightforward yet powerful field-normalization
method proceeds by rescaling each cp,y count by an appropriate field-
specific baseline given by the mean citation impact c̄y calculated by
averaging over all articles published in that given field and year. The
rescaled quantity is thus given by the ratio ≡c c c/ ¯f p y y, . Using this
normalization method, Radicchi et al. (2008) show that the distribution
P(cf) of field-normalized citation values follows a log-normal prob-
ability distribution, independent of discipline f, indicating that cf is net
of discipline-specific factors.

Yet such field-normalization methods are limited to comparing ar-
ticles from similar publication cohorts. There still remains the problem
of right-censoring bias, which affects the comparison of two articles
when one is significantly older than the other. One common solution to
this problem is to only count citations within a fixed observation
window so that both articles being compared have had the same time to
accrue citations. For example, consider the balanced citation count
cp,y,Δt calculated by only tallying citations arriving in a fixed Δt-year
window after y. While this method partially facilitates comparing ar-
ticles from different y, it is still susceptible to citation inflation because
the doubling period for R(t) is only 12 years (Pan et al., 2018).

To demonstrate the magnitude of citation inflation even after using
a fixed citation window, consider cq, the citation value corresponding to
a given percentile q={50, 25, 10, 1, 0.1} of the citation distribution,
calculated using the cp,y,Δt=10 values for all articles from a given year.
Fig. 2 shows that the cutoff for the top 1% of “Science” articles pub-
lished in the year 2000 corresponds to 200 citations, whereas the top
1% cutoff for publications from 1965 was just under 100 citations. Si-
milarly, the cutoff for the top 10% of “Social Science” publications from
1965 is around 10 citations, whereas in 2000 the threshold had risen to
just over 40 citations. Each cq(t) curve is growing at a slow but never-
theless substantial rate that compounds across decades.

The steady growth of cq(t) illustrates how the relative value of a
single citation is systematically decreasing over time, reflected by the
fact that the entire citation distribution is systematically shifting toward
higher values. In other words, more recent publications need increas-
ingly more citations to be within the top x% (of publications from the
same year) than do older publications with the same percentile score

within their respective publication cohort. Thus, these arguments il-
lustrate why neither field-normalization nor a fixed citation window
can overcome the temporal bias induced by citation inflation. Indeed, in
a recent review of citation impact indicators by Waltman (2016), while
the merits and challenges of various citation normalization strategies
are discussed at length, none address the systematic feature identified
here of how to deal with the non-stationary inflation of nominal citation
values.

There is one additional measurement issue relating to intensive
versus extensive quantities. Evaluation of aggregate units of analysis
(e.g. researchers, journals, institutions) typically calls for quantities that
can be added together – i.e. extensive quantities that double if for ex-
ample the underlying system doubles in size. This requirement follows
because total citation impact (e.g. calculated by adding cp,y across in-
dividual articles), should have a clear and intuitive relation to the
overall size of the aggregate unit. By way of contradistinction, there do
exist standardized ‘intensive’ citation measures, such as the citation
percentile q(cp,y,Δt) and the normally-distributed z-statistic (obtained by
standardizing the location and scale of the log-normal distribution)
(Petersen, 2015; Petersen et al., 2018), which both facilitate standar-
dized comparisons. While these methods produce citation measures
that are time-independent, and thus robust to citation inflation, they
are not amenable to aggregation because these quantities lack intuitive
meaning when they are tallied across articles. Additionally, such in-
tensive quantities do not readily decompose into increments, such as
the annual citation rate Δcp,y,t corresponding to the number of new ci-
tations an article received in year t alone. While Δcp,y,t may appear
suitable for time-series analysis, we show that citation inflation is still a
burden, because a single citation arriving in one year is not necessarily
equivalent in measure to a citation arriving in a different year.

3. Material and methods

We analyze all English publications (articles and reviews) in the
Clarivate Analytics Web of Science (WOS) database that were published
between 1965 till the end of 2012. We use the WOS journal classifi-
cation system to group individual publications into broad research
domains according to Web of Science Categories (denoted by the WC
field in WOS publication records). In all there are 252 distinct WC,
which we use to aggregate publications into 3 broad domains:
“Science”, “Social Science”, and “Art & Humanities”. The list of WC that
define the “Science” domain are available at http://mjl.clarivate.com/
scope/scope_scie/, and together comprise the “Science Citation Index
Expanded”; similarly, the list of WC that define the “Social Science”
domain are available at http://mjl.clarivate.com/scope/scope_ssci/,

Fig. 2. Inflation of the number of citations received. Evolution of
the citation value cq(t) corresponding to a given percentile value
(q) of the citation distribution P(cp,y,Δt=10). Balanced citation
counts are calculated for all publications by using a Δt=10-year
citation window. The percentile values (q) are shown in each
panel legend along with the best-fit exponential growth parameter
for each curve. Source: Authors’ elaboration using WOS data
(Color online).
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and together comprise the “Social Science Citation Index”. Together,
the “Science” and “Social Science” domains account for more than 95%
of the WOS database we analyzed.

In what follows, we provide basic steps for obtaining citation de-
flator data (see Box 1) that does not require purchasing a hard copy of
the entire WOS database from Clarivate Analytics. Instead, this method
just requires site-license access to the Web of Science front-end search
portal located at www.webofscience.com. In effect, our method queries
the entire Web of Science Core Collection comprised of the union of the
Science Citation Index Expanded, Social Sciences Citation Index, Arts &
Humanities Citation Index, Conference Proceedings Citation Index,
Book Citation Index, and the Emerging Sources Citation Index (i.e. In-
dexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S,
BKCI-SSH, ESCI, CCR-EXPANDED, IC) and returns summary count data
that is readily downloadable. Users may wish to refine their WOS query
to just a single or smaller combination of indices as they see appro-
priate.

Upon obtaining deflator data using this method, we then apply our
deflator method to the career profiles of 551 researchers. The re-
searchers in this set started their careers over the broad interval span-
ning the 1940s to the 2000s. We demonstrate the impact of citation
inflation on careers that span decades, and also illustrate the challenge
of comparing researchers from significantly different age cohorts. See
Penner et al. (2013a) for more details on these researcher profiles and
the corresponding author name disambiguation method, which in
short, leverages the WOS “distinct author” search query option, in ad-
dition to obtaining career profile data from ResearcherID.com.

To provide context for the growth of scientific publication output,
which is the basis for citation inflation, we draw upon country-level
research & development (R&D) data obtained from the World Bank
(2019): Researchers in R&D (per million people) and Research and
development expenditure (% of GDP) data combined with GDP
(constant 2010 US$) and Total Population (in number of people)
data. All dollar amounts are deflated to constant 2010 US$.

And finally, to facilitate the detail-oriented reader, we provide the
following list of notation used in the remainder of the text:

(i) cp,y,t is the total number of citations tallied through year t,

received by an article p that was published in year y.
(ii) Δcp,y,t is the citation rate, the number of new citations received in

year t, corresponding to the 1-year increment given by
Δcp,y,t≡ cp,y,t− cp,y,t−1. In what follows, because the publication
year is either not relevant or redundant with respect to the gen-
eric time variable t, we suppress the index y from our notation.

(iii) C= ∑cp denotes the total number of citations, aggregated across a
particular set of articles.

(iv) na(t) is the total number of articles published in a given research
area a in year t.

(v) gx is the annual exponential growth rate associated with the
generic time-dependent quantity X(t). This growth rate is calcu-
lated by applying ordinary least squares regression to fit the ex-
ponential model: ln X(t)= ln X(0)+ gxt. For gx≪ 1, then the 1-
year growth in X(t) is roughly 100gx percent. Quantities modeled
in this way are the publication volume, n(t); the reference supply,
R(t); the number of researchers in a given country that are active
in R&D, S(t); the total national expenditure on R&D, E(t), mea-
sured in constant 2010 US dollars; and the citation value corre-
sponding to a given percentile q of the citation distribution, cq(t).

(vi) τ2×= ln(2)/gx is the doubling period associated with gx, which is
the amount of time it takes for X(t) to double in amplitude, i.e. X
(t+ τ2×)= 2X(t).

(vii) WC is the Subject Category assigned by WOS to each article.
(viii) y0,i is the year of first publication for a given researcher (indicated

by the index i), which is useful for separating researcher profiles
into age cohorts.

4. Results

4.1. Growth of scientific production

“The beauty of science may be pure and eternal, but the practice of
science costs money.” – Dr. Paula Stephan.

Economic scholars have developed various lines of inquiry aimed at
illuminating the role of incentives, allocation mechanisms, and markets
for knowledge and innovation (Stephan, 2012). One particularly
transcending theme is the nature of secular growth and its sources. The

Box 1
Procedure for specifying a research area and obtaining citation deflator data from the Web of Science database portal.

1. Use the Web of Science search portal to define the target subject. Go to www.webofscience.com and select “Advanced Search”. One
can search for all publications by a particular journal(s) using the SO field, or for all publications corresponding to a particular subject
category by using the WC field. For example, searching for “SO= RESEARCH POLICY” within the timespan 1900–2016 results in 3063
results within the Web of Science Core Collection.

2. Obtain list of all records that have cited articles within the target subject. On the “Results” page, select the “Create Citation Report”
option toward the upper right-hand corner. Then, in the subsequent “Citation report” page, click on the “Citing Articles” to obtain the set of
nearly 60,000 articles that cite the target subject (i.e. the collection of RP publications).

3. Analyze results. Select the “Analyze Results” option toward the upper right-hand corner of the search results webpage.
4. Tabulate results by relevant field. On the “Results Analysis” page, group the results according to a select data field indicated by the 16 tabs

on the left, e.g. “Publication Years”. In order to circumscribe the set of target subject articles, we select the “Web of Science Categories” tab,
and then set the “Show” tab to 100; then proceed to select “Update Table” which tabulates the 58,431 articles by their WC values. We then
take the top-N WC that most efficiently circumscribe the target subject. For example, in the case of RP, the WC fields “Management”,
“Business”, and “Economics” cover 59% of the 58,431 articles citing RP literature.

5. Obtain list of all records that belong to the circumscribing WC. Go back to Step 1 and use the WC identified in Step 4 to modify the
search query: “WC=(WC1 OR WC2 OR... OR WCN)”.5 For example, using the top-3 “WC =(MANAGEMENT OR BUSINESS OR ECONO-
MICS)” returns roughly 1.67 million results over the 45-year period 1972–2016 that are within the WC scope of RP. Section 4.2 demon-
strates that the method is robust to the number of WC used to define the scope, since it is the relative growth over time, and not the total
number of articles identified in this step, that is captured by the deflator index defined in Eq. (2).

6. Obtain the deflator time series na(t) for the circumscribing WC. Following from the previous step, the new search query will identify a
new set of articles from journals belonging to the set of circumscribing WC. Select “Analyze Results” to again go to the “Results Analysis”
page. Then select the “Publication Years” tab on the left, and again select “Show 250” and then “Update Table”. This yields the set of
circumscribing articles tabulated by their publication year – i.e. na(t) – which can be downloaded to text file by selecting “Download”.
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main contemporary source of growth in science is national investment
in R&D, with leading countries typically funding R&D activities as a
targeted percentage of their GDP – i.e. strategic (re)investment into
scientific industry. Aside from R&D infrastructure, much of this in-
vestment is placed in researchers and the resources that they need to
prosecute their research programs (Stephan, 2012).

To provide context for the underlying secular growth that drives
research output, in particular publication growth, Fig. 3 shows the
growth of the principal inputs of the scientific enterprise – people and
money. Country-level data are drawn from the World Bank (2019) for
the 20-year period 1997–2016. Because the European Union (EU) has
its own integrated funding system, we separated the countries into two
groups, non-EU and EU.

In terms of researcher population growth, measured by S(t) for each
country, non-EU (EU) countries are growing on average at a 5.3%
(3.5%) annual rate. Extensive research shows that growth rates are
typically inversely proportional to the enterprise size (Riccaboni et al.,
2008). As such, the higher average value for non-EU countries largely

reflects the emerging economies that have entered the scientific en-
terprise at the global scale only as of relatively recently. For compar-
ison, the growth rate of the population size of post doctorates and
graduate students in U.S. STEM fields shows roughly 2–4% annual
growth over the period 1972–2010 (Petersen et al., 2014b). To put this
growth in perspective, a 4% annual growth rate corresponds to a
doubling period of 17 years.

In terms of total R&D expenditure, E(t), growth rates are slightly
larger. World Bank data shows that non-EU (EU) countries are on
average growing at a 6.0% (4.3%) annual rate. The trend-breaker in this
regard is China, emerging in the last 20 years as a global leader in the
production of scientific knowledge (Zhou and Leydesdorff, 2006). For
perspective, Fig. 3 highlights China's persistent 6.1% annual growth in
researcher population accompanied by rapid 15.7% growth in R&D
expenditure. South Korea also demonstrates significant growth in both
quantities as well.

The growth of these fundamental R&D inputs sets the scale for
output growth, such as the total number of publications n(t). In

Fig. 3. Inputs of scientific R&D efforts:
empirical growth trends. Country-level
growth trends in researcher population
and R&D funding over the 20-year
period 1997–2016. (A–C) Growth in
the number of researchers in R&D, S(t),
by country. (D–F) Growth in the total R
&D expenditure, E(t), by country (re-
ported in constant 2010 US$). Only
countries with more than 10 data
points are analyzed. (A) S(t) for 38 non-
European countries. (B) S(t) for 30
European Union and EFTA countries.
(C) Frequency distribution of the ex-
ponential growth rate, gS, estimated for
each S(t) time series. The mean (dashed
vertical line) and std. dev. for each
country subgroup are shown in each
panel. (D) E(t) for 28 non-European
countries. (E) E(t) for 30 European
Union and EFTA countries. (F)
Frequency distribution of the ex-
ponential growth rate, gE. (A, B, D, E)
Each color legend indicates the growth
value corresponding to each individual
time series. Source: Authors’ elabora-
tion using World Bank data (Color on-
line).
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particular, the quantity na(t), calculated for a particular research area a,
is a standardized unit of measurement for scientific productivity, e.g.
because it accounts for common underling trends such as globalization
and innovation in scientific publishing. To this end, Fig. 4 shows the
growth of n(t) at three levels of aggregation: journals, research areas,
and research domains. For example, at the level of journals, Research
Policy shows an annual growth rate of 6% in the 46 years since its first
issue in 1972, which is significantly larger than the 3.8% annual growth
rate calculated for all “Social Science” research. However, by way of
contrast, both these growth rates are relatively small compared to the
10 most prominent “mega-journals”2 – journals characterized by the
APC (“pay-to-publish”), open-access, continuous publication model –
for which we calculate an exponential growth rate gn=0.44, corre-
sponding to a 55% annual growth rate and a publication doubling
period of just ln 2/0.44=1.6 years.

For comparison, we also analyzed the growth of scientific output in
two large subdomains, “Physics” and “Biology”,3 which show a re-
markably similar annual growth rate of 3.6% over the period
1965–present, gn=0.036. Extrapolation of their growth trends to 2030

indicates productivity around 300,000 publications per year. And at an
even higher level of aggregation, “Science” and “Social Science” appear
to be growing even faster, gn=0.041 and gn=0.038, respectively,
despite significant differences in the amplitude of n(t). Science is the
larger of the domains, with current productivity (estimated by counting
the number of articles indexed by WOS) close to 2.5 million articles per
year, whereas Social Science produces around 0.56 million articles per
year.

The total number of references produced each year is growing even
faster. In the case of “Science” (gn=0.036), we estimate the growth
rate in the average number of references per publication per year to be
gr=0.018. Combined, the net annual reference supply is thus in-
creasing exponentially with gR≈ gn+ gr=0.054. As a double check,
we also estimate gR from the time series R(t), which is the total refer-
ences produced in a given year, obtaining gR=0.056 ± 0.001. From
the growth of both scientific publication and reference list length, it
follows that the total reference supply has a doubling period of τ2×= ln
(2)/0.056≈ 12 y. That is, R(t+12)≈ 2R(t), which also holds for in-
tegrated totals over time, i.e. ∑ ′ ≈ ∑ ′

′≤ + ′≤
R t R t( ) 2 ( )t t t t12 , or equiva-

lently, ∑ ′ ≈ ∑ ′
′∈ − ′∈ −

R t R t( ) ( )t t t t t[0, 13] [ 12, ] , due to the properties of ex-
ponential growth. This growth is significant, as many careers or
institutions span multiple 12-year doubling periods, which is the fun-
damental source of the measurement error associated with citation in-
flation.

4.2. Defining and obtaining a citation deflator

The method to account for citation inflation we propose is analo-
gous to the method for adjusting real prices for monetary inflation.
Instead of using a consumer price index as a price deflator, we use the
publication rate n(t) to convert ‘nominal’ citation rates (the raw citation
counts one obtains from the likes of Web of Science, Google Scholar,
and Scopus) into ‘real’ citation rates, so that they have common units
and are comparable across time. This choice follows from the simple
fact that a new article can only cite a prior article once – thus, n(t) sets
the upper limit as to how many new citations, Δcp,t, a published article
could conceivably receive from the entire set of new articles published
in any given year.

Fig. 4. Outputs of scientific R&D efforts: empirical publication
rate growth for journals, research areas and disciplines. (A, B)
Growth at the aggregation level of journals: Research Policy shows
an annual growth rate of roughly 6%, while the 10 largest mega-
journals combined show an exponential growth rate gn=0.44,
which corresponds to an annual growth rate of 55%. (C, D)
Growth of two prominent research areas in the Web of Science –
biology and physics. Both areas are defined using the set of Web of
Science “subject category” (WC) that contain either “biology” (or
“physics”) in the category name. Empirical growth trends de-
monstrate remarkably similar annual growth rates of 3.6%. (E, F)
Growth of “Science” articles, showing a 4.1% annual growth rate,
and Social Science articles, showing a 3.8% annual growth rate.
(C–F) Growth trends extrapolated to 2030 using empirical n(t)
data from 1965 through 2016. Source: Authors’ elaboration using
WOS data (Color online).

2 We used the list of mega-journals compiled at https://megajournals.info/.
We then obtained WOS data using the following query to obtain records for
only the top-10 journals in terms of publication volume: SO= (“PLOS ONE” OR
“SCIENTIFIC REPORTS” OR “PEERJ” OR “ELIFE” OR “NATURE COMMUNIC-
ATIONS” OR “BMJ OPEN” OR “SAGE OPEN” OR “CHEMICAL SCIENCE” OR
“IEEE ACCESS” OR “ONCOTARGET”). The smallest of these 10 journals is Sage
Open, which published 302 articles in 2017; the largest is “Scientific Reports”,
which published 25,342 articles in 2017, or roughly 469 articles each week.

3 We defined “Physics” and “Biology” using Web of Science Subject Categories
(denoted by the WC field). We identified “Physics” articles by entering the WOS
query: WC=(“Physics, Applied” OR “Physics, Atomic, Molecular & Chemical”
OR “Physics, Condensed Matter” OR “Physics, Fluids & Plasmas” OR “Physics,
Mathematical” OR “Physics, Multidisciplinary” OR “Physics, Nuclear” OR
“Physics, Particles & Fields” OR “Astronomy & Astrophysics” OR “Biophysics”
OR “Geochemistry & Geophysics”). Similarly, we identified “Biology” articles
using the WOS query: WC = (“Biochemistry & Molecular Biology” OR “Cell
Biology” OR “Biology” OR “Developmental Biology” OR “Evolutionary Biology”
OR “Marine & Freshwater Biology” OR “Mathematical & Computational
Biology” OR “Reproductive Biology”).
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Our intuitive approach thus corresponds to a simple rescaling of the
‘nominal citation rate’ Δcp,t, thereby yielding a deflated citation rate
Δsp,t given by

≡ ×s c D tΔ Δ ( ),p t p t a t, , , b (1)

where the deflator index,

=D t n t n t( ) ( )/ ( ),a t a b a, b (2)

is defined using an arbitrary baseline year tb, which we set to tb≡ 2010
for the remainder of our analysis. In practical terms, the deflator index
Da,2010(t) is the real value of a single citation from year t in terms of
2010 citations. Here a refers to the research area that is broadly asso-
ciated with the publication p. Thus, the first step to obtaining the de-
flator D t( )a t, b is to define a in such a way that na(t) can be estimated.

The Web of Science is a longstanding and major bibliometric in-
dexing service provider, with databases that record natural science,
social science, arts and humanities journals. As such, we shall demon-
strate the steps to obtain na(t) using their standardized and well-docu-
mented web portal accessible at www.webofscience.com. By way of
example, we shall use Research Policy (RP) to illustrate our procedure
based on WOS Subject Categories4 (denoted by the WC field in WOS
publication records). Our operating assumption is that one can ap-
proximately circumscribe the target subject's research area, denoted by
the subscript a, using a single WC or combination of WC. Thus, in this
example case, the target subject is a particular journal, although it
could conceivably be any other unit of analysis, e.g. a researcher or
institution. As we shall demonstrate, it is less important to be ex-
haustive in circumscribing a, and more important to just capture the
growth trend for the research area over time.

We used the steps outlined in Box 1 to obtain nRP(t) for calculating
DRP,2010(t), both of which are shown in Fig 5 . To demonstrate the ro-
bustness of our method, we used both the top-3 WC and the top-10 WC
to define the circumscribing WC set in Step 5 of Box 1.5 By construction,
the amplitude of nRP(t) is larger for the top-10 WC, but the growth
trends are similar enough that the corresponding deflators DRP,2010(t)
are not substantially different. That is, despite the significant difference
in the research volume circumscribed by the top-3 WC versus the top-10
WC, our method is robust as long as the WC capture the majority of the
research area. For example, the top-3 (top-10) WC cover 59% (76%) of
the 58,431 articles citing RP literature. This follows because the na(t)
amplitudes cancel out in Eq. (2). What remains is just the growth trend
underlying nRP(t), which in the case of the top-3 WC corresponds to a
doubling period of τ2×= ln(2)/0.043≈ 16 y.

Accordingly, this doubling period indicates that a citation produced
in year t (or conversely, in year t− 16) is worth roughly half (twice) as
much as a citation produced in year t− 16 (t); and a citation produced
in year t is worth roughly one quarter as a citation produced in year
t− 32. Indeed, DRP,2010(1978)≈ 4.3, consistent with our two doubling-
period estimate. To see how this would affect the comparison of two
individual articles, consider two hypothetical publications p=1 and
p=2, both published in RP in the inaugural year 1974. Imagine the
first gained a single citation every year for the first 20 years, thus its

nominal citation count is c1= 20; the second also gained a single ci-
tation every year for 20 years, but over the period 1994–2013 instead,
more characteristic of a “sleeping beauty” citation life-cycle (Ke et al.,
2015). Despite both p being from the same journal and publication year
and having equal nominal citation counts c1= c2, after adjusting the
citations using DRP,2010(t), the difference between the two p should be
more clear: in terms of 2010 citations, the first gained 78 deflated ci-
tations whereas the second gained 39 deflated citations – a factor of two
(or 100%) difference. This simple example highlights how it is im-
portant to account for the different timing of citations – in addition to
discipline and publication year.

To demonstrate the magnitude of the citation inflation effect, we
apply the method using real-world cases at three levels of aggregation –
journal, institute and individual researcher. Fig. 6 shows the annual
citation rate, the total number of citations received in a given year by
all WOS articles published by each unit, for 4 entities: the journal Re-
search Policy; the bio-medical research institution, Cold Spring Harbor
Laboratory; the author of the most highly-cited author article from RP,
D. J. Teece; and the most prolific author in RP, R. R. Nelson. The solid
black curves show the ‘nominal’ or raw citation rates reported by WOS,
and the red dashed curves show the real or deflated citation rates cal-
culated using DRP,2010(t) (using the top-3 WC), except for Cold Spring
Harbor Laboratory for which we used DBiology,2010(t). The difference
between the nominal and deflated time series is rather pronounced,
demonstrating the measurement error incurred when citation inflation
is neglected – ranging from 16% difference in the case of RP to 82% for
R. R. Nelson.

4.3. Inflation-corrected productivity and impact measures – a researcher
cohort study

The growth of science affects different units of analysis in different
ways. For publications, following from the doubling period of roughly 2
decades, the growth significantly reduces the visibility of previous
publication cohorts relative to the most recent publication cohorts (Pan
et al., 2018). In the case of research careers, it affects the estimation of
citation impact when the citation counts are tallied over long periods,
e.g. decades. In such a case, as illustrated in Fig. 6, the total citation
impact, corresponding to the area under each citation rate curve, is
likely to strongly depend on whether nominal values or deflated values
are used.

To demonstrate the magnitude of this measurement error across a
larger set of scientists, we calculated one productivity measure (the h-
index) and one citation impact measure (total citations) for 190 biol-
ogists and 361 physicists, each with an h-index (Hirsch, 2005) of 10 or
greater, and with first publication year denoted by y0,i, representative of
the researcher's age cohort. The index i indicates an individual re-
searcher, which we suppress on the right-hand side of the following
definitions in order to focus on the important variables.

While it is not the purpose of this study to condone either impact or
productivity measure, we focus on them because they are well-known
and demonstrate the impact of citation inflation in an intuitive way. To
calculate each summary measure, we assembled the publication port-
folio of each individual researcher through 2010, comprised of a total
Ni publications, which required tallying the (nominal) citation count
Δcp,t in each year t for each individual publication p. The cumulative
citations = ∑ =

c cΔp T t
T

p t, 0 , is simply the total number of citations up to a
given census year T≡ 2010 to a given article (p) belonging to a parti-
cular individual (i). Using these final citation tallies we then calculated
the h-index hi (a productivity measure) and the net citations
Ci= ∑p∈icp,T (a net citation impact measure). For comparison, we also
calculated the deflated net citations

∑ ∑= =
∈ =

C s s swith Δi
D

p i
p t p T

t

T

p t, ,
0

,
(3)

4 The Subject Categories (WC) are assigned and maintained by the Web of
Science, and are attributes of particular journals and books, i.e. they are used to
annotate all publications belonging to a particular journal. This is not to be
confused with WOS Research Areas (SU) which are assigned to individual
publications, independent of the source journal. It is also possible to tabulate
the “Results Analysis” around “Research Areas”, which is one of the 16 options,
in addition to “Web of Science Categories” and “Publication Years”.

5 The query for the (ranked) top-10 WC for articles citing Research Policy
literature is “WC = (MANAGEMENT OR BUSINESS OR ECONOMICS OR
“PLANNING DEVELOPMENT” OR “OPERATIONS RESEARCH MANAGEMENT
SCIENCE” OR “INFORMATION SCIENCE LIBRARY SCIENCE” OR “ENGINEE-
RING INDUSTRIAL” OR “ENVIRONMENTAL STUDIES” OR “COMPUTER
SCIENCE INTERDISCIPLINARY APPLICATIONS” OR GEOGRAPHY)”.
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and the deflated h-index hi
D using the deflated cumulative citations sp,T

for each p. Because the na(t) corresponding to physics and biology have
different growth profiles, shown in Fig 4 (C, D), we used two distinct
deflators, DPhysics,2010(t) and DBiology,2010(t), respectively. We then se-
parated the researcher profiles into age cohorts by grouping y0,i into 10-
year non-overlapping intervals. Because each discipline includes 100
highly cited scientists, the range of hi and Ci is rather broad, re-
presenting early career researchers with hi∼ 10 up to eminent scien-
tists with hi > 100 (see Penner et al. (2013a) for more details on these
researcher sets).

The difference between the traditional measures calculated using
nominal citation rates, hi and Ci, and their deflated counterparts, hi

D

and Ci
D, corresponds to the magnitude of the measurement error arising

from citation inflation. The ratios

≡ ≡ρ h h ρ C C/ and /H i i
D

i C i i
D

i, , (4)

quantify this difference within each individual's research profile, with
100(ρ− 1) corresponding to the percent difference relative to the
nominal value. Fig. 6 also serves as a visual guide in associating the
differences in the nominal and real curves, and the summary difference
quantified by ρC. For example, deriving from R. R. Nelson's contribu-
tions in the 1970s, there is a large deviation in the deflated and real
curves in the 1980s once these works became highly cited. As such, his
total deflated citations Ci

D are 82% larger than the nominal citations
Ci

D, demonstrating the remarkable degree to which the impact of this
early work is under-appreciated according to nominal citation values.

The mean ρ values, 〈ρH〉=1.08 and 〈ρC〉=1.31 are the same for
both the physics and biology researchers we analyzed. Yet the growth
trajectory of academic careers, even among prominent researchers in
the same discipline, can vary considerably (Petersen et al., 2014a). As
such, there can also be considerable variation in ρH and ρC within age
cohorts.6 Separating the ρH,i and ρC,i values by age cohort (y0,i), Fig. 7

shows the wide range of error corresponding in this particular case to
significant “underestimation” of scientific impact, especially for re-
searchers from earlier cohorts. For example, the median ρH for re-
searchers (either physics or biology) from the 1970s indicates a 10%
error in the calculation of the h-index; similarly, the median ρC indicates
a 35% error in Ci for the biologists and a 10% error for the physicists
from the 1970s. The width of the ρ distributions also increases for older
age cohorts, with some outliers from the 1970s having measurement
error upwards of 100%, corresponding to ρ=2.

The trend in ρH(y0) and ρC(y0) thus reflects the inflation rate of the
science achievement measures themselves. Fig. 7 shows the mean value
〈ρ(t)〉 calculated for researchers from each 10-year group (e.g. from the
2000s to the 1940s). In order to estimate the 10-year growth rate g10,
we fit these data using the exponential form

〈 〉 = −ρ y ρ g y( ) exp[ (2000 )/10].0 0 10 0 (5)

Based upon the average values 〈ρH(y0)〉, we estimate g10≈ 0.061
(biology) and g10≈ 0.076 (physics), which means that for every 10
years in the past, ρH grows by roughly 6–7%. Similarly for 〈ρC(y0)〉, we
estimate a significantly larger growth rate, g10≈ 0.23 (biology) and
g10≈ 0.39 (physics). Together these numbers quantify the extent to
which a 10-year time difference can alter the relative values of pro-
ductivity and impact measures – which could bias quantitative assess-
ment in a senior-rank faculty search where candidates could differ
significantly in age, for example. The above estimates follow from the
average value, 〈ρ(y0)〉, calculated across all individuals belonging to a
particular age cohort. As a robustness check, we also disaggregated the
averages and then pooled the individual ρH,i (ρC,i) values along with
each researcher's individual y0,i. This disaggregation appropriately ac-
counts for the varying number of data points (individuals) contributing

Fig. 5. Example of a citation deflator
encompassing the broad research of
Research Policy. (Left) Empirical growth
of na(t) for the research area defined by
aggregating the top 3 and top 10 WOS
subject categories (WC) of all publica-
tions in the WOS database that have
cited Research Policy literature. For ex-
ample, the top 3 WC are

“Management”, “Business”, and “Economics”; the number of articles na(t) published by journals classified by WOS as belonging to one of these three categories is
growing at an annual rate of 4.3%. (Right) The corresponding deflator indices D2010(t) defined using tb≡ 2010 as the baseline year (i.e. D2010(2010)≡ 1). Despite the
significant difference in na(t) for the top 3 and top 10 WC, when normalized according to Eq. (2), the differences in the corresponding deflator indices become
negligible. Source: Authors’ elaboration using WOS data (Color online).

Fig. 6. The impact of citation inflation
on the longitudinal evaluation of in-
stitutions and researchers. Shown is the
annual citation rate, reported by WOS
as nominal citations (solid black line):
data collected using the WOS “Create
Citation Report” service, for the journal
“Research Policy”, the “Cold Spring
Harbor Laboratory” institute, the au-
thor of the highest-cited publication in
Research Policy, D. J. Teece, and the
most prolific publisher in Research
Policy, R. R. Nelson. We calculated the
deflated annual citation rate (dashed
red line) for each case using the de-

flator index for the top 3 WC shown in Fig. 5 for each curve except for “Cold Spring Harbor Laboratory”, for which we use the deflator time series na(t) shown in Fig. 4
for “biology” to calculate the corresponding deflator index. For each example we report the total citations aggregated over time in terms of nominal citations C and
deflated citations CD, and report the deflated citations ratio ρC≡ CD/C. Source: Authors’ elaboration using WOS data (Color online).

6 Following from the same logic as our hypothetical example of two in-
dividual articles from the same year and journal in Section 4.2 that differ only

(footnote continued)
the timing of Δcp,t. Thus, while nominal net citation counts are equal,
c1,T= c2,T, the deflated net citations are not, s1,T≠ s2,T.
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to the calculation of each 〈ρ(y0)〉 value. Estimating g10 in this way re-
sulted in nearly identical values. As such, the calculation of g10 is robust
to the significant variation in cohort sizes in our researcher data
sample.

4.4. Additional sources of citation inflation

The evaluation of scientific careers using citation measures is con-
founded by another secular trend – the increasing number of coauthors
per article (Wuchty et al., 2007; Petersen et al., 2014b; Milojevic,
2014). The annual growth rate in the number of authors per paper is
roughly 3–4% in biology and medicine, roughly 4.5% in physics, and
1% in economics; and other collaborative domains, such as patenting,
also demonstrate a 1–2% growth rate in the number of coinventors
(Petersen et al., 2014b). In everyday terms, whereas the average article
from Nature, Science and PNAS had 2 coauthors in 1960, nowadays the
typical article from these multi-disciplinary journals has on average 10
coauthors (Pavlidis et al., 2014).

Consequently, in the context where researchers are the primary unit
of analysis, the amount of “citation credit” introduced into the scientific
system when a publication with ap coauthors is published is for all in-
tensive purposes compounded by the same factor ap. That is, each time
an article is cited, it introduces ap citations across all the coauthor
profiles, considered separately. At the aggregate level, this corresponds
to cp× ap citations introduced into the system for an article with cp
citations. Most quantitative methods for evaluating scientific impact of
individual researchers neglect to take into account the number of other
authors sharing credit for a common research output, i.e. a single article
or patent.

Recent efforts to develop quantitative credit allocation methods that
account for ap are promising (Stallings et al., 2013; Shen and Barabasi,
2014). However, accounting for team size in a fair, transparent, and
universal manner remains challenging since it requires authors to ac-
curately agree upon and report their individual contributions
(Haeussler and Sauermann, 2013; Allen et al., 2014; Pavlidis et al.,
2014; Sauermann and Haeussler, 2017). Using this contribution

information to distribute shares of citation credit, so that the total im-
pact of the article is conserved independent of ap, similar to the ap-
proach developed by Stallings et al. (2013) who use mathematical ar-
guments based upon author order, would be an additional challenge.
See Waltman (2016) for a review on fractional counting methods that
address authorship-related citation inflation, but not without additional
challenges.

5. Discussion

Citation inflation is an under-appreciated statistical bias that affects
the quantitative evaluation of science – from careers to institutions. Its
source is the growth of the scientific endeavor. At the most fundamental
level, the growth is the direct result of investment in the researcher
population, which over the period 1997–2016 has been growing at an
average annual rate of 3.5–5.3% (see Fig. 3). Technological innovations
in the publication process have also contributed to the growth of n(t),
such as word processing advancements (e.g. layout and equation
editing in LaTex), bibliographic management tools, streamlined sub-
mission, referee and editorial services, and the advent of online-only
journals. Judging by the total volume of literature indexed by the WOS
each year, n(t), this quantity exhibits a 4% annual growth – in both the
natural and the social sciences. Indeed, n(t) is both a measure for and a
solution to the citation inflation problem.

The emergence of ‘rapid-publication’ mega-journals is another im-
portant and relevant factor. To place their growth in real terms, just one
decade after the emergence of PLOS ONE, the first mega-journal, the
publication volume in 2016 by the 10 largest megajournals (61,000
articles) represented roughly 2.4% of the “Science” articles from the
same year indexed in the Web of Science Core Collection (see Fig. 4). In
2016 alone, the journal PLOS ONE published 23,000 articles, roughly
145 times as many as Research Policy. These new mega-journals have
transformed the industrial throughput of science and democratized the
scientific publication process by altering traditional standards for the
acceptance of research findings into the larger scientific canon
(Petersen, 2018a).

Fig. 7. Deflated productivity and impact measures by discipline and age cohort. The deflated h-index ratio ≡ρ h h/H i i
D

i, and the deflated total citations ratio
≡ρ C C/C i i

D
i, indicate the measurement error incurred when using nominal versus deflated citation values. Since we have used 2010 as the baseline year, researchers

from the most recent cohorts have ratio values close to unity, whereas researchers from earlier cohorts are characterized by a real value boost (r > 1). Shown are
box-whisker distributions of the deflated h-index ratio ρH (A, B) and deflated citations ratio ρC (C, D) by age cohort, with the midpoint of each box representing the
median value; mean value across all data indicated by vertical black line. The mean deflated h-index ratio value is 〈ρH〉=1.08 (for both biology and physics). The
mean deflated citations ratio value is 〈ρC〉=1.31 (biology) and 1.32 (physics). (insets) Progression of the mean ρH(y0) and ρC(y0) by each 10-year cohort determined
by y0; shaded regions indicate the 90% confidence interval. Also shown are the estimates of the 10-year exponential growth factor, g10, as defined in Eq. (5); the
standard error in the last digit is indicated in parenthesis. Source: Authors’ elaboration using WOS data (Color online).
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Here we are primarily interested in the impact of scientific growth
on the methods for evaluating scientific impact. To address this issue,
we first analyzed several fundamental sources of growth to establish
consistency, serving also as a robustness check. We then developed a
statistical method that factors out this growth which amounts to de-
flating citations. In particular, our method accounts for the different
real value of citations occuring at different times, and is readily ap-
plicable whenever an appropriate target research area a can be defined.
As such, one drawback of our method is that it requires selecting a
target research area a, which for interdisciplinary researchers or in-
stitutions may be challenging to define.

The application of this statistical method is necessary because gross
citation rates, and thus the real value, of citations are not stationary in
time. For example, because the doubling time of publications in the
Management, Business, and Economics research domain of Research
Policy is roughly τ2×= ln(2)/0.043=16 years, our method indicates
that every 16 years the “real value” of a citation is halved in relative
terms. This phenomena is quite general, e.g. when evaluating a re-
searcher's funding it is standard practice to deflate nominal dollar va-
lues amounts to constant dollars. The concept of deflating performance
metrics is also generalizable to quantitative evaluation scenarios out-
side of science. For example, in order to compare sports achievements
and records across era, one must also account for inflation in the total
number of possible player opportunities per season, in addition to other
cultural and physiological trends that have altered athletic rates of
achievement (Petersen et al., 2011). We show that measurement error
associated with evaluating career citation-based measures, e.g. δ(C)/C,
can be upwards of 100%. For example, the total citation impact of Ri-
chard R. Nelson is significantly underestimated using nominal citation
tallies, as our method yields a real net citation impact that is larger by
82%.

As such, these results show why citation deflators should be used in
scientific evaluation whenever citation tallies are the basis for objective
assessment. Indeed, current methods to normalize citations for cross-
field or cross-cohort comparison are not sufficient (Vaccario et al.,
2017), because they do not account for when the citations were received
– Section 4.2 shows this to be a subtle yet crucial factor. Take for ex-
ample the “citation window” method to address temporal right-cen-
soring bias – i.e. when comparing the net citation count cp of two ar-
ticles published in different years (Waltman, 2016). The solution
proposed is to count only the citations accrued in the first Δt years, cp,Δt.
In this way, both publications are effectively compared at the same age;
nevertheless, we emphasize that this approach is not sufficient to elim-
inate the inflation bias because there are more citations produced in the
later Δt-year period than the earlier Δt-year period. We demonstrated
this in Section 2, where we use a 10-year window to calculate the
distribution of citation tallies 10 year post-publication, cp,Δt=10, and
track the corresponding citation value of the top percentiles. Quite
clearly, a Social Sciences article published in 2000 (1965) requires 40
(10) citations to be considered in the top 10% – clearly demonstrating
the inflation of nominal citation values. Field normalization methods
are also not satisfactory, as the measures they produce are not as in-
tuitive (i.e. rescaled factors that are intensive rather than extensive
quantities) and often implement a baseline average to factor out dis-
ciplinary and age-cohort differences, however such a baseline average
is itself susceptible to citation inflation.

We further demonstrated the value of our method in a common
research evaluation scenario by analyzing career productivity (hi-index)
and citation impact (Ci) measures for a broad sample of biologists and
physicists. Our results in Section 4.3 show that the standard method of
aggregating citation counts can lead to a significant underestimation of
hi and Ci, with particularly larger penalties on researchers from earlier
age cohorts. This is particularly relevant to tenure and promotion
considerations where researchers are being assessed relative to specific
thresholds, to the extent that J. Hirsch wrote in his seminal work: “for
[physics] faculty at major research universities, h≈ 12 might be a

typical value for advancement to tenure (associate professor) and that
h≈ 18 might be a typical value for advancement to full professor”
(Hirsch, 2005). While these numbers may have been reasonable l 14
years ago, our analysis shows why they are undervalued by present day
measure. Using the rate of change in ρH by each age cohort, our esti-
mates indicate that these h-index thresholds should be increased by
6–7% every decade – i.e. each h-index value above should be increased
by roughly 1. Similarly, if Ci = 10,000 citations were a benchmark one
decade, our estimates indicate that the benchmark should be increased
by 20–40% the following decade, depending on the discipline.

In order to facilitate the implementation of this citation deflator
method, Box 1 provides the basic steps to obtain the time series na(t)
from the Web of Science portal. Indeed, the time series na(t) is the only
quantity needed to calculate the deflator index defined in Eq. (2). In
order to demonstrate the utility of this deflator method in data-driven
research, we refer the reader to three recent studies focusing on various
units of analysis: individual careers (Petersen et al., 2014a; Petersen,
2018b) and individual publications (Parolo et al., 2015). As such, the
contribution of the analysis reported here is to delineate the steps
needed to obtain a generic deflator index Da(t) defined in Eq. (2), and to
demonstrate the magnitude of the measurement error associated with
quantitative research evaluation that neglects the impact of citation
inflation. While in-house methods for normalizing citation measures
may be part of the existing “best-practice” within select research eva-
luation groups, to the best of our knowledge, there is widespread
negligence of this fundamental statistical bias.

Thus, a deflator index is needed to precisely correct for inflationary
temporal bias, and could be readily incorporated into popular biblio-
metrics indices such as Web of Science and Google Scholar. Indeed,
adjusting for the growth of science in various modeling frameworks is
an essential ingredient for understanding the evolution of science as a
complex socio-economic system (Stephan, 2012; Fortunato et al.,
2018), the quantitative evaluation of scientific production (Wildson,
2015; Wilsdon et al., 2015) and the science of science policy (Fealing,
2011).

6. Conclusions

We conclude with two policy recommendations. First, researchers,
scientific evaluators, and the major bibliometric index providers (Web
of Science, Google Scholar, Scopus, Microsoft Academic Graph, etc.)
should account for citation inflation when analyzing and reporting ci-
tation tallies. Second, because the supply of references is a source of
inflation, journals should consider standardizing the maximum number
of references per publication, depending on the article page length or
type (letter, article, review, etc.). This would limit the growth in the
total supply of references, and may discourage other bad habits such as
self-citation with the intent to surgically enhance one's citation pro-
minence (Hellsten et al., 2007; Fowler and Aksnes, 2007; Costas et al.,
2010; Zaggl, 2017; Petersen, 2018a; Biagioli et al., 2019; Seeber et al.,
2019).
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