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Dynamical Degree Adaptivity
for DG-LES Models

M. Tugnoli, A. Abbà, and L. Bonaventura

1 Introduction

Discontinuous Galerkin spatial discretizations of compressible flows allow to
perform local degree adaptation (shortly, p-adaptation) in a very straightforward
way and almost without computational overhead, as shown e.g. in [6]. Dynamical
adaptation was also applied successfully to inviscid geophysical flows in [11, 12].
All the previous works relied however on a refinement criterion which essentially
estimates the L2 norm approximation error. In [10], we have argued that such a
criterion may not be optimal for LES and we have proposed a different, physically
based criterion that was shown to be more effective in a number of numerical
experiments. The goal of this work, which summarizes some of the results presented
in [9], is to extend the above approach to dynamical adaptation and to test the new
criterion also in a dynamically adaptive framework.

2 The DG-LES Approach and Its Numerical Implementation

The DG-LES model for compressible flows employed in this work, based on
a Local Discontinuous Galerkin (LDG) discretization of the viscous terms [3],
is fully described in [1], to which we refer for all the details on the model

M. Tugnoli · A. Abbà
Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Milano, Italy
e-mail: matteo.tugnoli@polimi.it; antonella.abba@polimi.it

L. Bonaventura (�)
MOX – Modelling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano,
Milano, Italy
e-mail: luca.bonaventura@polimi.it

© The Author(s) 2020
S. J. Sherwin et al. (eds.), Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2018, Lecture Notes in Computational Science
and Engineering 134, https://doi.org/10.1007/978-3-030-39647-3_26

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39647-3_26&domain=pdf
mailto:matteo.tugnoli@polimi.it
mailto:antonella.abba@polimi.it
mailto:luca.bonaventura@polimi.it
https://doi.org/10.1007/978-3-030-39647-3_26


338 M. Tugnoli et al.

equations and numerical discretization approach. Here, only a short description
of the discretization elements necessary to introduce dynamical adaptivity will
be reported. On the computational domain � ⊂ R

3 a tessellation Th is defined,
composed of non overlapping simplicial elements. A discontinuous finite element
space Vh is defined as

Vh =
{
vh ∈ L2(�) : vh|K ∈ P

qK (K), ∀K ∈ Th

}
, (1)

where P
qK (K) denotes the space of polynomial functions of total degree qK . The

degree can vary arbitrarily from element to element, and the definition of a suitable
way to assign such polynomial degree will be discussed in the following. The
numerical approximation of the generic variable a can be expressed as

ah|K =
nφ(K)∑
l=0

a(l)φK
l , (2)

where φK
l are the basis functions on element K, a(l) are the modal coefficients of

the basis functions and nφ(K) + 1 is the number of basis functions required to span
the polynomial space P

qK (K) of degree qK , defined in R
3 as:

nφ(K) = 1

6
(qK + 1)(qK + 2)(qK + 3) − 1 (3)

It is worth noting that the expression in (2) can be rewritten, thanks to the
hierarchical nature of the basis, as

ah|K =
qK∑

p=0

∑
l∈dp

a(l)φK
l , (4)

where d0 = {0} and dp =
{
l ∈ 1 . . . nφ(K) | φl ∈ P

p(K)\Pp−1(K)
}

is the set

of indices of the basis functions of degree p. Obtaining a more or less accurate
approximation can be done through increasing or decreasing the limit qK of the
sum over p. It is also worth noticing that the basis normalization implies that the
first coefficient of the polynomial expansion a(0) coincides with the mean value of
ah|K over K.

In the present DG-LES approach, as discussed extensively in [1], the LES
filtering operators are built directly into the DG discretization, in a spirit similar
to the VMS approach [4]. Considering �V : L2(�) → V the L2 projector over the
subspace V ⊂ L2(�), defined by

∫

�

�Vu v dx =
∫

�

u v dx, ∀u, v ∈ V.
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it is possible to define the LES filtering · as the projection over the finite dimensional
solution subspace Vh in the following way:

a = �Vh
a. (5)

The application of the main LES filtering is purely formal, since it coincides with
the discretization of the equations. In this way, simply discretizing the equations
leads to solving them for the filtered quantities.

Another parameter to be defined is the filter characteristic dimension, �,
employed in the definition of all the eddy-viscosity based subgrid model. The
definition of the filter size is constant over each element, since the projection is
performed elementwise. While more refined definitions can be employed, see e.g.
[2], the simple definition

�(K) = 3

√
V ol(K)

nφ(K) + 1
(6)

was employed with success. For the time discretization, the five stages, fourth order
Strong Stability Preserving Runge-Kutta method proposed in [8] is employed. The
numerical implementation of the previously sketched approach is built in the solver
dg-comp using the finite elements toolkit FEMilaro [7].

A first attempt to introduce static p-adaptivity in a DG-LES framework has been
presented in [10]. In order to overcome the limitations of classical error estimations
in LES, a novel indicator based on the classical structure function

Dij =
〈[

ui(x + r, t) − ui(x, t)
] [

uj (x + r, t) − uj (x, t)
]〉

(7)

was proposed. Large values of the structure function calculated inside the element
denote a poorly correlated velocity field and the need of higher resolution, while
a low structure function value denotes a highly correlated velocity field, which is
an indication of a well resolved turbulent region or laminar conditions and of the
possibility to employ a lower resolution. However, most of the subgrid models
(and in particular the Smagorinsky model) perform adequately in a regime of
homogeneous isotropic turbulence, if the filter cut-off length is inside the inertial
range. Therefore, in such conditions excessive refinement is not necessary and one
can let the subgrid scale model simulate the turbulent dissipation. For this reason, the
contribution due to homogeneous isotropic turbulence is removed from the structure
function (7). This contribution, as discussed in detail in [10], can be written as

Diso
ij (r, t) = DNN(r, t)δij + (

DLL(r, t) − DNN(r, t)
) rirj

r2 (8)
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where r = ‖r‖ and DLL,DNN are the longitudinal and transverse structure
functions, respectively. Once r is known, only DLL and DNN need to be determined.
The procedure to compute the error indicator can then be described as follows:

1. choose a pair of points defining x and r in K

2. compute the structure function Dij (K) based on x, r and the simulated velocity
field

3. compute DNN and DLL by a least square fit of (8) to the structure function values
within the element

4. define the degree adaptation indicator as:

IndSF (K) = √
Q(K) =

√∑
ij

[
Dij (K) − Dij (K)iso

]2
. (9)

The static adaptivity procedure presented in [10] is able to produce accurate
results with a significant reduction in computational cost. For the simulation of
transient phenomena, however, a dynamic adaptivity approach must be applied. The
goal of this work, which summarizes results presented in [9], is to extend the above
approach to dynamical adaptation, which was successfully employed in the inviscid
case in [11, 12].

In those papers, in which special time discretizations approaches were employed
that allow the use of very long time steps, the adaptation process was performed at
each time step. In the dynamically adaptive simulations presented here, instead,
which are carried out with a relatively small time step, the structure function
indicator IndSF (K) is computed every ni(K) time steps and the average of si(K)

subsequent values of this quantity is computed. Then, every ni(K) × si(K) time
steps, based on the resulting indicator value in each element, either the polynomial
degree is left unchanged or it is updated along with the solution representation.
Since the solution is expressed in terms of a hierarchical basis (4), when lowering
the polynomial degree, the contribution bound to the removed modes is simply
discarded, while when raising the polynomial degree the contribution of the newly
added mode is left to zero, to be populated when the integrals over the element and
faces couple the old modes with the newly introduced ones.

Notice that, in the present implementation, no dynamic load balancing has been
implemented for parallel runs. This means that, during the parallel execution,
the dynamic change of number of degrees of freedom could potentially lead to
unbalances between the load of different processors. At the moment the balancing is
generally executed using a static polynomial distribution. While avoiding excessive
unbalancing, this is definitely not the optimal approach and more effective load
balancing techniques will have to be investigated in the future.
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3 Dynamical Adaptivity Experiments

The proposed dynamic adaptation criterion has been tested in the simulation of a
isolated vortex superimposed on a uniform horizontal flow [5]. This simple test
has been chosen for the preliminary study reported here, in anticipation the more
complex tests already discussed in [9], in which the same isolated vortex impinges
on an obstacle. The DG-LES approach described in [1] was applied, as in [10],
with a standard Smagorinsky model for the subgrid stresses. A coarser and a finer
mesh have been employed, both based on fully unstructured tetrahedra of constant
characteristic length equal to lh = 1 and lh = 0.5, respectively. The indicator (9)
is computed every ni(K) = 2 time steps and si(K) = 10 subsequent values
are averaged, in order to adapt the resolution every 20 time steps. The sensitivity
analysis of the results with respect to these parameters has not yet been carried
out and will be the focus of future study. As in [10], two threshold values ε1, ε2
are used to determine p-refinement and p-derefinement. More specifically. the cells
with indicator values smaller than ε1 are assigned polynomial degree 2, those with
indicator values larger than ε2 are assigned polynomial degree 4, while the others are
polynomial degree 3. The threshold values employed are given by ε1 = 1 × 10−4,

ε2 = 1 × 10−2. Following [10], these values were chosen so as to achieve on
average a total number of degrees of freedom slightly smaller than that required
by a uniform degree simulation with p = 3. The dynamic adaptation procedure
is able to effectively increase the polynomial degree around the vortex and follow
it as it is advected downstream, leaving all the elements with no vortex activity at
the lowest resolution. A map of the polynomial degrees in the domain during the
advection of the vortex is shown in Fig. 1.

The profiles of velocity magnitude recorded during time, along the path of
the vortex, at different distances from the vortex starting point, employing the
coarsest mesh, are presented in Fig. 2. The simulations obtained at different uniform
polynomial orders are compared with the adaptive results. It can be observed that,
even at the highest uniform resolution of degree 4 the velocity profile is distorted
during the advection, due to the very limited grid resolution. However, the vortex
does not diffuse and dissipate excessively, as opposed to the low resolution uniform

Fig. 1 Polynomial degree values following the advected vortices on the (a) coarse and (b) fine
mesh; green color corresponds to polynomial degree 3, red color corresponds to polynomial
degree 4
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Fig. 2 Profiles of velocity magnitude recorded during time in the vortex path centreline at different
distances from vortex starting point, comparison of uniform degree simulations and dynamic
adaptive one on the coarse mesh

degree 2 simulation in which the vortex is quickly dissipated. The behaviour of the
adaptive simulation is generally mid way between the uniform degree 4 and the
uniform degree 3 results.

The comparison with the uniform high degree simulations can be more easily
observed in Fig. 3, which show the difference of the velocity magnitude profiles with
respect to the uniform degree 4 results, still for the coarse mesh case. In the locations
nearer to the starting position of the vortex the adaptive simulation appears close to
the degree 4 solution when the first part of the vortex is passing, while a slight
difference appears in the second part of the vortex, which is however always within
the error of the uniform degree 3 simulation. In the locations farther from the initial
starting point of the vortex, which sense the vortex passage after a longer advection
time, the adapted simulation is always very close to the uniform degree 4 solution.
It has to be noted that the average number of degrees of freedom of the adaptive
simulation is 41,488, which remain almost constant throughout the simulation. This
is 10.8% more than the 37,430 degrees of freedom needed for the uniform degree
2 solution, 44.6% less than the 74,860 degrees of freedom of the uniform degree 3
resolution, which is always outperformed by the adaptive one, and 68.3% less than
the uniform degree 4 simulation.

To correctly assess the effects of adaptivity in the case of the refined mesh,
we study the difference of the various results with respect to the uniform degree
4 one, presented in Fig. 4. The differences are generally very small, even for the
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Fig. 3 Difference of velocity magnitude with respect to the most refined simulation at uniform
degree 4, recorded during time in the vortex path centreline at different distances from vortex
starting point, on coarse mesh
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Fig. 4 Difference of velocity magnitude with respect to the most refined simulation at uniform
degree 4, recorded during time in the vortex path centreline at different distances from vortex
starting point, on fine mesh
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lowest resolution, however it is possible to note how the adaptive results are always
comparable to the uniform degree 3 results, and in many points better. Nonetheless,
the improvement created by the adaptivity is more limited than in the coarse case,
mainly due to the fact that the mesh by itself sufficient to resolve the vortex. In
this case the average number of degrees of freedom of the adaptive case is 170,470,
which is 5.7% more than the 161,320 degrees of freedom of the uniform degree 2
case, 47.2% less than the uniform degree 3 case and 70.0% less than the uniform
degree 4 case. Also the difference in vorticity profiles between the simulation at
uniform degree 4 and the lower resolution simulations are presented in Fig. 5 for
the coarse resolution and in Fig. 6 for the finer resolution. By comparing the results
at the two different resolution is possible to note also for the vorticity that, at the
finer resolution, the large scale phenomenon is correctly represented by almost
all polynomial degrees, with a minimal vorticity dissipation, while at the coarser
resolution only the higher polynomial degree, as well as the adaptive simulation,
avoid an excessive dissipation of vorticity.

At the coarser resolution, the difference of the adaptive simulations with respect
to the uniform degree 4 ones is smaller than the differences between the other
uniform degree simulations (Fig. 5), showing that with the adaptation is also
possible to obtain a better resolution of the vorticity profiles. The same is true also
at the finer resolution (Fig. 5). In the dynamically adaptive simulations spurious
acoustic waves seem to be produced by the dynamical adaptation process, see

Fig. 5 Difference of vorticity magnitude with respect to the most refined simulation at uniform
degree 4, recorded during time in the vortex path centreline at different distances from vortex
starting point, on coarse mesh
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Fig. 6 Difference of vorticity with respect to the most refined simulation at uniform degree 4,
recorded during time in the vortex path centreline at different distances from vortex starting point,
on fine mesh

Fig. 7 Pressure time derivative in the adaptive simulation of vortex advection on (a) coarse mesh,
(b) finer mesh, at time T = 4; in both plots, the represented quantity takes values in the interval
[−0.1, 0.1]

Fig. 7. These spurious disturbances were not observed in the dynamically adaptive
tests presented in [11, 12], which employed an implicit time discretization, thus
strongly damping these high frequency solution components. However, as it can
be seen inspecting the time series of the pressure values (not reported here due
to the limited space available), these disturbances decrease rapidly in amplitude
on the finer mesh and do not seem to propagate through the domain but rather
follow the advected vortex. This spurious feature warrants further investigation of
the dynamical adaptation approach if a correct approximation of acoustic waves is
desired.
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4 Conclusions

The novel degree adaptation criterion for LES simulations in adaptive DG frame-
works proposed in [10] and tested so far only in statically adaptive simulations has
been also employed in dynamically adaptive simulations. Numerical results in the
benchmark case of the advection of an isolated vortex have been presented. These
results are meant to be a preliminary for the study of more complex configurations in
which the same isolated vortex impinges on an obstacle. The presented results show
that the proposed criterion is also effective in the dynamical case. With a coarse
basic mesh resolution the effects of p-adaptivity are significant, leading to results
close to the ones obtained with the maximum resolution allowed to the polynomial
base, while when the mesh resolution is already suitable to represent the vortex even
with the lowest polynomial degrees the adaptivity leads anyway to accurate results,
but with an even higher reduction of the number of degrees of freedom with respect
to the non-adaptive solutions. In a subsequent work, the results obtained in [9] for
the case of the isolated vortex impinging on an obstacle will be presented, along
with other application to fully three-dimensional turbulent flows.
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