
Prediction- ased Partitions Evaluation
Algorithm for Resource Allocation

Anna PUPYKINA a,1, Giovanni AGOSTA a

a Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

Abstract. Resource allocation is a well-known problem, with a large number of
research contributions towards efficient utilisation of the massive hardware paral-
lelism using various exact and heuristic approaches. We address the problem of op-
timising resources usage on deeply heterogeneous platforms in the context of HPC
systems running multiple applications with different quality of service levels. Our
approach manages the partitioning within a single heterogeneous node aiming at
serving as many critical applications as possible while leaving to the upper levels
of runtime resource management the decision to preempt resources or to launch the
critical application on a different node. We investigate predictive allocation algo-
rithms, allowing to serve up to 20% more high priority requests when using a mov-
ing average or machine learning prediction model vs baseline without prediction.

Keywords. NUMA Shared Memory, Resource management, Prediction, Memory
management, High Performance Computing

1. Introduction

The push towards Exascale supercomputers is leading to increasingly heterogeneous
High Performance Computing (HPC) architectures, characterised by the coupling of ac-
celerators to the more traditional HPC cores. Such future HPC architectures integrating
different kinds of hardware accelerators, such as general-purpose graphics processing
units (GPGPUs) and reconfigurable computing resources (e.g. Field Programmable Gate
Arrays, FPGA), can be classified as deeply heterogeneous architectures [1]. At the same
time, the new classes of applications, such as real-time high-performance applications,
are emerging that require Quality of Service (QoS) guarantees. The typical practice of
reserving a subset of the supercomputer to a single application becomes less attractive,
leading to the exploration of cloud technologies in the context [2]. So that, a viable sce-
nario is that of multiple applications, with different QoS levels, coexisting on the same
deeply heterogeneous HPC infrastructure and sharing accelerators. For this scenario to
be successful in practice, resources need to be allocated with a vision that includes both
the application requirements and the current and future state of the overall system.

Thus, resource utilisation prediction can be employed to forecast the future state of
the cluster based on statistical information on past behaviour. Then the prediction can
be used to guide the response to the resource allocation request in the best way to ful-

1Corresponding Author: Anna Pupykina, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy; E-
mail: anna.pupykina@polimi.it.

B

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200061

364

fil the QoS requirements of the applications while optimising the use of resources (pri-
marily, processing elements and memory) in a system-wide perspective. Recent studies
in resource utilisation prediction are directed to resource optimisation in cloud architec-
tures [3], on the other hand, research related to the prediction in HPC is mostly focused
on the predicting execution time and queue waiting time. More specific prediction for
HPC application is presented in [4]. A grammar-based approach for modelling and pre-
dicting the I/O behaviour of HPC applications allows to recognise when future I/O op-
erations will occur (i.e., predict the interarrival time between I/O requests), as well as
where and how much data will be accessed. [5] gives an in-depth survey of the most re-
cent state-of-art memory management techniques for HPC and Cloud Computing which
are used on the different layers of hardware/software stack.

In this work, we focus on the memory-centric prediction-based partitions evalua-
tion algorithm for resource allocation on deeply heterogeneous Non-Uniform Memory
Access (NUMA) architectures. Here, multiple accelerators coexist within a single node
and can cooperate for a single application composed of multiple kernels, or they can be
partitioned among different applications. For efficient resource allocation, resource and
memory management solutions should be closely interrelated to take into account data
dependencies between tasks. The proposed approach regards to the hierarchical resource
management strategy that includes the following levels of resource management [1]: The

Global Resource Manager (GRM) runs on a general-purpose node (GN), and it is in
charge of workload balancing and thermal control of the entire system; The Local Re-

source Manager (LRM) runs on the heterogeneous nodes (HN) and on the slave GN,
and it is in charge of the allocation of intra-node resources, allowing multiple applica-
tions to share resources. Our approach manages resource allocation across different ap-
plications within a single heterogeneous node as a part of LRM in a way that maximises
resource usage while preserving the predictable execution time of critical applications.

The contribution can be summarised as follows: concept and implementation: a
core concept of Prediction-based Partitions Evaluation Algorithm for resource allocation
and several implementations of this concept were derived; assessment: a comprehensive
assessment was provided, including measurements for a proof of concept implementa-
tion, showing the overall feasibility of the approach, as well as its scalability.

The rest of this paper is organised as follows. In Section 2 we briefly introduce the
target heterogeneous architecture. In Section 3 we state our problem and describe our
proposed solution, while in Section 4 we provide an experimental evaluation. Finally, in
Section 5, we draw some conclusions and highlight future research.

2. Background: Runtime management in MANGO Project

The MANGO project aims at addressing the power, performance, and predictability
space by dynamically using heterogeneous processing elements in a QoS sensitive com-
puting scenario. The key feature of the MANGO resource management system is its tight
integration with the programming model, which lightens the burden on the application
developers, as they do not need to handle the mapping of kernels and buffers on suitable
HN units [6]. A host-side low-level runtime API allows developers to indicate to the run-
time which components (kernels, memory buffers, and synchronisation events) need to
be shared within the heterogeneous node. These components are then connected into a

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm 365

Figure 1. Overview of the target system: (1) task graph, (2) partition list, (3) partition evaluation system.

task-graph to provide the resource manager with the information needed to generate the
best feasible resource allocation for the requested QoS. Figure 1 (1) shows an example
of a task graph composed of several kernels and buffers. One or more processing units
can perform each kernel. A buffer may be used as an output buffer for one kernel and as
an input buffer for a different one. Therefore, the resource manager allocates resources
based on knowledge of both the system hardware status and the application requirements
and priorities.

2.1. Memory awareness

In our target architecture, all the memory modules in a given HN share a single physical
address space that can be accessed by all the computational units (ARM-based nodes,
GPU-like accelerators, and hardware accelerators) [1]. Despite the shared physical ad-
dress space, we differentiate the following types of memory buffers: shared memory

buffer is a memory buffer that may be simultaneously accessed by multiple kernels,
such as buffer_0 on Figure 1 (1); private memory buffer is a memory buffer that may
be accessed by only one kernel, such as buffer_4 on Figure 1 (1).

To achieve the optimal unit-memory connection characteristics, we proposed to use a
fuzzy multi-criteria analysis with pairwise comparison [7]. The choice between memory
units is based on a prediction of the future resource state to maximise the ability to
allocate future high priority requests.

We adopt the following criteria for private buffer allocation: cpr
0 - distance between

processing and memory units (in hops); cpr
1 - bandwidth; cpr

2 - jitter. Criteria csh
i , i =

0..5 are employed for shared buffer allocation and consist of the mean and standard

deviation of the criteria cpr. Fuzzy sets
∼
C are defined on the universal sets of P with

the membership functions ml(pi) that show the degree of membership of an element
pi ∈ P to a fuzzy set

∼
cl for each criterion in C (lpr = 0..2 and lsh = 0..5) on the basis of

pairwise comparisons of elements of P with the relative importance coefficients wpr
l and

wsh
l , ∑w = 1 for applying the concentration or dilation to the fuzzy sets.

3. Partition Evaluation Algorithm

3.1. Problem Statement

We are given a HN topology, H = {Uf ,Ub,Mf ,Mb}, where Uf and Ub indicates the set
of free and busy units, respectively, Mf indicates the memory units with all the space

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm366

available for allocation, Mb indicates the memory units with fully or partially allocated
space and a set of task-graphs T g = {tg0, . . . , tgn}, tg =< B,K > where B is a set of
requested memory buffers and K is a set of kernels. Considering a particular tg, for
each buffer b ∈ B of size S(b) there is a kernel or set of kernels K(b) which uses b
(e.g., kernel read buffer k r→ b and/or write to buffer k w→ b) and a partition or set of
partitions P = {< M,U >0, ...,< M,U >m} appropriate to allocate b on H, where M is
a memory unit of size S(M), S(M) ≥ S(B), U ∈ Uf and ∀ki ∈ K ∃u j ∈ U that able to
execute ki. For each kernel k ∈K there is a set of preferred target processing architectures
Archpre f s(k) =< Arch0, ...,Archl > that is noted by developer. Each application has a
specific priority level appl = {applh,appll}, where the high priority application applh
needed to be allocated with the requested QoS on the current HN, and the low priority
application appll could be rescheduled on the another HN. Figure 1 (2) shows a graphical
representation of an example of partitions, which could be produced by the resource
allocation algorithm.

All combinations of the preferred processing architectures among with all the pos-
sible mappings of the kernel to the specific unit and memory allocations can be found by
brute-force exploration. However, this approach can be time consuming other the leading
to find a redundant set of mapping solutions. The overall number of mappings can be
estimated by the following formula:

Nmap =
NK

∏
i=1

((∑arch(i)
a=1 Na

U)− ki)!

((∑arch(i)
a=1 Na

U)− (1+ ki))!
× (NM)NB (1)

where ki = ∑i
kernel=1 [∃kernel = j| j ∈ 1..i∧arch(i) = arch(j)] e.g. ki is the number of

kernels for which at least one preferred architecture is the same, Nmap is the number of
mappings, NK and NB are respectively the number of kernels and buffers in tg, Na

U is the
number of units with the specified architecture a, NM is the number of memory units.

Given the size of the solution space, the time needed to find suitable solutions can
often be too long for considering the execution at runtime. The heuristic goal is to limit
the number of resource partitions to consider, based on the exploitation of historical
data about the previous application executions. Without additional constraints, buffers
from different task-graphs could be allocated on the same memory unit. This allocation
can cause unpredictable interference of concurrent applications on shared memory and
routing bandwidth. The easiest way to ensure that the bus access requests are served
immediately is to separate resources for concurrent applications. This approach does
not solve the interference problem between concurrent tasks of a single application but
mitigates the stochastic influence of independent applications.

We aim to find the best Ps =<Ms,Us >, Ps ∈P for each sequentially arriving tgi ∈ T g
by the criteria C = {Cpr,Csh} with the following conditions: size: ∑S(B)≤∑S(Ms); iso-

lation: Ms ∈ Mf and ∀mi,u j such that mi ∈ Ms,u j ∈Us ∃< u j,mi > and ∀mi,u j such that
mi ∈Ms,u j ∈Ub !∃< u j,mi >, where the tuple < u j,mi > defines the permitted network-

ing connection between u j and mi; multi-criteria analysis: Ps = maxi

{
minl[ml(pi)]

w

pi

}
;

prediction model: the usage of Mf for appll is avoided in the case of predicting the use
of Mf by applh.

In the case of heterogeneous systems, significant on-chip constraints, such as limited
memory and route bandwidth, need to take into account. At this stage, we only consider

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm 367

Figure 2. An example of partitions a) with rectan-
gular isolated areas b) with irregular isolated areas
(S - selected unit, A - additional unit, M - memory
unit).

Figure 3. Input vectors and output classes for the
prediction models vased on SVM algorithm.

the subproblem of resources allocation to available tiles without taking into account the
consequences for the communication. Heuristics have to be used to find a solution with
a reasonable quality within an acceptable time. Accordingly, we investigated the parti-
tion evaluation method based on memory usage prediction and memory characteristics
comparison. A graphical overview of the proposed approach is presented in Figure 1 (3).

3.2. Isolated partition

The processing units and the memory units are connected through a 2D-mesh NoC. Each
processing unit has four routing ports with an XY routing algorithm implemented to al-
low network connection between units. In order to limit bandwidth utilisation, processing
units have to be allocated close to the memory unit. We proposed to select the processing
units in the nearest von Neumann neighbourhood to the memory unit so as to ensure the
smallest average distance from each processing unit to the memory unit. We consider
two ways of forming the isolated area presented in Figure 2: rectangular: selected units
are supplemented by adjacent ones to form a rectangular area; irregular: selected units
are supplemented by adjacent ones to provide access to the memory units.

The available routing bandwidth on the boundary is set to 0 so as to avoid bandwidth
resources usage from others partition. The rectangular area guarantees a networking con-
nection from each processing unit to the memory unit in the specific partition. However,
this isolation method occupies a large number of free processing units. On the other hand,
the second approach makes it possible to use processing resources more economically.
However, this type of partitioning requires moving from the simple XY routing algorithm
to the adaptive XY routing algorithm, since memory unit becomes unreachable for some
processing units (as an example units Si and S j in Figure 2b).

3.3. Prediction model

In general, a resource management system is based on an algorithm that takes runtime
decisions on the basis of continuously updated information about the state of the re-
sources. By predicting the future state of resources we can improve the quality of the
management decisions [8]. We are suggesting the models that can, at runtime, predict the
future use of resources so that management decisions aimed at increasing the service of
high priority requests can be made.

Predictions are based on statistical information. These can be seen as statistical se-
ries, that is ordered collections of data Y = {Yi−n−1,,Yi} beginning at moment ti−n−1

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm368

and covering events up to the final moment ti, where Yj is a pair Yj = (t j,v j). The first
element t j defines the moment in time and the second element v j defines the value of one
variable of interest (in our case, it is an allocated size of the memory unit). We consid-
ered statistical series based on: time: time sampling is carried out so that the time be-
tween allocations is taken into account; events: resources allocation is considered as the
occurrence of an event for which only the order of allocation and not the time matters.

Two linear prediction models that can be applied to runtime contexts were imple-

mented: the moving average method: Ỹi+1 =mi−1+
1
n
(Yi−Yi−n), where mi−n - moving

average for n periods before the forecast; the exponential weighted average method:

Ỹi+1 = αYi +(1−α)Ỹi, where α - smoothing constant.
To take into account the adequacy of the prediction model Theil’s coefficient of

inequality U = ∑n
i=1 (Yi −Fi)

2/(∑n
i=1 F2

i +∑n
i=1 Y 2

i) was chosen. Theil’s coefficient takes
the value equal to zero when the prediction model is accurate, and the value equal to one
when the forecast is inadequate. The proposed evaluation algorithm does not consider
prediction in cases coefficient is greater than 0.5.

To assess the possibility of using machine learning in runtime contexts, we used
dlib C++ library’s [9] implementation of the pegasos algorithm for online training

of SVM. The prediction model was redefined to a simple binary classification problem
in the following way: input: model is described as a two-dimensional input vector by
the size and time derived from the last allocation; output: prediction is represented by
two possible states of the units (busy or free) as output classes; kernel: radial basis
function kernel defines the allocation-deallocation trend. A graphical representation of
the input vectors and output classes is shown in Figure 3. In addition to online train-
ing, the trainer for a C-SVM using the SMO algorithm for solving the same binary
classification problems was used.

3.4. Partitions evaluation

The overview of partitions evaluation algorithm is presented in [10] with buffer analy-
sis described in detail in Algorithm 1. The input of the Algorithm 1 receives the quan-
titative interaction characteristics between the memory unit m onto which the analysed
buffer b is mapped and the processing units ui onto which the kernels that read and/or
write to the buffer are mapped, such that propr = (ui

r→ m).Properties, i = 0..nr and
propw = (ui

w→ m).Properties, i = 0..nw. At the first step, it looks through the memory-
units characteristics of each analysed partition (line 1). Some of these characteristics
change at runtime (e.g., available bandwidth) or are constant (e.g., distance in hops). If
the current buffer is used by one kernel privately (line 2), then the value of each crite-
rion val(cpr) is saved as-is (lines 3-4). Otherwise, the value of each criterion val(csh)
is accumulated by calculating the mean and standard deviation (lines 6-9). In the next
part, the matrices of pairwise comparisons Mc are filled. The total number of matrices
coincides with the number of criteria. Since the matrix of pairwise comparisons is diag-
onal, symmetric and transitive, at line 11 all diagonal elements are set to 1, at lines 15-16
and 17-18 elements are calculated as a ratio of the specific criterion values of the two
compared partitions i and j depending on the optimisation goal, that is, c → max, as for
bandwidth, or c → min, as for distance. The degree of membership dmc[i] is calculated
for each partition i (line 20) and for each criterion c (line 21) as one over the sum of
the elements in the corresponding column of the matrix Mc (lines 21-23). At line 24, the

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm 369

ALGORITHM 1: Buffer analysis

Data: Memory-units read-write characteristics < m, propr, propw >0, ...,< m, propr, propw >n

Result: Partition scores s = {s0, ...,sn} for the buffer b
1 for i = 0 to n do

2 if propi
r.size()+ propi

w.size() = 1∨ (propi
r,w.size() = 1∧ propi

r = propi
w) then

3 foreach cpr ∈C do

4 val(cpr)⇐ (propi
r ∨ propi

w).GetProperty(cpr) ;
5 else

6 foreach csh ∈C do

7 foreach propi
r and propi

w do

8 val(csh)⇐ propi
r.GetProperty(csh);

9 val(csh)⇐ propi
w.GetProperty(csh);

10 for i = 0 to n do

11 Mc[i][i]⇐ 1 /* matrix of pairwise comparisons */

12 for j = i+1 to n do

13 foreach c ∈C do

14 if c → max then

15 Mc[i][j]⇐ val(c)[i]/val(c)[j];
16 Mc[j][i]⇐ val(c)[j]/val(c)[i];
17 else

18 Mc[i][j]⇐ val(c)[j]/val(c)[i];
19 Mc[j][i]⇐ val(c)[i]/val(c)[j];
20 for i = 0 to n do

21 foreach c ∈C do

22 dmc[i]⇐ ∑n
j=0 Mc[i][j];

23 dmc[i]⇐ (1.0÷dmc[i])w /* degree of membership */

24 s[i]⇐ minc(dm[i]) /* intersection */

25 for i = 0 to n do

26 if GetPrediction(mi) = Buzy then

27 s[i]⇐ s[i]×−1.0;

score of evaluated partition is set equal to the minimal value of the corresponding degree
of membership. Finally, at lines 25-27, the overall score for each partition is updated
according to the predicted memory state.

In the case of prediction errors, the proposed approach acts in the following way. If
the appearance of the high priority applications is underpredicted, it allocates a higher
number of the low priority applications and a fewer number of the high priority applica-
tions. In the case of overprediction of the high priority applications, the number of low
priority applications is fewer than it could be allocated.

4. Experimental Evaluation

As the deeply heterogeneous architecture targeted by our work is currently under de-
velopment, we investigated the proposed partition evaluation algorithm on the singe ap-
plication execution in [10]. Overall, the proposed approach succeeded in evaluating the
best and worst resource mappings. The memory status prediction among with partitions
isolation is evaluated through a simulation-based approach.

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm370

Figure 4. Arrival rates

Figure 5. General scheme of the simulation

4.1. Experimental Setup

Event simulator mimics the job submission of users on a time-driven basis. The appli-
cation pool was composed of workflows with a specific priority. According to our sce-
nario where applications often perform the same tasks multiple times, but additional re-
quests must also be handled, the arrival process was modelled including a mix of sched-
uled recurring applications targeting the same workflow with the same resources requests
and non-recurring applications targeting various workflows. A polynomial function pro-
posed in [11] defined the scheduled arrival process. As shown in Figure 4, accounting
records [12] from the national grid of the Czech republic and Curie supercomputer oper-
ated by CEA have the arrival process similar to the mentioned above. To model events oc-
curred completely at random at intermittent times, the Poisson process was used. The test
tasks flow is consists of 30 days, where weekends are simulated by only non-recurring
applications targeting various workflows occurred at random.

The target platform emulation library implements hardware-dependent API and al-
lows performing resource allocation in a simulation mode. The three major resources, in-
cluding units (processors/accelerators), memory buffers located in DDR memories, and
bandwidth, are under control of the local resource manager of the emulator. All these
resources are kept as internal configuration and offered for reservation based on their
availability and platform restrictions. The selected configuration of the HN includes 30
processing units of two types of architecture placed in five rows and six columns grid and
four memory units. The general scheme of the emulation is shown in Figure 5. Here, the
experiments employed the same configuration and sequences of emulated applications.

Seven task-graphs presented in Figure 6 were created relying on the synthetic work-
flow [13]. The task-graphs have a various number of kernels (from 4 up to 13) and in-
put/output buffers for each kernel. Runtime, types of kernels, memory requests and the

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm 371

Figure 6. Task-graphs of the synthetic workflows

Table 1. Basic statistics for program simulation

motif leadmm molsci glimmer gene2life scoop psload

runtime 9090 4990 1020 901 540 98 50

kernels T0/T1 12/1 4/2 5 /0 4/0 8/0 1/5 4/0

memory (MB) 1696 3535 55 2185 2.6 22 379

n. partitions 8.75E+30 1.25E+11 8.36E+10 2.61E+08 1.99E+18 1.81E+10 6.53E+07

maximum number of possible mappings on the experimental architecture according to
the equation (1) are presented in Table 1.

In this paper, we consider the design-time mapping policies called recipe [10]. This
file is used to specify both the per-task requirements and, optionally, a set of resource
mapping solutions that the resource manager should consider at runtime. In order to
investigate the time spent by evaluation and allocation algorithms, we have limited the
number of mappings in the recipe to 50 and 700.

We analysed the proposed approach with the following prediction models and
ways to form statistical series: Base: baseline approach without prediction model(PM);
MAonEvent: approach with PM based on moving average method with event-based
statistical series; MAonTime: approach with PM based on moving average method
with time-based statistical series; EXPonEvent: approach with PM based on exponen-
tial weighted average method with event-based statistical series; EXPonTime: approach
with PM based on exponential weighted average method with event-based statistical se-
ries; SVM: approach with PM based on pegasos algorithm for online training of SVM.
SVMtrain: approach with PM based on C-SVM training on the 30 days arrival flow
simulated in addition to the one used for experiments.

4.2. Experimental Results

First, we investigated the proposed approach with the number of mappings in the recipe
limited to 50. As we expected, the resource allocation algorithm without isolation and
without prediction models gives the high degree of successful allocations. As shown in
Figure 7, the inclusion of the prediction model based on the moving average method in
the algorithm without isolation increases by 17% the density of the high priority requests
with a decrease by 12% of the overall number of the hosted application. As shown in the
Figure 7 (row 3), it is caused by a high rate of rejected low priority application.Other pre-
diction models have no significant impact on the amount of hosted applications (approx
5%). The isolation decreases the number of applications that can be allocated on the HN
simultaneously. For instance, rectangular area isolation reduces the number of hosted ap-

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm372

Figure 7. Percentage of the hosted high priority applications (row 1) all successful allocations (row 2) and
rejected low priority applications by prediction (row 3) using resource allocation algorithm based on the rect-
angular and irregular area isolation and without isolation (max 50 mappings per application).

plications by 10%. Thus, for the resource allocation algorithms based on isolation, the
prediction model increases the percentage of successful high priority applications. Let us
consider hosted high priority applications which use resources that are allocated on the
basis of rectangular area isolation using exponential weighted average prediction model.
As shown in Figure 7, the percentage of these applications increases by 10% regard-
ing the applications which use resources without prediction model and decreases by less
than 5% regarding the applications which do not use isolation. In addition to this, the
total amount of hosted applications increases slightly. The prediction model based on the
moving average method in the algorithm with isolation shows a significant decrease in
the overall number of the hosted application due to a large number of rejects due to the
memory state prediction and therefore does not allocate applications with low priority.

The algorithm based on the SVM online training gives the approx. 20% advantage in
hosted high priority applications regarding the baseline for the algorithm with rectangu-
lar area isolation and approx 8% increase regarding the baseline for the algorithm with-
out isolation. Also, in the case of isolation, the prediction model based on the moving
average method gives a large number of rejects due to the memory state prediction and
therefore does not allocate applications with low priority. The trained SVM algorithm
both for rectangular and irregular area isolations provides approx. the same number of
high priority applications as the algorithm with prediction based on the moving average
method. At the same time, for irregular area isolation, the amount of high priority appli-
cation allocation increases by 20% regarding the baseline without prediction model, and
increases approx. by 10% regarding the algorithm without isolation and prediction.

Generally, the proposed approach, with the number of mappings in the recipe limited
to 50, gives adequate time for evaluation and allocation for considering the execution
of the policy at runtime. As shown on Figure 8, algorithms with the prediction model
based on the SVM algorithms, with both online and pre-trained learning, give approx.
four times higher evaluation time than the algorithms with linear statistical prediction
models. Nevertheless, the allocation time for the SVM algorithm with online training is
approx. ten times higher than those of the statistical methods.

A more significant number of mappings in the recipe increase both evaluation and
allocation time. Figure 9 shows the dramatical increase in evaluation time for algorithms
with machine learning prediction models, especially for resource allocation without re-

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm 373

Figure 8. Evaluation (row 1) and allocation (row 2) time (in ms) using resource allocation algorithm based
on the rectangular and irregular area isolation and without isolation (max 50 mappings per application).

Figure 9. Evaluation (row 1) and allocation (row 2) time (in ms) using resource allocation algorithm based
on the rectangular and irregular area isolation and without isolation.

source isolation. The reason is in the fewer number of possible mappings with additional
conditions on the simultaneous use of memory tile. The allocation time increases rapidly
for approach with the prediction model based on the SVM algorithm with online training.
It is caused by the time spent on training SVM following each new allocation.

5. Conclusions & Future Developments

In this paper, we have introduced a predictive method for partition evaluation within
deeply heterogeneous architectures with NUMA shared memory. The target platform
deals with workloads with different priorities for resource allocation requests, classified
as a high priority and best effort. Through the use of predictive algorithms, we were able
to serve up to 53% of the high priority requests vs a baseline of 32% without prediction
on the isolated area. The effort on evaluation and allocation time by statistical prediction
model is inessential and is about 15 and 0.1 ms respectively. It is worth noticing that
prediction model based on machine learning algorithm with online training gives higher
evaluation and allocation time (20 and 0.8 ms respectively) and pre-trained algorithm
gives higher evaluation time (up to 100 ms) while allocation time is in the same range
as for baseline algorithm. Nevertheless, partition evaluation using the prediction model
based on machine learning is still under consideration due to relatively short time per
allocation and slightly better results also for allocation without isolation. The proposed
approach does not assume the only correct prediction model. We aim using the prediction
model and the mapping isolation, depending on the global state of the system. The Global

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm374

Resource Manager taking into account the current workload and thermal state of the
entire system is in charge of using the specific isolation and prediction policy. In future
works, we will provide additional analysis by considering the influence of the knowledge
of the possible plan of the application execution on the resources prediction models.

6. Acknowledgments

This research was partially funded by the H2020 EU projects “MANGO” (grant no.
671668) and “RECIPE” (grant no. 801137 [14]).

References

[1] J. Flich, G. Agosta, P. Ampletzer, D. A. Alonso, C. Brandolese, E. Cappe et al., “Exploring manycore
architectures for next-generation hpc systems through the mango approach,” Microprocessors and
Microsystems, 2018. [Online]. Available: https://doi.org/10.1016/j.micpro.2018.05.011

[2] B. Koller and M. Gienger, “Enhancing high performance computing with cloud concepts and technolo-
gies,” in Sustained Simulation Performance 2014. Springer, 2015, pp. 47–56.

[3] D. Mishra and P. Kulkarni, “A survey of memory management techniques in virtualized systems,” Com-
puter Science Review, vol. 29, pp. 56–73, aug 2018.

[4] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’io: A grammar-based approach to spatial
and temporal i/o patterns prediction,” in SC ’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov 2014, pp. 623–634.

[5] A. Pupykina and G. Agosta, “Survey of memory management techniques for hpc and cloud computing,”
IEEE Access, pp. 1–23, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2954169

[6] G. Agosta, W. Fornaciari, G. Massari, A. Pupykina, F. Reghenzani, and M. Zanella, “Managing hetero-
geneous resources in hpc systems,” in Proceedings of the 9th Workshop and 7th Workshop on Parallel
Programming and RunTime Management Techniques for Manycore Architectures and Design Tools and
Architectures for Multicore Embedded Computing Platforms, ser. PARMA-DITAM ’18. New York,
NY, USA: ACM, 2018, pp. 7–12. [Online]. Available: http://doi.acm.org/10.1145/3183767.3183769

[7] A. Pupykina and G. Agosta, “Optimizing memory management in deeply heterogeneous hpc
accelerators,” in 2017 46th International Conference on Parallel Processing Workshops (ICPPW), Aug
2017, pp. 291–300. [Online]. Available: https://doi.org/10.1109/ICPPW.2017.49

[8] C. Ababei and M. Ghorbani Moghaddam, “A survey of prediction and classification techniques in
multicore processor systems,” IEEE Transactions on Parallel and Distributed Systems, vol. PP, pp. 1–1,
10 2018. [Online]. Available: https://doi.org/10.1109/TPDS.2018.2878699

[9] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine Learning Research, vol. 10, pp.
1755–1758, 2009. [Online]. Available: http://dl.acm.org/citation.cfm?id=1577069.1755843

[10] G. Massari, A. Pupykina, G. Agosta, and W. Fornaciari, “Predictive resource management for next-
generation high-performance computing heterogeneous platforms,” in Embedded Computer Systems:
Architectures, Modeling, and Simulation, D. N. Pnevmatikatos, M. Pelcat, and M. Jung, Eds. Cham:
Springer International Publishing, 2019, pp. 470–483.

[11] M. Calzarossa and G. Serazzi, “A characterization of the variation in time of workload arrival patterns,”
IEEE Transactions on Computers, vol. C-34, no. 2, pp. 156–162, Feb 1985.

[12] D. Feitelson. (2015) Logs of real parallel workloads from production systems. [Online]. Available:
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

[13] L. Ramakrishnan and D. Gannon, “A survey of distributed workflow characteristics and resource
requirements,” Department of Computer Science, School of Informatics Indiana University, Tech. Rep.,
2008. [Online]. Available: http://www.cs.indiana.edu/l/www/ftp/techreports/TR671.pdf

[14] W. Fornaciari, G. Agosta, D. Atienza, C. Brandolese, L. Cammoun et al., “Reliable power and
time-constraints-aware predictive management of heterogeneous exascale systems,” in Proceedings of
the 18th International Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation, ser. SAMOS ’18. New York, NY, USA: ACM, 2018, pp. 187–194. [Online]. Available:
http://doi.acm.org/10.1145/3229631.3239368

A. Pupykina and G. Agosta / Prediction-Based Partitions Evaluation Algorithm 375

