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Abstract. Edge plasma codes, such as SOLPS, are widely used to study plasma
transport in tokamaks scrape-off layers (SOL). The possibility to apply these
codes to non hydrogenic plasmas and to linear plasma devices (LPDs) is gain-
ing the interests of the fusion community. These facilities play a pivotal role in
plasma-material interaction (PMI) studies for future fusion devices and may al-
low to test the code capabilities both in terms of geometry and simulated plasma
species. In this contribution, we apply the SOLPS-ITER code for the simula-
tions of Argon plasmas in the medium-flux linear machine GyM. A sensitivity
scan over the pumping efficiency, transport coefficients and absorbed electron
power was done, performing B2.5-EIRENE coupled simulations. A quantitative
analysis of the different flux contributions is provided through the use of a two-
point modelling. Comparison with experiments shows a promising qualitative and
quantitative agreement, with the sole exception of the simulated neutrals pres-
sure. Dedicated EIRENE standalone simulations were performed to investigate
this issue, also highlighting the role of neutral-neutral elastic collisions at high
values of the puffing intensity.
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1. Introduction

Starting from the Nineties, increasingly advanced
computational models have been developed with the
purpose to numerically study the plasma transport
in the edge region of magnetic fusion devices. In
particular, codes such as SOLPS [1] and SOLEDGE2D-
EIRENE [2] include a state-of-the-art treatment of
plasma transport along and across magnetic field
lines as well as a complete treatment of atomic
processes occurring in the plasma edge. The feature
that makes these codes highly relevant for boundary
plasma modelling is the possibility to simulate in great
detail the interaction of the plasma with the neutral
particles. Neutral atoms and molecules are present
in the boundary plasma due to the recycling from
the plasma facing materials (PFMs) and for seeding
purposes. They are based on the so-called mean-field
approach [3] and as a downside, they do not include
turbulence self-consistently in the model, although
some recent studies were done in that direction [4, 5, 6].
The latest applications of these kind of codes are
about the study of the effect different PFMs [7], the
modelling of divertor closure [8] and Ne and N seeding
effects [9, 10].

In spite of the fact that edge plasma codes
have been developed with reference to the toroidal
geometry of a tokamak, the possibility to numerically
simulate plasmas in linear plasma devices (LPDs) is
of great interest due to the pivotal importance of
these devices in plasma-material interaction (PMI)
studies. Indeed, experimental investigations of
PMI in ITER-relevant conditions have been widely
performed in LPDs [11, 12]. The relatively simple
configuration of these devices offers the possibility
to build cost-effective facilities to address aspects of
key importance for controlled magnetic fusion, such
as divertor detachment and materials testing in the
high-flux and fluence conditions foreseen in ITER and
DEMO. However, interpretation of the results of these
experiments often relies on plasma quantities which are
not easy to be measured: an example can be plasma
composition, in terms of chemical aggregation and the
ionisation degree of each isotope. Such properties
may in principle be easily recovered from numerical
simulations. Furthermore, the simulation of LPDs with
the most advanced and complex numerical codes for
tokamaks is not without challenges.

So far, simulations of LPDs using edge plasma

codes have been concerned in interpretative as well
as predictive studies [13, 14, 15, 16, 17, 18, 19, 20].
In particular, Kastelewicz et al. [13] are the first
that applied SOLPS4.0 to a linear geometry. They
showed the structure of a computational grid for LPD
simulations and gave a description of the type of
boundary conditions to be used in linear geometry.
The same SOLPS version was used in [14] for
predicting the main plasma parameters in MAGNUM-
PSI. More recent works used SOLPS5.0 to simulate
plasma transport in MAGPIE [18] and PROTO-
MPEX [16, 17]. In particular, Rapp et al. [15] were the
first to describe how to model radio-frequency heated
LPDs with SOLPS. The SOLEDGE2D-EIRENE code
was applied to PILOT-PSI to understand the effects
of different atomic physics models [20]. Effects of
pumping efficiency and radial transport coefficients
were studied [19] and a quantitative analysis of the
importance of transport and atomic processes, based
on the two-point model [21, 22], was performed.
Alongside the efforts to adapt tokamak mean-field
edge codes to LPDs, some attempts were also made
to develop codes which implement plasma transport
models in cylindrical geometry, both considering mean-
field transport questions [23, 24, 25, 26, 27] and a
consistent treatment of turbulence [28, 29, 30, 31,
32]. While this approach allows simplifications in the
transport equations due to a simpler geometry, these
codes are presently limited due to the absence or the
highly simplified treatment of neutral species and their
interactions with the background plasma.

In this work, we perform a first investigation
towards the integrated simulations of PMI experiments
in LPDs. We focus, in particular, on the plasma side
of the problem, using the latest released version of
the SOLPS code, namely SOLPS-ITER, for simulating
pure argon (Ar) plasma in the LPD GyM of Istituto
di Scienza e Tecnologia dei Plasmi (ISTP)-CNR. This
machine, originally designed with the aim of studying
basic plasma physics, such as plasma turbulence [33],
is now mainly used to study plasma-wall interaction
for fusion applications [34].

To the best of our knowledge, this work is the
first application of SOLPS-ITER to a LPD and it
is the first time this code is used to simulate non
hydrogen-dominated plasmas. The choice to consider
pure Ar plasma is unusual for simulations with edge
transport codes, where hydrogen (H) or deuterium (D)
are commonly the main plasma species. Indeed, in
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tokamaks, Ar impurities are present in trace in the
plasma as seeding for power dissipation purposes [35,
36]. In PMI studies performed in LPDs, instead, Ar is
often selected as the main plasma species [37, 38].

In section § 2, we show how plasma transport
equations are modified for the simulation of Ar plasma
in LPDs. After illustrating the main aspects of GyM
(section § 3) and the simulation inputs (section § 4), in
section § 5, we present and discuss the main results
of this work. We investigated the effects of some
code free parameters on the plasma profiles and we
interpreted the results of these simulations using a two-
point modelling analysis, akin to that presented in [20].
A first comparison with available experimental plasma
profiles is then showed. Finally, results of EIRENE
standalone simulations are presented.

2. The numerical model

2.1. SOLPS-ITER modelling of LPDs

SOLPS [1] is a suite of codes for the simulations
of tokamak edge plasmas. The two most important
packages are B2.5 and EIRENE. The former solves a
set of 2D coupled conservation equations in curvilinear
coordinates which describe the electron and atomic
ion populations as a collection of mutually interacting
fluids. The latter [39] is a 3D kinetic code which
computes the transport of atomic and molecular
neutral species onto a given plasma background.

The two codes can be used separately, in the so-
called standalone mode, or may be coupled iteratively.
In the latter case, B2.5 solves the plasma fluid
equations (continuity equations for the average plasma
density n, electron and ion temperature, Te and
Ti, ion momentum and current density). The
information of the plasma background is then passed
to EIRENE, which computes Monte Carlo history of
neutral particles and, if present, also the molecular
ions. Their interactions with the plasma background
are computed and the corresponding source terms are
then passed to the B2.5 fluid equations. This scheme is
repeated iteratively to reach convergence of the code.

The B2.5 equations are specifically tailored for
tokamaks simulations and written in a curvilinear or-
thogonal coordinate system, as described in [40]. In
figure 1, we show the two reference frames considered
to write B2.5 equations: the dynamical reference frame
(e‖, e⊥, ey), aligned with the characteristic directions
of the plasma motion, and the geometrical reference
frame (ex, ey, ez). Exploiting the rotational symmetry
of the tokamak in the toroidal direction ez, the problem
can be reduced to two-dimensional in the geometrical
reference frame. In this frame, the metric is diagonal
and entirely described by the three metric coefficients
hx, hy, hz. The x-coordinate varies along the flux sur-

faces, while the y-coordinate is perpendicular to them.
The application of SOLPS to LPDs is not straight-
forward due to the coordinate system implemented in
the code. In figure 1, we describe how the x, y and
z directions of the geometrical frame have to be inter-
preted when a linear geometry is considered. Again,
the problem can be reduced to 2D exploiting rotational
symmetry around the cylinder axis. The ez basis vec-
tor in linear geometry is along the polar direction and
the bi-dimensional problem is solved on the plane par-
allel to the cylinder axis. Specifically, the x-coordinate
corresponds to the axial direction and the y-coordinate
is in the radial direction.
The general transformation rules of a vector v from
the dynamical frame to the geometrical one, derived
in [40], for a linear plasma device reduce to:

vx = bxv‖ vz = −bxv⊥ (1)

where bx = Bx/B. The relations are obtained by
setting to zero the polar component of the magnetic
field bz = Bz/B = 0. Indeed, a major difference, when
using the code to simulate a LPD, is the absence of
the polar component of the magnetic field Bz, which is
instead the dominant component in tokamaks. This
eliminates several terms in SOLPS-ITER equations,
mainly related to the possibility to investigate drifts.

2.2. The B2.5 equations for Ar plasmas in LPDs

In this section, we discuss the form taken by the
B2.5 equations with the setup used for the simulations
performed in this work. It should be noted that these
equations, originally presented in [41], were derived
aiming to simulate hydrogen-dominated plasmas, in
which heavier species such as Ar are treated as
impurities. Anyway, the latest version of SOLPS-ITER
physics model is based on the Zhdanov formulation [42]
for the transport coefficients. The resulting equations
can be used also in the case of non hydrogen-dominated
plasmas, provided that only a single ion charge state
is considered. In our simulations, the plasma is
composed by the electron population, a single-charged
ion population Ar+ and the Ar neutral population (cfr.
section § 4). The ion continuity equation becomes

∂tn+
1√
g
∂x

(√
g

hx
nbxv‖

)
+

1√
g
∂y

(√
g

hy
nvy

)
= Snn,i(2)

where the source term Snn,i is due to ionisation,
recombination and charge exchange reactions with
neutral Ar atoms.

In the radial direction, a diffusive ansatz is used
to determine the y component of the ion velocity:

vy = −Dan
n

1

hyn
∂yn−Dan

p

1

nhy
∂ypi (3)

Here Dan
n and Dan

p are anomalous transport coeffi-
cients. Their values are free parameters for the code
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We present here the results of simulations of the

edge plasma of the ASDEX Upgrade tokamak by

means of the B2-SOLPS5.0 code based on a reduced

form of the transport equations. The plasma param-

eters of ASDEX Upgrade in the vicinity of the sep-

aratrix and in the SOL correspond to the Pfirsch–

Schlüter regime, thus justifying the applicability of

the fluid equations for simulations. The equations

and results of the simulation correspond to the single

ion species case (deuterium).

It is demonstrated that, on closed flux surfaces

and in the vicinity of the separatrix in the SOL,

the potential profile is determined by the eÆective

perpendicular conductivity. Since, due to the pres-

sure asymmetry, the diamagnetic current integrated

over the closed flux surface is not automatically zero,

additional radial current arises to make the aver-

aged net current zero. The diamagnetic current is

balanced by radial current driven by parallel vis-

cosity, ion neutral friction, inertia and perpendicu-

lar anomalous viscosity. In contrast, the potential in

the region well outside the separatrix is determined

mainly by the parallel force balance for electrons and

is a weak function of the eÆective transverse conduc-

tivity. On closed flux surfaces far from the separatrix,

where the pressure is almost constant, the parallel

currents practically coincide with the Pfirsch–

Schlüter currents. In the SOL far from separatrix,

parallel currents are a combination of the Pfirsch–

Schlüter current and the thermal current flowing

from one plate to another. The asymmetry of the

poloidal and parallel particle and heat fluxes caused

by E £B drifts is discussed.

2. Basic equations

The equations are derived in a toroidal geometry

with the x and y co-ordinates corresponding to the

directions along and across the flux surfaces, respec-

tively, while z is the toroidal direction, Fig. 1. The

metric coe±cients are

hx =
1

krxk , hy =
1

kryk , hz =
1

krz k ,
p

g=hxhyhz.

One can also replace hz ! 2ºR, where R is the

major radius. The physical components of the vector

are used. The ions of single species are considered

with Z = 1 so that ne = ni = n. The subscript

‘?’ denotes the direction perpendicular to both the

magnetic field B and the y axis, bx = Bx/B and

bz = Bz/B.

2.1. Perpendicular and poloidal velocities

The ion velocities V? and Vy are determined from

two, perpendicular to the magnetic field, components

of the momentum balance equation for ions. Using

the Braginskii expressions for the friction force, one

obtains

V? = V
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Figure 1. Co-ordinate system and simulation mesh: x

is the poloidal co-ordinate, y is the radial co-ordinate

orthogonal to the flux surfaces, the co-ordinate ‘perp’ cor-

responds to the direction perpendicular both to the mag-

netic field and to the y axis. The directions of magnetic

field and plasma current correspond to normal operation

conditions of ASDEX Upgrade (rB drift of ions directed

towards the X point).
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Figure 1. Co-ordinate system and simulation mesh: x

is the poloidal co-ordinate, y is the radial co-ordinate

orthogonal to the flux surfaces, the co-ordinate ‘perp’ cor-

responds to the direction perpendicular both to the mag-

netic field and to the y axis. The directions of magnetic

field and plasma current correspond to normal operation

conditions of ASDEX Upgrade (rB drift of ions directed

towards the X point).
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Schlüter current and the thermal current flowing

from one plate to another. The asymmetry of the

poloidal and parallel particle and heat fluxes caused

by E £B drifts is discussed.

2. Basic equations

The equations are derived in a toroidal geometry

with the x and y co-ordinates corresponding to the

directions along and across the flux surfaces, respec-

tively, while z is the toroidal direction, Fig. 1. The

metric coe±cients are

hx =
1

krxk , hy =
1

kryk , hz =
1

krz k ,
p

g=hxhyhz.

One can also replace hz ! 2ºR, where R is the

major radius. The physical components of the vector

are used. The ions of single species are considered

with Z = 1 so that ne = ni = n. The subscript

‘?’ denotes the direction perpendicular to both the

magnetic field B and the y axis, bx = Bx/B and

bz = Bz/B.

2.1. Perpendicular and poloidal velocities

The ion velocities V? and Vy are determined from

two, perpendicular to the magnetic field, components

of the momentum balance equation for ions. Using

the Braginskii expressions for the friction force, one

obtains

V? = V
(a)
? + V

(dia)
? + V

(in)
? + V

(vis)
? + V

(s)
? (1a)

Vy = V (a)
y + V (dia)

y + V (in)
y + V (vis)

y + V (s)
y (1b)

where

V
(a)
? = V

(E)
? ° D

Te + Ti

bz

hx

µ
1

n

@p

@x
° 3

2

@Te

@x

∂
(2a)

V (a)
y = V (E)

y ° D

Te + Ti

1

hy

µ
1

n

@p

@y
° 3

2

@Te

@y

∂
(2b)

B

y

x
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orthogonal to the flux surfaces, the co-ordinate ‘perp’ cor-
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is the poloidal co-ordinate, y is the radial co-ordinate

orthogonal to the flux surfaces, the co-ordinate ‘perp’ cor-
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The ion velocities V? and Vy are determined from

two, perpendicular to the magnetic field, components

of the momentum balance equation for ions. Using

the Braginskii expressions for the friction force, one

obtains

V? = V
(a)
? + V

(dia)
? + V

(in)
? + V

(vis)
? + V

(s)
? (1a)

Vy = V (a)
y + V (dia)

y + V (in)
y + V (vis)

y + V (s)
y (1b)

where

V
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? = V
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Te + Ti
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µ
1

n
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° 3
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@Te
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y = V (E)

y ° D

Te + Ti

1

hy

µ
1

n

@p

@y
° 3

2

@Te

@y

∂
(2b)

B

y

x

Figure 1. Co-ordinate system and simulation mesh: x

is the poloidal co-ordinate, y is the radial co-ordinate

orthogonal to the flux surfaces, the co-ordinate ‘perp’ cor-

responds to the direction perpendicular both to the mag-

netic field and to the y axis. The directions of magnetic

field and plasma current correspond to normal operation

conditions of ASDEX Upgrade (rB drift of ions directed

towards the X point).
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Figure 1. a) Curvilinear reference frames of B2.5. The dynamical reference frame (e‖, e⊥, ey) is aligned to the characteristic
directions of the plasma motion: parallel to the magnetic field B (e‖) and orthogonal to B in the magnetic flux surface (e⊥); the
third direction is orthogonal to the magnetic flux surfaces (ey). The geometrical reference frame (ex, ey , ez), where ex is in the
poloidal direction, ey is orthogonal to the flux surfaces in the poloidal plane and ez is in the toroidal direction. For a complete
derivation of the plasma transport equations in these two curvilinear reference frames refer to [40]. b) Geometrical reference frame
conversion from a tokamak to a LPD. In both cases the z direction can be ignored, assuming rotational symmetry around the axis
reported in red.

and they are used to reproduce the averaged transport
effects of turbulence. The parallel electron velocity is
computed as v‖ – j‖/(en). Similarly, in the radial di-
rection, we obtain the electron velocity as vy – jy/(en).
This assumes that the current is fully carried by the
electrons. See below, equations (14) and (15), for the
definition of the current components. The electron
density is obtained from quasi-neutrality, i.e. in our
case is equal to the Ar+ density everywhere.

The parallel ion velocity, v‖, is obtained by
solving the parallel ion momentum equation. For the
simulations performed in this work, it is given by:

mi

[
∂t
(
nv‖
)

+
1

hz
√
g
∂x

(√
ghz

hx
nbxv

2
‖

)
+

+
1

hz
√
g
∂y

(√
ghz

hy
nv‖vy

)]
= − bx

hx
en∂xφ−

− bx
hx
∂x (nTi) +

1

hz
√
g
∂x

(√
ghz

h2
x

ηix∂xv‖

)
+

+
1

hz
√
g
∂y

(√
ghz

h2
y

ηiy∂yv‖

)
+ Smn,i + Smfrie + Smthermie

(4)

where ηix and ηiy are the axial and radial
ion viscosity coefficients, respectively. Here, ηix =
ηan + ηcl and ηiy = ηan, where ηcl is the Zhdanov
classical viscosity coefficient [42] while the anomalous
contribution is related to the anomalous diffusion
coefficient Dan

n according to ηan = minD
an
n [43]. Smn,i

represents the momentum source due to ion-neutral
friction computed by EIRENE, Smfrie is the electron-ion

friction force and Smthermie
is the electron-ion thermal

force, whose expressions are reported in [44].
The energy balance equation for the electron is:

3

2
∂t (nTe) +

1√
g
∂x

(√
g

hx
q̃ex

)
+

1√
g
∂y

(√
g

hy
q̃ey

)
+

+
nTe√
g
∂x

(√
g

hx
bx

(
v‖ −

j‖
en

))
=

= Q∆ +Qfr,therm +Qn,e +QR

(5)

where

q̃ex =
3

2
nTebx

(
v‖ −

j‖
en

)
− κe‖

b2x
hx
∂xTe (6)

and

q̃ey =
5

2
nTe

(
−Dan

n

1

nhy
∂yn−Dan

p

1

nhy
∂ypi

)
−

− κe⊥
1

hy
∂yTe

(7)

Here κe‖ and κe⊥ = χan
e n are respectively the

Zhdanov thermal conductivity [42] and the anomalous
one for electrons. The electron energy sources on RHS
of equation 5 are:

• the electron-ion energy equipartition, Q∆:

Q∆ = νei (Te − Ti) (8)

where νei is the electron-ion collision frequency.
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• the heat source from electron-ion friction and
thermal forces, which is proportional to the
electron velocity:

Qfr,therm =
(
Smfrie + Smthermie

)( j‖
en
− v‖

)
(9)

• Qn,e and QR are the electron energy sources due
to interactions of electrons with neutral Ar atoms
and Ar+ ions, respectively.

Analogously, the ion energy equation can be
written as:

3

2
∂t (nTi) +

1√
g
∂x

(√
g

hx
q̃ix

)
+

1√
g
∂y

(√
g

hy
q̃iy

)
+

+
nTi√
g
∂x

(√
g

hx
bxv‖

)
= Q∆ +Qn,i

+ ηix

(
∂xv‖
hx

)2

+ ηiy

(
∂yv‖
hy

)2

(10)

The ion energy fluxes, q̃ix and q̃iy, are given by:

q̃ix =
3

2
nTibxv‖ − κi‖

b2x
hx
∂xTi (11)

and

q̃iy =
5

2
nTi

(
−Dan

n

1

nhy
∂yn−Dan

p

1

nhy
∂ypi

)
−

− κi⊥
1

hy
∂yTi

(12)

where κi‖ and κi⊥ = χan
i n are respectively the

classical thermal conductivity and the anomalous one
for Ar+ ions. The electrostatic potential φ can be
derived from the current continuity equation. In the
(x, y, z) coordinate system it is given by:

1√
g
∂x

(√
g

hx
bxj‖

)
+

1√
g
∂y

(√
g

hy
jy

)
= 0 (13)

The parallel component of the current density, j‖,
can be obtained from the electron momentum equation
(generalised Ohm’s law) and it is given by:

j‖ = σ‖

[
bx
e

1

n

1

hx
∂x (nTe)−

bx
hx
∂xφ

]
− αex

1

hx
∂xTe (14)

where the parallel electrical conductivity σ‖
and the classical thermo-electric coefficient αex are
expressed according to Zhdanov formulation [42].

The radial component of the current density, jy,
accounts only for the anomalous current, jan

y , which
reads

jy = jan
y = −σan 1

hy
∂yφ (15)

and σan = kanen is the anomalous conductivity.
Non vanishing σan is needed to provide convergence
of the numerical scheme, as reported in [45]. In these
simulations, the value of kan was set to 1× 10−6.

3. The linear plasma device GyM

In this section, the linear plasma device GyM is shortly
described. The emphasis is here given to the aspects
of relevance for the simulations.

GyM structure is shown in figure 2. The
main chamber consists of a cylindrical stainless steel
vacuum vessel of 0.25 m diameter and 2.11 m length
surrounded by 10 magnetic coils. From figure 2,
we can see the location of the two radiofrequency
(RF) sources delivering up to 3.0 kW and 1.5 kW, the
Langmuir Probe (LP), the gas injection nozzle, the two
turbomolecular pumps and the pressure gauge. The
main experimental Ar plasma parameters are reported
in table 1.

The standard magnetic configuration in GyM is
obtained connecting all the 10 coils in series, so that
the same current flows in each of them. The resulting
magnetic field is directed along the cylinder axis and
its intensity is modulated by changing the axial coil
distance. The peak magnetic field can reach the value
of about 0.13 T. The magnetic field is obtained by
solving the Grad-Shafranov equation [46]:

∆∗ψ = −µ0RJz (16)

where ψ is the flux function, µ0 the vacuum magnetic
permeability, R is the radius. Jz is the azimuthal
current density and it includes contributions coming
from the plasma and from the external magnetic field
coils. In a LPD, the plasma current can be neglected
with respect to the one flowing in the external magnetic
field coils. The stream-function ψ resulting from the
solution of equation (16) for GyM, considering a coil
current of 600 A is shown in figure 3.

The plasma in GyM is generated and sustained
exploiting the electron cyclotron resonance (ECR)
heating mechanism at 2.45 GHz, which directly heats
only the electron population. This, in combination
with the relatively low plasma density, results in a cold
ion population (. 0.1 eV) in the plasma. Among the
two RF sources installed on the machine, here we will
consider only the one which can deliver up to 3.0kW.
As shown in figure 2, this is connected to the vessel
through a waveguide. In figure 4, we show the location
on the (Z,R) plane of the ECR region in GyM for
different values of the coil current or, equivalently, for

Table 1. Typical working conditions for Ar plasma in GyM.
The main plasma parameters are measured by Langmuir Probes.

GyM reference conditions

Neutral pressure 10−5 − 10−4 mbar
Plasma density 1016 − 1017 m−3

Electron temperature 5 − 10 eV
Flux density up to 1021 m−2s−1

Fluence up to 1025 m−2
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Figure 2. Schematic drawing of GyM linear machine with the magnetic field coils and the vacuum chamber. The Langmuir Probe
(LP) location, the RF sources at 2.45 GHz capable of delivering up to 4.5 kW and the gas nozzle located at one end of the cylindrical
vacuum vessel are shown. The 1.5 kW RF source is reported in figure, but it will not be considered in the following.

different values of B. In this work we will consider the
magnetic field configuration corresponding to 600 A,
for which the ECR is located around a very narrow
axial region. Additional resonances might be present
in the machine, related to the upper-hybrid branch of
the dispersion relation. Their location in the machine
is, however, difficult to predict, since they depend
on the local plasma density, which is not known a
priori. For this reason, in this first work we neglect the
presence of such additional resonances. Furthermore,
direct measurements of the EC absorbed power are not
available at present for the plasma of GyM, which point
towards the interest in the parametric scan as described
in section § 5.

The experimental plasma parameters (n, Te and
φ) were obtained by means of a Langmuir probe (LP),
located ∼ 30 cm in front of the 3.0 kW RF source,
as shown in figure 2. The stainless steel probe tip is

1

2

3

4

5

10
-3

Figure 3. Contour lines of the stream-function ψ in
[
T m2

]
for

GyM standard coil configuration at 600 A. The solid black lines
mark the GyM vacuum vessel.

-2 -1 0 1 2

-0.5

0

0.5

Figure 4. ECR location for different values of B or,
equivalently, current in the coils.

cylindrical (1cm length and 1.5mm diameter) and it is
mounted on a movable shaft so that its radial position
can be varied to record the radial profile of plasma
parameters.

4. Simulation setup

The most basic inputs of SOLPS-ITER are the
two computational grids, one for B2.5 and one for
EIRENE. B2.5 works with a structured curvilinear
quasi-orthogonal mesh. This is made of quadrilateral
cells with two sides parallel to the magnetic flux
surfaces and two in the radial direction. This is
consistent with the decomposition of plasma flow
in the direction along and across the magnetic flux
surfaces. The EIRENE grid is made of triangles and
is constructed starting from the B2.5 fluid grid. Since
neutrals are present also outside the plasma, this grid
covers the whole cross-section of the machine, including
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Figure 5. GyM computational grids for B2.5-EIRENE simulations. The EIRENE grid covers also the whole 2D cross-section of the
device, including the pumps and the pressure meter ducts. The pumping surfaces are shown in dotted red and the puffing surface
in green, in correspondence of the west target.

secondary ducts outside the cylindrical chamber. To
build the field-aligned computational grid for B2.5
it was first necessary to construct the equilibrium
magnetic field by solving equation (16). The contour
lines of the stream-function, shown in figure 3, were
then used to obtain the mesh. A constrain imposed by
B2.5 is to limit the grid radially to a certain outermost
surface of constant magnetic flux, rather then extend
it through the true chamber wall [47]. It is common
to refer to this outer radial boundary as the north
boundary of the mesh. The result is shown by orange
lines in figure 5. The EIRENE grid includes the
pump and the pressure meter ducts, as shown by blue
lines in figure 5. Although in EIRENE it is possible
to implement a full 3D mesh to take into account
geometry asymmetries, in this first work we assumed
azimuthal symmetry around the x-coordinate. In this
way, the volume of the ducts departing from the main
cylindrical chamber is bigger than the real physical
volume. In figure 5, we also show the pumping and
puffing surfaces.

Pumping is accounted for by prescribing in
EIRENE an absorption probability for neutrals on
given pumping surfaces. The absorption probability
pa, or albedo of the surface, is related to the
particle recycling coefficient RECYCT by pa =
(1− RECYCT). Finally, the puffing surface, which in
the experimental setup is on one of the two targets
(cylinder basis), is inside the west boundary of the
plasma grid and required some care to be implemented
in the code. A dedicated transparent surface was
included in EIRENE grid (shown in green in the inset
in figure 5), from which we prescribed the puffing
strength.

Radial transport is largely dominated by turbu-
lence, which cannot be modelled self-consistently in
SOLPS. For this reason, a diffusive ansatz for the tur-

bulent flux is usually adopted, where the values of the
diffusion coefficients are treated as free parameters and
are adjusted to match experimentally measured plasma
profiles.

Table 2. Radial transport coefficients, pumping albedos and
overall absorbed electron power considered in this work.

Case
Dan

n , Dan
p

[m−2s−1]
χan
e , χan

i
[m−2s−1]

P ext

[W]
RECYCT

(a) 1.5 1.5 800 0.985
(b) 1.5 1.5 800 0.970
(c) 1.5 1.5 800 0.990
(d) 0.5 1.5 800 0.985
(e) 2.5 1.5 800 0.985
(f) 1.5 1.5 2400 0.985

The power delivered by the RF source was
modelled as an additional, user-prescribed, term in
the electron energy equation. A precise description of
the overall power delivered to the plasma as well as
the knowledge of the spatial distribution of the power
density require a dedicated study, and it is beyond
the scope of the present article. In this contribution,
we assume that the power density is constant in the
radial direction and Gaussian distributed in the axial
direction, that is:

Sext
e = P ext exp

[
− (z − zres)

2

σ2

]
(17)

The mean value, zres, of the Gaussian is fixed at
the theoretical resonance location and the variance,
σ2, is fixed to 0.1 m. The overall power delivered
by the source and actually absorbed by the electron
population, P ext, is treated as a free parameter,
since it is not currently experimentally measured, as
mentioned in § 3. In this work, a sensitivity study of
the impact of the pumping efficiency, radial transport
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coefficients and external power is presented, according
to the scheme detailed in table 2.

As regards the boundary conditions, at the two
targets location, standard Bohm sheath conditions
were set. On the axis of symmetry (i.e. the machine
axis), we assumed vanishing fluxes of all the plasma
parameters. Finally, at the north boundary of the B2.5
simulation domain we imposed a prescribed value for
the decay lengths of the plasma parameters: λne

=
0.05 m, λTe = 0.05 m, λφ = 0.1 m and λTi = 0.1 m
for the electron density, electron temperature, plasma
potential and ion temperature. For the momentum
equation, we assumed instead a vanishing value for the
parallel momentum flux.

Due to the low plasma density (∼ 1017m−3),
the mean free path expected for Coulomb collisions
among electrons and ions in Gym is comparable with
the characteristic length of the device. The fluid
equations implemented in B2.5 are derived for the high-
collisionality limit and, strictly speaking, should not
be applied in such low collisionality regime. For this
reason, kinetic corrections to the parallel transport
coefficients are to be taken into account [21]. This is
done in SOLPS by adding flux limits to the electron
and ion fluxes [48]. The value for the electron and ions
heat flux limit was set to 0.15, while viscosity, thermo-
electric coefficient and friction force flux limits are set
to reference value 0.5. The effect of different values of
flux limits was also evaluated and it was found to be
negligible.

Finally, for all the simulations that we performed,
the following set of Ar reactions were included:

e− + Ar → Ar+ + 2e−

e− + Ar+ → Ar

Elastic scattering between Ar and Ar+ was not
considered in this work, since the corresponding
reaction rates are not included in the available
EIRENE databases. All the remaining charge states,
from Ar2+ to Ar18+, were also neglected. Indeed,
the electron temperature in GyM is rather low (below
8 eV). This, in combination with the low electron
density (below 1017 m−3), leads to a low probability
for the ionisation of the higher Ar charge states. The
validity of this assumption was also checked with a
dedicated simulation where the Ar2+ was included,
using the same input as for case a) of table 2, observing
that the ratio nAr2+/nAr+ ∼ 0.1.

5. Results and discussion

5.1. B2.5-EIRENE coupled simulations

An analysis of the effects of the absorbed electron
power, transport coefficients and pumping efficiency
was performed using the B2.5-EIRENE coupled version

of the code. Simulated radial profiles of n, Te, φ
and Ti at the axial position of the Langmuir Probe
are shown in figure 6. The details of the simulations
are reported in table 2. Case a) is the reference
one. b) and c)(orange curves in figure 6) show the
effect of a lower and higher RECYCT, respectively.
Cases d) and e) (green curves in figure 6) do the same
for the particle diffusion coefficients, Dan

n and Dan
p .

Many transport codes, such as SOLPS, approximate
turbulent transport via effective diffusion of particles
(Dan

n andDan
p ) and heat (κe⊥ = χan

e n and κi⊥ = χan
i n).

The values of the anomalous transport coefficients
are free parameters of the code, used to match the
experimental radial profiles [49]. In our simulations the
effects of the particle diffusion was evaluated varying
Dan
n and Dan

p , while the heat diffusivity coefficients
χan
e and χan

i were fixed at constant values. Finally,
case f) shows the effects of an increased absorbed
electron power. First of all, it can be noted that
for all our simulations radial profiles show a rather
similar behaviour. The electron density is a monotonic
function of the radial position, peaked at the machine
axis and slowly decreasing towards the vessel chamber.
Electron temperature and plasma potential share a
similar profile: they peak near the vessel boundary,
where the n is lower. The Te profile resulting from
the simulations is seen to be strictly influenced by the
electron power distribution given as input [18]. In our
case, the source is a RF magnetron and the heating
mechanism is by electron cyclotron resonance. We
guessed a power density, which is radially constant
with a Gaussian profile along the axis. This allows
to obtain the SOLPS radial Te profiles of figure 6
which increase alongR. To demonstrate that the power
density given as input to the code primarily determines
the Te profile, simulations with a different modelling
of the source were carried out. We found that, for a
radially Gaussian peaked at the cylinder axis, the Te
profile monotonically decreases with R. The similarity
between Te and φ profiles can be understood by
considering that, under radial ambipolarity conditions,
jy = 0, the following expression can be obtained
for Ar plasmas φ(r) = 4.6 kbTe(r)/e [21]. This
relationship has indeed be checked for the simulated
profiles, showing that the σan is low enough not to
influence the final simulation result.

Cases a), b) and c) were performed changing only
the value of the recycling coefficients of the pumping
surfaces. It can be noted that this parameter has
a great impact on the simulated radial profiles. For
the lowest value, case b), of the recycling coefficient
(that is, when the neutrals absorption probability
is the highest) n reduces significantly, while Te and
φ increase, with respect to case a). This can be
reasonably understood as due to the fact that the
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Figure 6. Effects of the neutral pumping efficiency (top), radial transport coefficients (middle) and absorbed power (bottom) on
the simulated radial profiles of the electron density, electron and ion temperature, and plasma potential. Different colors and line
styles correspond to the the different cases in 2. The profiles extend from the machine axis (y = 0) to the lateral side of the cylinder
(y = 0, 125 m). The axial position at which radial profiles are taken correspond to that of the LP (see figure 5).

amount of power delivered is equal for all the three
cases, but the neutrals in the system is lower in case
b) and highest in case c). For case c), thus, the
energy absorbed by the electrons due to the external
RF source is quickly lost by ionisation of neutrals,
whose density is higher for case c). As a consequence
of the increased electron density, one can notice that
the ion temperature also slightly increases for case c).
Since ions are not directly heated by the RF source,
their only relevant energy source comes from electron-
ion collisions (energy equipartition), whose frequency
scales proportionally to the plasma density.

In cases a), d) and e) only the radial diffusion
coefficients where varied. Dan

n and Dan
p were varied

simultaneously, so that the overall effect of radial
particle diffusion is taken into account. Comparing
the black and green lines in figure 6, one can notice
that the greatest impact of this parameter is on the
shape of the simulated radial profiles, while the values
of electron density, temperature and plasma potential

at the axis are left unchanged. In particular, n is
almost flat up to larger radial positions when the radial
transport coefficients are lower - case d), and Te and
φ maxima reach lower values. For higher diffusion
coefficients - case e), the opposite trend is obtained,
consistently with the fact that a larger number of
particles is removed radially.

Cases a) and f) show the effect on the plasma
solutions of an increased power absorbed by the
electron population. One can notice that, as
a consequence of external power variations, the
strongest impact is on the electron density, while
the electron temperature and plasma potential are
almost unchanged. A rise in the plasma density as
a consequence of an increased ECR heating power can
be understood as due to the fact that, with a fixed
amount of neutrals in the system, the excess in the
electron energy is efficiently dissipated in collisions
with Ar atoms leading to their ionisation. This is
consistent since the overall degree of ionisation in the
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GyM plasma is rather low.

5.2. Two-point analysis of the simulations results

Figure 7. Particle (top) and electron energy (bottom) source
terms for the cases reported in table 2. The Ar+ interaction term
in the graph at the bottom is an effective ion recombination rate.

To provide additional physical insight to the
analysis performed in section 5.1, here we present
a two-point analysis based on the SOLPS-ITER
equations [21, 19]. Here, we integrate the steady
state density and electron temperature conservation
equations along the axial direction for each flux tube,
that is the volume between to adjacent flux surfaces. In
this way, we obtain an equality between the difference
of upstream (west target, u) and downstream (east

target, d) fluxes and all the remaining terms, which
are treated as sources. Applying these ideas to
equation (2) we obtain:

dA⊥Γx|du = −
∫ d

u

1√
g
∂y

(√
g

hy
nvy

)√
gdxdy+

+

∫ d

u

Snn,i
√
gdxdy

(18)

where dA⊥ = hyhzdy is the perpendicular cross-
sectional area of the flux tube, and Γx = bxnvx. This
procedure is performed for each flux tube and the
resulting contribution are summed over, to obtain the
total particle balance. The same is done also for the
electron energy.

The graph on top of figure 7 shows with different
colors each contribution on the right-hand side of
equation (18), while the bottom graph represents the
corresponding analysis for the electron energy balance,
starting from equation (5).

From the density analysis, it can be noted that
the strongest (positive) source term in the continuity
equation is represented by the electron ionisation of
neutral Ar atoms in Ar+. Moreover, we can see that
ionisation is stronly influenced by the external power
absorbed by electrons: this source term (shown in light
blue in the top part of figure 7) is almost constant for
cases a)−e), where the external ECR power is fixed at
800 W, and it increases significantly for case f), where
the external power is increased to 2400 W. Density
and pressure-driven diffusions act instead as negative
source terms. Recombination has not been reported
since negligible in all simulations. Cases a) - e) show
almost the same overall balance between ionisation and
radial transport. Other slight differences that can be
noted in the trends of figure 7 may be explained with
reference to table 2. For example, lower and higher
radial transport contribution shown in case d) and e)
respectively, is consistent with the imposed values of
Dan
n and Dan

p , also if compared to the reference case
a). On the other hand, case c) shows higher ionisation,
since more neutral atoms are present in the system to
be ionised, due to lower pumping efficiency.

Similar considerations apply also for the electron
energy balance, shown in figure 7 at the bottom. The
strongest interactions for cases a)− c) occurs with the
neutral Ar atoms, while the remaining contributions
play only a minor role. Specifically, cases a)−e) show a
rather similar energy balance. Case f), where only the
absorbed electron power was increased, is characterised
by a strong boost in the the Ar+ interaction term.
This quantity includes all the electronic excitation of
Ar+ which ultimately leads to radiative losses and the
ionisation of Ar+ atoms to higher ionisation states,
which was not included in the model.
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5.3. Comparison with experimental results

A first comparison with experimentally available
measured radial profiles of the electron density,
temperature and plasma potential was performed, in
order to test the capability of the code to reproduce
both qualitatively and quantitatively the experimental
data. The experimental data were taken with the
following GyM configuration: i) coil currents fixed to
600 A; ii) gas puff intensity of 1 sccm of Ar; iii) RF
power 1800 W.

For all the considered cases, n, Te and φ are in
the range of the experimental parameters of table 1.
In all the simulations presented, the ion temperature
is always below 0.2 eV, which is consistent with the
fact that only the electrons are heated by the external
power source and the low n, does not allow for an
efficient energy equipartition.
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Figure 8. Radial profiles of the electron density, temperature
and plasma potential, using the same input of case a) but with
the absorbed power reduced to 400 W.

The comparison of the experimental points to
the simulated radial profiles is shown in the bottom
graph of figure 6. One can notice a good qualitative
agreement between measurements and simulations.
Firstly, the monotonic decreasing shape of the
density profile is well captured. The simulated
plasma potential slightly overestimates the increasing
behaviour near the radial boundary with respect to

the experimental profile. Finally, the behaviour of the
experimental electron temperature is well captured by
the simulations at the center and at the border of the
machine, while the experimental dip around r ' 0.05 m
is not properly reproduced. A possible explanation for
this is related to the lack of a detailed modelling for
the ECR source, which leads to the assumption of a
radially constant absorption profile. A more detailed
experimental campaign is planned, using a smaller
spherical LP (2.5 mm radius) to enlarge the set of
available experimental data both radially and axially.
Moreover, a better investigation of the experimental
uncertainty is needed, but from a first estimate values
∼ 1 eV are consistent with the experimental technique
used. Finally, dedicated studies on the RF wave
propagation and absorption into the plasma should be
considered.

Considering the bottom-left graph in figure 6,
quantitative discrepancy is seen in the electron density
up to a factor of 2, while the values of electron
temperature and plasma potential are quite well
captured. To better reproduce the density value
at the axis, according to the results of the analysis
reported in the previous section, we performed an
additional simulation with the same parameters as
for case a) of table 2, but we reduced the absorbed
electron power to 400 W. Radial profiles of the electron
density, temperature and plasma potential are shown
in figure 8 and compared with experimental data.
Here a satisfactory quantitative agreement between
all simulated plasma quantities is clear. However,
these good results concerning plasma quantities are
obtained at the expenses of a factor ∼ 20 discrepancy
on the neutral pressure. Indeed, from the code we
obtained a neutral pressure of pn = 2.78× 10−6 mbar,
which strongly underestimates the experimental value
of pexp = 54.6 × 10−6 mbar. We address this issue in
the following section.

5.4. EIRENE standalone simulations

In order to better investigate the discrepancy in the
neutral pressure, we fixed the RECYCT coefficient
with dedicated simulations. We used EIRENE in
standalone mode to simulate the pre-plasma condition,
providing to the code a background of Ar gas, with a
negligible degree of ionization. In this way, the only
code free parameter is the pumping surfaces albedo. To
match the experimentally measured neutral pressure
for a puffing strength of 1 sccm, the recycling coefficient
of the pumping surfaces was set to RECYCT =
0.99682. Having fixed RECYCT to this value, the
gas puff was then varied in the range 0.5− 5 sccm and
the simulated neutral pressure at the gauge location
shown in figure 5 compared with experimental data.
Results are shown in figure 9. As can be seen,
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Figure 9. Neutral pressure at the gauge location for different
values of the Ar puffing strength.

a good qualitative and quantitative agreement was
obtained. For low gas-puff values (below 2.5 sccm),
the simulated pressure (light blue line) shows a
linear trend, in agreement with the experimental data
(red diamonds). For higher values of the puffing
strength, the experimental pressure is slightly below
the simulated linear trend. This is due to the fact that
our EIRENE model does not include neutral-neutral
collisions. Additional simulations were thus performed
including Ar−Ar elastic collisions in the basic set of
atomic reactions considered by EIRENE and treated
with the BGK approximation [39]. As can be seen from
the violet line figure 9 the inclusion of elastic Ar−Ar
allows to slightly decrease the simulated pressure,
better recovering the experimental points. However,
it should also be noted that no significant deviation
occurs for 1 sccm of Ar, that is for the reference case
that we considered in this work. The next step will be
the adoption of the recycling coefficient fixed with the
aforementioned procedure in B2.5-EIRENE coupled
simulations. This will be the object of a future work.

6. Conclusions

The SOLPS-ITER code was applied in cylindrical
geometry and for the simulations of Ar plasmas in the
linear machine GyM. Non-hydrogenic plasmas are of
great interest for PMI studies in LPDs. Furthermore,
in its first phase, ITER will operate in pure Helium
and thus these kind of simulations are of interest also
in tokamak applications. Even though the code was
developed to simulate the edge plasma in tokamaks, in
this work we demonstrated that it can be also adapted
to investigate the plasma behaviour in LPDs, obtaining
results in satisfactory agreement with experimental
data. We furthermore showed that pure Ar plasma
can be simulated with SOLPS-ITER. This was by no

means straightforward, since the code is meant for
the simulation of H-dominated plasmas, where heavier
species are treated as impurities as usually occurs in
tokamaks.

Nevertheless, the analysis of the code equations
highlighted that the physical model for non-hydrogenic
plasmas is not complete and need further studies.
Further perspectives of this work are related to the
development of an integrated modelling for the study of
PMI in LPDs. In this respect, Ar background plasmas
retrieved from transport simulations will be used as
input for material-specific codes such as ERO2.0 to
study plasma induced modifications in the materials.
Moreover, simulations of hydrogen or deuterium
plasmas in GyM are foreseen. In the enriched picture
which derives from the molecular nature of this gas, a
tool like SOLPS-ITER becomes very important for the
prediction of plasma composition in terms of atomic
and molecular ions content. Being able to simulate
plasma composition and particle, momentum and heat
fluxes is the first step toward the development of
a numerical integrated approach to interpret PMI
experiments in LPDs.
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