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Abstract—In general, humans follow a routine with highly
predictable daily movements. For instance, we commute from
home to work in a daily basis, and visit a selected set of places
for commercial and recreational purposes during the night and
weekends. The use of mobile phones increases when commuting
in public transportation, during lunch break and at night. Such
regular behavior creates predictable spatio-temporal fluctuations
of traffic patterns. In this paper we introduce a matheuristic
for dynamic optical routing that can be implemented as an
application into a software-defined mobile carrier network. We
use machine learning to predict tidal traffic variations in a
mobile metro-core network, that allows to solve Off-line mixed
integer linear programming instances of an optical routing
(and wavelength) assignment optimization problem. The optimal
results are used to favour near optimal On-line routing decisions.
Results demonstrate the effectiveness of our On-line methodology,
with results that match almost perfectly the behavior of a network
that performs optical routing reconfiguration with a perfect,
oracle-like, traffic prediction and the solution of an optimization
problem.

Index terms—Network optimization, Energy efficiency, mobile
metro-core network, dynamic optical routing, software-defined
networking, machine learning, prediction, artificial neural net-
works.

I. INTRODUCTION

TRANSPORT networks often suffer from resource ineffi-
ciency due to over-provisioning. It’s a common practice

to perform static resource allocation based on the peak-hour
demand, because the current operational processes used by
the network operators are too slow to dynamically allocate
the resources following the daily demand variations. Over-
provisioning leads to poor energy efficiency and high op-
erational expenses (OpEx), as the resources are sub-utilized
outside of the peak hour. Moreover, as the peak-hour to
average demand ratio continue to increase [1], the static
resource allocation lead to higher and unnecessary OpEx and
capital expenditures (CapEx).

From a survey done to 47 Communication Service Providers
(CSP)s, 2017 is the year when most the CSPs will experi-
encing the decline of revenue-per-bit below the cost-per-bit
[2]. Luckily, there are new technologies Telecom operators
can nowadays adopt to introduce automation and real-time
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flexibility in their manually configured and static network sys-
tems: Software Defined Networking (SDN) [3] and Network
Function Virtualization (NFV). These technologies are able to
provide programmability and agility to the Telecom industry
[4], reducing costs and improving profits, while meeting the
requirements of their customers.

Nevertheless, due to the highly predictable daily movements
of large populations of citizens in urban areas [5], mobile
data traffic1 exhibits repetitive patterns with spatio-temporal
variations. This behavior has been recently compared to the
rise and fall of the sea levels, known as tides. Thus, it was
called the tidal traffic scenario [6]. Spatio-temporal traffic
variations were first studied for planning and energy efficient
operation of cellular networks [7]. We will show that the
dynamic optimization based on predictive models is very
effective in achieving large OpEx savings in a tidal-traffic
context.

One of the techniques enabled by SDN is the use of dynamic
resource allocation to follow the variation of traffic demand
in the network. Its has been recently observed that in the case
of Mobile cellular Networks such variations happens not just
in time, but also in space, due to the mobility of the users.

In this paper we introduce a matheuristic (i.e. interoperation
of heuristic and mathematical programming) for dynamic
network optimization. Traffic is predicted on different spatial
locations using a machine-learning algorithm: predicted traffic-
demand is then used to optimize the network at various hours
during the day, so to adapt resource occupation to the actual
traffic volume. The time required by optimization is not an
issue, since prediction allows to start performing optimization
computation in advance (Off-line). Such feature makes the
solution reported suitable to be implemented as an SDN
application for 5G scenarios. We have chosen as use-case
the metro infrastructure of a mobile operator, and in partic-
ular the objective of the resource optimization is the optical
metro network used as backbone for the mobile service. The
matheuristic here proposed improves the methods described in
[8], [9] by moving complex calculations to an Off-line phase
thanks to the use of traffic prediction. In consequence, the new
Algorithm introduces a very light overhead to make (On-line)
near-optimal routing decisions.

1Mobile data traffic refers today to data traffic over cellular networks such
as 2G, 3G and 4G radio systems. It is important to notice that at present,
mobile data traffic does not include the traffic from wireless systems such
as Wi-Fi, which provides a “wireless” access to a fixed Internet connectivity.
5G will be the first mobile technology taking into account the convergence
with fixed wireless (fixed and mobile convergence). However, in this paper
we will not consider traffic from Wi-Fi access points, as these sources were
not present into the dataset we have used.
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The paper is organized as follows: section II presents related
works. Section III provides a primer on traffic prediction.
Then in section IV introduces the matheuristic for dynamic
optical routing. Section V describes the proposed traffic pre-
diction method. Section VI defines the Mobile Carrier Network
(MCN), and describes the dataset that was used. Numerical
results are reported in section VII. Finally, a discussion on
open issues and the conclusions are presented in sections VIII
and IX, respectively.

II. RELATED WORKS

In [5], a human mobility analysis of a MCN shows that the
user mobility is highly predictable (from 80% to 93%), due
to the inherent regularity of human behavior.

The relation between human mobility and time-dependent
traffic fluctuations in the network has been highlighted in
Ref. [10], a study about Wi-Fi networks2. This study however
neglected the spatial variations.

The energy-efficiency performance of networks that can
adapt to traffic load variations in time was analyzed in [11].
Since base stations are the most power-hungry devices in
MCN architectures, dynamic resource allocation and energy
efficiency efforts in MCN are mainly focused on the RAN (see
Fig. 4) [12], [13]. Also in these works on resource allocation
and energy efficiency optimization, only the temporal fluctua-
tion of an overall traffic demand is considered. However, such
homogeneous traffic matrix is far from the behavior of traffic
load in a metropolitan area.

Tidal traffic may create spatio-temporal variations that fol-
low a regular pattern given by the human commutation from
residential to working areas. Tidal traffic was first considered
for optimization of RANs, considering a small cluster of MCN
cell sites [7]. Then, in [14] tidal traffic was used to proposed
energy efficient management for passive optical networks.
Recently, tidal traffic effect was considered in [6], [15] to
enhance energy efficiency in metropolitan optical networks.
A limitation of these works, is that they assumed mainly two
basic tidal traffic patterns: residential and business. However,
the social composition of metropolitan areas is more complex
than just residential and business, and multiple social functions
or services can coexist in the same location.

In [8], [9] was considered the MCN traffic from several
different locations in the urban area, thus being able to capture
a plurality of different types of traffic patterns. In [8], we use
a real data set to study the spatio-temporal traffic fluctuations
at the cell sites and at the mobile metro-core network of
a Chinese City. Tidal traffic patterns were extracted as the
average values of the historical data, and were used to obtain,
in advance (Off-line), an optimal planning to reconfigure the
mobile metro-core network at every hour of the day. The
optimal planning was based on two Mixed Integer Linear Pro-
gramming (MILP)s formulations for dynamic optical-resource
allocation that minimize energy consumption, while providing
1+1 protection.

2Though Wi-Fi network traffic is not regarded as mobile data traffic, the
two network scenarios are very similar.

The prediction-based optimization of [8] provide a slightly
over-provisioned resources. In order to adapt to the actual
real-time traffic, in [9] we proposed an On-line optimization
matheuristic that takes the optimal planning results (using
formulations proposed in [8]) to guide On-line routing de-
cisions. While in [8] was considered to perform hourly recon-
figurations, [9] proposes a scheduling heuristic to calculate
a limited set of reconfiguration time points. The proposed
scheduling provides a good trade-off between reduction of
routing changes (to avoid disruption) and resource allocation
efficiency (to increase energy savings).

A. Paper Contribution

In our previous work [9], both the Off-line planning and the
reconfiguration time points calculation were performed once
for multiple days, using average values of the historical data
as the tidal traffic pattern of the network. In this paper, we
introduce a machine learning-based traffic-prediction method
to improve the techniques proposed in [8] and [9].

Thanks to the use of traffic prediction, the new matheuristic
(Algorithm 1) reduces the complexity and required com-
putational time of the On-line phase: in [9]) Algorithm 2
computes optimal weights in the On-line phase, while in this
work such weights are computed Off-line. Moreover, we have
split the Off-line phase into two phases in order to better
follow the traffic changes and recompute the Off-line Planning
dynamically.

The proposed method (Algorithm 1) is composed by three
phases:
• Off-line Scheduling: predict the traffic and schedule the

reconfiguration time points for the next 24 hours (see
subsection IV-A).

• Off-line Planning: predict the traffic of the next reconfigu-
ration interval, solve the resource allocation optimization
problem for the maximum value of traffic in such interval,
and calculate the optimal weights for each predicted
demand (see subsection IV-B).

• On-line Routing: build optimal-weighted graphs (using
results of Off-line planning) to compute On-line routing
decision with greedy algorithms (see subsection IV-C).

While in [8], [9] we used a dataset from a middle size city
of China through a collaboration with a Chinese partner. In
the current work we use a public dataset from an European
city, more specifically the city of Milan, Italy (presented in
section VI).

III. PRIMER ON TRAFFIC PREDICTION

Before presenting the proposed matheuristic approach, in
this section we provide a short introduction to traffic prediction
models. Then in section V we will describe the machine
learning-based model that we have proposed in this work.

Traffic prediction is a core process for network optimization
decisions and a fundamental branch of machine learning.
In the literature there are several prediction methods such
as: ARIMA (Auto-Regressive Integrated Moving Average),
F-ARIMA (Fractional-ARIMA) [16], [17], SVM (Support
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Fig. 1. Dynamic optical routing matheuristic for software-defined mobile
metro-core network

Vector Machine), MLP (Multi-Layer Perceptron) and MLPWD
(Multi-Layer Perceptron with Weight Decay) [18].

Performances of prediction algorithms are based on the type
of data input, so we can not know if a method is better than
the other until we do not try different kind of input data-sets.
ARIMA models are generally applied to stationary time series
with no trends or seasonality information making a regression
on previous samples [19]. MLP and MLPWD are part of
the Artificial Neural Network (ANN) family of algorithms.
Compared to other regression methods, the ANN allows more
flexible relationships and accuracy to stationary time series
with no trends or seasonality information making a regression
on previous samples [20].

Another good approach is to mix different methods as in
[17], where authors built a hybrid model. They concluded that
using ARIMA and ANN, for non-linear time series, is more
efficient than using just one method. Using three different
datasets (the Wolf’s sunspot data [21], the Canadian lynx data
[22] and the British Pound/US Dollar exchange rate data [23]),
the author concluded that a mixed approach to the prediction
can achieve very good results.

There are numerous approaches that have emerged through
machine learning, which try to optimize routing based on
traffic prediction. The authors of [24], proposed to embed a
reinforcement learning module into each node of a switching
network to learn topology and traffic patterns. Results of [24],
show that as load increases, the learning algorithm continues
to route efficiently. In [25], the authors proposed a pre-design
mechanism for routing efficiency enhancement that is based in
three aspects: flow feature extraction from user history data,
prediction and route selection based on multi-constraint weight
assignment. Instead, in [26] was proposed an on-line machine
learning task that estimates the type of traffic flow and apply
a very simple routing policy: elephant flows (large) are routed
via a least congested path, and mouse flows (small) are routed
with ECMP (Equal Cost Multiple Path) algorithm.

IV. DYNAMIC OPTICAL ROUTING MATHEURISTIC

In this section, we give a description of the matheuristic
depicted in Fig. 1 and described by Algorithm 1. The idea
behind our proposal is to take advantage of SDN and traffic
predictability to optimize On-line dynamic routing decisions.

Algorithm 1 On-line Routing Matheuristic
Phase 1 - Off-line Scheduling
It is performed on a daily basis, and it is based on the historical
traffic data-set h (observation windows until the current day)

1: Predict the traffic demand of the next 24 hours (ĥ24)
2: Compute T : set of reconfiguration time points (|T | < 24) using

scheduling algorithm proposed in [9]
Phase 2 - Off-line Planning
It is performed (δ seconds) before each reconfiguration time point
t ∈ T . It uses historical hd and current h̄td traffic demands to
predict traffic demand of next reconfiguration time point ĥtd and
obtain the optimal resource allocation of the network in advance.

3: for t ∈ T do
At t− δ . δ seconds before the reconfiguration point

4: for d ∈ D do . D Set of demands
5: Predict ĥtd: demand for next reconfiguration point using

machine learning-based approach of section V
6: Solve Optimization problem using VWP or WP (subsec-

tion IV-B), for ĥtd to get optimal planning Std
7: Given optimal Std for predicted demand ĥtd

Compute Ctdr: the weights of the optimal-weighted graph
for each connection request r̂td = dĥtd/Le, where L is the
line rate (subsection IV-B3)

Phase 3 - On-line Routing
It is performed at each reconfiguration time point. It uses
Ctdr to guide optimal routing while running min-cost path alg.
At t . At the reconfiguration time point

8: for d ∈ D do
Given the current traffic demand h̄td and Ctdr

9: for r̄td ∈ {Real-time requests belonging to h̄td do
10: Compute routing using a greedy algorithm based on

Bhandari, or on modified Bhandari [9] for VWP and
WP, respectively.

In the following sections, we describe more in details the
proposed machine-learning traffic prediction (Sec. V); and the
datasets (Sec. VI) used to test our methodology.

A. Phase 1. Off-line scheduling

Performing hourly reconfigurations, is not well accepted by
service operators because it leads to service disruption and
instability of distributed routing algorithms. In section VIII
we discuss how to update network rules to perform congestion
free reconfiguration.

Phase 1 is done on a daily basis to reduce the reconfiguration
time points (|T | < 24) by scheduling reconfiguration events
into specific time points t ∈ T , creating a trade-off: a decrease
of the reconfiguration time points |T | produce an increase
of bandwidth over-provisioning (in consequence, increasing
power consumption).

Off-line Scheduling phase uses the machine learning-based
traffic prediction model proposed in section V to run the
scheduling algorithm over a 24 hours predicted traffic demand
ĥ24.

Given the traffic matrix of an specific day and lower thresh-
old of the bandwidth allocation efficiency (expected efficiency
η̄), The scheduling algorithm is a Simulated Annealing-based
heuristic method that obtains a reconfiguration scheduling (T )
by finding the minimum number of reconfiguration time points
(|T |) with an expected allocation efficiency (Total Demanded
Bandwidth ÷ Total Allocated Bandwidth) [9].



4

B. Phase 2. Off-line Planning

Phase 2 is the most complex and time consuming phase
of our matheuristic. Thanks to the use of network demand
forecast obtained with the machine learning-based prediction
presented in section V, Phase 2 is also done an Off-line.

It is performed before each reconfiguration time point t ∈ T
to obtain the optimal resource allocation Std for each predicted
traffic demand d ∈ D. A short-term traffic demand prediction
ĥtd of the next reconfiguration time point t ∈ T is used to:
• Solve an optimization problem to obtain the optimal

resource allocation Std for each predicted traffic demand
d ∈ D during the t.

• Std is used to calculate a set of optimal weights Ctdr that
will be use to guide the On-line routing phase decisions.

1) Optimization Problem: The Off-line planning problem
consists of finding the set of optical paths that satisfies the
spatio-temporal-dependent demand matrix of a specific time
period t using 1+1 protection, with the objective of minimizing
the energy consumption of the optical layer of the mobile
metro-core network. In this work we only considered the
power consumption of optical layer. The power consumption
data of components are based on the models given in [27].
In the following, we introduce two MILP formulations that
minimize the energy consumption of the MCN by activating
and deactivating resources.
• Virtual Wavelength Path (VWP) at each OXC all wave-

lengths are converted to the electrical domain, allowing
to perform wavelength conversion and traffic grooming to
increase wavelength utilization. In VWP, the (virtual) op-
tical path is not constrained to use the same wavelength,
it can use different wavelengths on each distinct link.

• Wavelength Path (WP) at each OXC wavelengths can
either be converted to electrical domain or be switched at
the optical domain. WP takes advantage of the small dis-
tances in the metro-core network to establish fully trans-
parent lightpaths with optical bypass to avoid optical-to-
electrical (OE) and electrical-to-optical (EO) conversions
in transit nodes3. However, by dropping the wavelength
conversion capability, in WP an optical path is con-
strained to use the same wavelength on every link, the
so called wavelength continuity constraint.

2) Pre-calculation of k pairs of link disjoint path (K-
PLDP): VWP and WP are multi-commodity flow problems
known to be NP-complete. Therefore, we have used path
formulations in order to simplify these problems and to solve
them in a limited amount of time. In path formulation, instead
of considering all possible paths, only a reduced set of k
candidate path pairs with 1+1 protection is pre-calculated for
every demand. For each demand d the k pairs of link disjoint
path are calculated.

3) Optimal Weighted graph computation: In the following,
we briefly describe the optimal weights computation for VWP
and WP models. For WP model the On-line phase must
perform routing and wavelength assignment (RWA) with a

3Regeneration is normally needed after 1500 km for non-coherent wave-
length channels at 10 Gbit/s [27].

TABLE I
OPTIMAL LINK WEIGHTS (cetdr̂ ) FOR VWP

Given the r̂-th connection request of demand d at time t
Edge e Expected Unexpected
condition cetdr̂|r̂

t
d ≤ r̄

t
d cetdr̂|r̂

t
d > r̄td

Assigned 1 Not possible
Available (ω + 1) 1
Available-inactive (ω + 1)∆ ∆
Unavailable M M
M: big M, ω = Length of backup path of r̂, d, t
∆: fiber-to-wavelength activation cost ratio (∆ > 0)

minimum cost algorithm, that can be done using a layered
graph G′ .
• Optimal weights for VWP model For each r̂ ∈ {1..r̂td}

belonging to demand d at reconfiguration point t, a set
of weights Ctdr is generated. Table I summarizes the
possible link weights cetdr̂ that can be assigned to the
vertex-weighted graph Ĝ. Based on the current traffic
demand h̄td and the predicted traffic demand ĥtd, there
are two scenarios: i) Expected (r̂td ≤ r̄td): all requests r̂
are optimally planed. ii) Unexpected (r̂td > r̄td): a sub-set
of the requests are optimally planed {r̂|r̂ ≤ r̄td}, while
the rest are unexpected {r̂|r̂ > r̄td}. Based on the Off-line
planning results, for each request r̂ ∈ {1..r̂td} there are 4
possible link e ∈ E conditions:

– Assigned: e belongs to the r̂-th pair of paths.
– Available: e has at least 1 free wavelength in active

fibers.
– Available-inactive: e has at least 1 inactive fiber.
– Unavailable: e has no free wavelengths.

• Optimal weights for WP model
In WP model wavelengths need to be assigned to the
lightpaths. Therefore, we use the equivalent weighted-
layered-graph (see Figure 2) transformation Ĝ′ proposed
in [28] to reduce the RWA to a minimum-cost path
algorithm. We extend this method the RWA with 1+1
protection by finding a pair of edge-disjoint paths in Ĝ′.
Given the graph G(V, E) (defined in section IV-B),
its equivalent layered-graph representation is:
G′(V ′, E ′,Vs,As,Vd,Ad), where:

– Each node and link from G are replicated WF times
as virtual nodes vλf ∈ V ′ and links eλf ∈ E ′; for
each wavelength λ ∈ {1..W} on every fiber f ∈
{1..F}.

– For each node in G two dummy nodes are added to
map source and destination of the demands d ∈ D.
Dummy source node vs ∈ Vs related to node v ∈
V has only outgoing dummy-arcs As towards the
virtual replicas of v (vλf ). Dummy destination node
vd ∈ Vd, has only incoming dummy-arcs Ad from
the vλf .

For each r̂ ∈ {1..r̂td} belonging to demand d at the
next reconfiguration point t, a set of weights C′td is
generated. Table II summarizes the 10 possible weights
c′
e′t
dr̂ that can be assigned to virtual links (eλf , hereafter e′

for simplicity) of the vertex-weighted layered-graph Ĝ′.
There are two type of requests: expected and unexpected
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TABLE II
OPTIMAL VIRTUAL LINK WEIGHTS (ce

′t
dr̂ ) FOR WP

Given the r̂-th connection request of demand d at time t
Virtual Link Expected Unexpected
e′(eλf ) condition ce

′t
dr̂ |r̂

t
d ≤ r̄

t
d ce

′t
dr̂ |r̂

t
d > r̄td

Working σ Not possible
Backup 1 Not possible
Available (ω + 1) 1
Inactive (ω + 1)∆ ∆
Unavailable M M
M: big M, σ << 0, ω = Length of backup path of r̂td
∆: fiber-to-wavelength activation cost ratio (∆ > 0)

demands. Based on Off-line optimal planning St, there
are 5 possible conditions of links e′ ∈ E ′:

– Working: e′ belongs to the r̂-th working path of d.
– Backup: e′ belongs to the r̂-th backup path of de-

mand d.
– Available: e′ is a free wavelength of an active fiber.
– Inactive: e′ belongs to an inactive fiber of e.
– Unavailable: e′ is assigned to other request or de-

mand.
In the layered graph Ĝ′, the cost of dummy arcs is always
equal to zero ca = 0.

C. Phase 3. On-line Routing

Not by chance, phase 3 is the fastest phase of Algorithm 1,
allowing to take routing decisions On-line4.

On-line routing phase is based on a heuristic method that
favors optimality by running a minimum cost algorithm on
a set of optimally vertex-weighted graphs Ĝtdr that are built
with Ctdr. The minimum-cost path algorithm computes a pair
of link-disjoint paths for each request r̂ ∈ {1..r̂td} of each
demand d ∈ D at reconfiguration time point t ∈ T .

For VWP we use Bhandari’s pair of link disjoint paths
algorithm [29]. In WP, due to the wavelength continuity
constraint, we need to perform routing and wavelength assign-
ment (RWA) with a minimum-cost algorithm. This is possible

4In our results the On-line Routing phase obtains the routing decisions in
less than 60 µs

using a layered graph G′ (see Figure 2), where each link
of the original graph G is replicated WF times. However,
virtual-edge disjointness in G′ do not guarantee physical edge
disjointness in G. Thus, in WP it is used a modification of
Bhandari’s link-disjoint path algorithm that can be applied to
the layered graph [9].

V. MACHINE LEARNING-BASED TRAFFIC PREDICTION

Our approach is to use forecasted traffic load to calculate
in advance the best resource allocation in the optical metro
network to reduce its energy consumption. To obtain the traffic
forecast we deployed a machine learning-based model.

In machine learning, an ANN is a network inspired by the
central nervous systems of animals, which are used to estimate
or approximate functions that can depend on a large number
of inputs that are generally unknown [20]. We model a feed
forward neural network with the aim to forecast from one to 24
hours of traffic demands for each base station (or aggregation
ring node, see Fig. 4) of the mobile network operator.

Each time we describe a neural network algorithm we will
typically specify the Architecture, the Activity rule and the
Learning rule.
• Architecture: the architecture specifies which variables

are involved in the network and their topological rela-
tionships. For example, the variables involved in a neural
network might be the number of layers, neurons, weights
of the connections between the neurons. Our model is
composed by two layers: one hidden layer with five
nodes, and one output layer with one node, see Fig.3.
The input is composed by six entries:

– is,1 Hour of the day;
– is,2 Day of the week;
– is,3 A flag for holiday/weekend;
– is,4 Previous day’s average load;
– is,5 Load from the same hour of the previous day;
– is,6 Load from the same hour and same day from

the previous week.
The result of the output node ys,1 represents the hour that
we want to predict.

• Activity rule: most neural network models have local rules
and define how the activities of the neurons change in
response to each other. We define the activation function
of the neuron as the sigmoid function, Equation 1, useful
for regression problems:

f(x) =
1

1 + e−x
(1)

where x is the sum of the input weights multiplied by
the output value of the node from the previous layer.
Equation 2 represents the vectorial representation of the
forwarding procedure; Instead, Equation 3 represents its
analytical form:

Y = I ×W (1) ×W (2) (2)

ys,z = f

[
H∑
h=1

wh,z · f

(
N∑
n=1

wn,h · is,n

)]
∀s ∈ [1, S] (3)
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Fig. 3. Architecture of the Artificial Neural Network.

where:
– S, number of samples
– N = 6, number of inputs
– H = 5, number of hidden nodes
– Z = 1, number of output nodes
– I ∈ R[S×N ], each element represents the single input

and it is in the form is,n, where s ∈ [1, S] and n ∈
[1, N ].

– W (1) ∈ R[N×H], each element represents the weight
from input node n to hidden node h, and it is in the
form wn,h, where n ∈ [1, N ] and h ∈ [1, H].

– W (2) ∈ R[H×Z], each element represents the weight
from hidden node h to the output node z, and it is
in the form wh,z , where h ∈ [1, H] and z ∈ [1, Z].

– Y ∈ R[S×Z], each element represents the single
output and it is in the form ys,z , where s ∈ [1, S]
and z ∈ [1, Z].

• Learning rule: the learning rule specifies the way in
which the neural network’s weights

(
W (1) and W (2)

)
change with time. Typically a learning rule is an objective
function that measure how well the network with weights
solves the task. The training process adjusts the weights
to minimize the objective function, using a form of
gradient descent algorithm called Levenberg-Marquardt
[30].

Once trained the model, as showed in section VII-B, we
performed the prediction of the internet traffic and used the
results for the optimization phase.

VI. THE MILAN MOBILE CARRIER NETWORK DATASETS

In a software-defined mobile metro-core network (SD-
MCN), the topology and current state of the network will be
provided by the SDN controller (typically through a REST in-
terface) to the application layer network database, as depicted
in Fig. 1. In the same way, the traffic demand is provided
by the SDN controller to the application layer in order to:
i) perform On-line routing and ii) update the traffic demand
database that is used by the learning process of the prediction
algorithm.

However, in this work we did not have access to a real
and deployed MCN, therefore we collected such databases
manually as described in the following subsections.
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Fig. 4. Reference mobile carrier network (MCN) architecture.

A. MCN Datasets

The MCN data used in this work is composed by the
following two datasets [31].

1) The first one refers to the traffic of voice/sms/data of
Milan city, measured during November and December
2013 [32]. It is the result of a computation over the Call
Detail Records (CDRs) generated by the Telecom Italia
cellular network. CDRs log the user activity for billing
purposes and network management every ten minutes,
creating 144 records for each day. The data-set contains
the following information: Square cell ID (from 1 to
10000), Time interval, Country code, Received SMS,
Sent SMS, Received Calls, Sent Calls, Internet.
We have assumed that the capacity of the MCN cells is
1 Gbps according to recent 4G commercial solutions 5.

2) The second dataset provides the location of 2554 base
stations of TIM (Italy’s incumbent communication ser-
vice provider) deployed in Milan [34], such as: Base
Station ID (from 1 to 2554), Latitude and Longitude.

B. MCN Architecture

In this paper we follow the MCN architecture described
in [8], [9], which is based on LTE current deployment.
However, the same architecture remains valid to support a
future evolution to 5G.

1) The MCN architecture elements: As depicted in Fig. 4,
the MCN is commonly modelled with a three-level hierarchical
architecture, composed by the radio access, the back-haul and
the backbone networks.

The base stations (BS)s deployed on the field provide radio
access. Each BS (comprising a set of cell antennas and an
eNodeB) is connected by a back-haul network segment to an
aggregation node (AN). The ANs are the edge elements inter-
facing the back-haul to the backbone network. The backbone
network is the infrastructure connecting the ANs to the serving
gateway (SGW).

We assumed that the metro backbone is divided into an
aggregation and a metro-core segment, in order to gradually
groom traffic of the metro area from the edges towards the

5Since the beginning of 2016 commercial 4G devices support downlink
data speeds of 1 Gbps [33].
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SGW. The aggregation network is composed by metro optical
rings, each one connecting a subset of neighbor ANs. On every
ring, two ring nodes, called interfacing nodes (IN)s, are used to
interface the aggregation to the core segment of the backbone
network. Each IN is connected to a core node (CN) of the core
network (Fig. 4). The mobile metro-core network is the mesh-
topology fiber infrastructure interconnecting the core nodes
and the SGW. The assumption of mesh topology in the metro-
core is consistent with the current evolutionary trend leading
from ring to mesh in metro areas to reduce latency and increase
reliability [35], [36]. We suppose that each node of the core
network is an optical cross connect (OXC).

The SGW is connected to a packet gateway (PGW) which
provides connectivity towards data center facilities and Internet
Exchange Points (IXP)s. It is important to notice that all
the mobile data traffic must pass through the metro SGW:
therefore the part of network which extends from the SGW to
the PWG and beyond has not been included in this study.

2) The MCN Protection: Given that the connections in the
MCN transports large volumes of traffic to/from aggregation
rings, and should meet service level agreements to offer
carrier grade services, we assumed that these connections
need to be provisioned with 1+1 protection scheme [37]. The
combination of aggregation rings and mesh core, together
with the dual-homed interconnection of each ring to the core,
enables full resilience of the physical infrastructure of the
entire mobile metro backbone against (at least single) failures.
The methodologies proposed in section IV introduce 1+1
protection with a pair of edge disjoint paths, which establishes
the active and backup path on different INs of each ring.
Offering 1+1 protection is still simple, because it can be seen
as the establishment of two link-disjoint dedicated connections
for each request instead of a single path. Moreover, we
avoided the shared path protection scheme to keep the problem
simpler [38].

The MCN topology was synthesized from the real geo-
graphical location of 2554 BSs in Milan city [34], using the
following methodology.

3) Methodology to synthesize the MCN topology:

• RAN: based on BSs location, a clustering algorithm
creates groups of up to 15 BSs with minimum distance
between BSs and AN of the cluster.

• Aggregation rings: based on ANs, a second level of
clustering creates 8 aggregation rings of up to 20 ANs
each. Each aggregation ring has two interfacing nodes
(INs) towards the metro-core.

• Metro-core: it is composed by 16 (8x2) CNs and one
SGW, connected by multi-fiber links (with 80 wave-
lengths per fiber) in a maximal planar graph with degree
6. Finally, we perform network dimensioning by solving a
multi-commodity problem to minimize CapEx, assuming
that every ring is generating traffic at its daily peak. The
multi-commodity flow problem must be adapted to each
model introduced in section IV-B, however to simplify
the presentation, we do not describe them. The resulting
network for WP model is shown in Fig. 5.
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Fig. 5. MCN topology of Milan city, synthesized with methodology reported
in subsection VI-B3 using geo-location of 2554 BSs. Serving gateway placed
at Milan Internet Exchange (MIX). Number of active wavelengths dimen-
sioned for WP model. Aggregation rings (composed by up to 20 aggregation
nodes and two interfacing nodes) and BSs are shown for illustrative purpose.

VII. RESULTS

In this section we present a complexity and time consump-
tion analysis of the proposed matheuristic (Algorithm 1), the
performance analysis of the prediction model presented in
section V, and the power consumption of the mobile metro-
core network presented in [8] using several methods for the
datasets presented in section VI. The results are exposed two
specific days: Friday 16 and Saturday 17 of December, 2013.

A. Computational Complexity and Time Assessment

Table III summarizes the complexity of each phase of
Algorithm 1 in terms of variables (and constraints for MILP
formulations). Moreover, Table III provides the computational
time required by each phase of the proposed approach, when
using a machine with an IntelCore i7-6700HQ at 2.6 GHz
processor with 16384 MB DDR4 at 1066.1 MHz of memory.

1) Phase 1. Off-line Scheduling: it is performed once
per day, and it is dominated by the ANN traffic prediction
algorithm.

2) Phase 2. Off-line Planning: it is performed at each
reconfiguration time point and it is dominated by the com-
putation of optimal weights. As expected, in Table III it is
clear that WP requires more time than VWP approach, due to
the wavelength continuity constraint enforcement.

3) Phase 3. On-line Routing: it is performed for each traffic
demand request that arrives to the network and it is dominated
by the computation of routing paths. This phase is very fast
(less than 60 µsec in average) as it only involves solving
greedy algorithms for each demand. As expected, WP model
consumes more time as it is solved in a layered graph.

Regarding the prediction algorithm, one of the great ad-
vantages of the neural networks is the time computation. The
ANN algorithm performs a limited number of operation during
the training phase. For each epoch it computes the gradients
to derive the weights, then the complexity is proportional to
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TABLE III
COMPLEXITY AND TIME COMPUTATION ASSESSMENT

Phase Complexity Computational Time
VWP WP

Phase1.
Off-line

Scheduling

ANN Prediction (next 24 hours) O(TV H(N + Z))
8.69s

Scheduling O(V m2)

Phase 2.
Off-line

Planning

ANN - Prediction
(next reconfiguration interval) O(TV H(N + Z))

13.09s 555, 5s
MILP problems

VWP Constraints: O(V (V − 1)R)
VWP Variables: O(V (V − 1)RK)
WP Constraints: O(V (V − 1)R(K + 1))
WP Variables: O(V (V − 1)RKW )

Computation of optimal weights VWP: O(V 2(V − 1)2RE)
WP: growth with O(V 2(V − 1)2REWF )

Phase 3.
On-line
Routing

Build optimal-weighted graph VWP: O(E)
WP: O(WFE) 50µs 60µs

Computation of routing paths VWP: Bhandari O(K(V + ElogE))
WP: modified Bhandari O(KWF (V + ElogE))

m maximum number of reconfiguration time points. T,N,H,Z number of epochs, input, hidden and output nodes of ANN.
V,E number of aggregation rings and directed links. W wavelengths per fiber. F maximum number of fibers per link.
R and K the average number of connection requests per each demand and the number of pairs of link disjoint paths.

the number of weights to update. Since our architecture is
composed just by one hidden layer with 5 nodes, the algorithm
takes 0.966 seconds in medium for each metro node. In total,
counting the nodes, the algorithm takes 7.72 seconds for the
metro optical network.

It is important to notice that thanks to the use of traffic
prediction, the most time consuming tasks of Algorithm 1 are
performed Off-line. Thus the introduced overhead required to
perform our optimization method corresponds only to the On-
line phase, which is less than 60µs, allowing to be imple-
mented even in scenarios with very stringent requirements of
delay, such as 5G [35], [36].

B. Traffic prediction

Before making the prediction we have to train the model
for each node of the metro network, this means that we
have a neural network for each node. First of all we divided
the dataset described in section VI in three part: training,
validation and test set. The training set goes from November
1th to December 10th; the validation set goes from December
11th to December 15th; and the test set from December 16th
to December 18th

The validation is a small part of the training set used
to validate the training, by which we can avoid over-fitting
problems.

1) Training: We used the training dataset as input for
the neural network in order to derive the weight matrices
W (1) and W (2) (Fig. 3). In particular, we used a form of
Gradient Descent called Levenberg-Marquardt [30] that min-
imize the error between the actual value and the forecasted
one, performing the training in a supervised way. In order to
minimize the error and to avoid the problem of over-fitting,
we trained the model for a number of times (epochs) that
goes from 1 to 1000. The over-fitting is a typical problem
in the prediction models and it occurs when a model begins

to memorize training data rather than learning to generalize
from trend. Accordingly, we kept trace of the prediction error
at each epoch applying the trained model to the validation set,
and stopped the training when the error started to grow. Once
trained the model, we stored the weight matrices and test the
model with the test set.

2) Test: We made the test of the model by using the test
set as input and deriving the output thanks to the feed-forward
formula in the Equation 3. The traffic prediction performance
have been evaluated by obtaining three parameters: Mean Ab-
solute Error (MAE), Mean Absolute Percentage Error (MAPE)
and the Root Mean Square Error (RMSE) overall the network.
As shown in Table IV, the percentage error at the aggregation
level is smaller than the one at the base station level. The last
happens because at the base station level the traffic is directly
influenced by many factors such as: type of the day (weekday
or weekend), special events, users mobility pattern, etc., for
this reason many peaks could not be predicted accurately. After
aggregating the traffic, it becomes more stationary and regular,
as showed in Fig. 6, indeed the neural network model gives
better results.

C. Optical routing

In order to assess the performance of the optical routing
techniques, a Discrete event simulator (DES) was built using
SimPy, a process-based DES framework based on Python. In
this section we compare the performance of several optical
routing techniques in terms of total power consumed (kW) by

TABLE IV
TRAFFIC PREDICTION PERFORMANCE

Aggregation Ring Base Station

MAE MAPE RMSE MAE MAPE RMSE
2.52·103 3.81% 3.23·103 12.26 9.2 % 15.82
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Fig. 6. Comparison between the real traffic load and the machine learning
based prediction, for a core node of the synthetic topology (Fig. 5), during
16th, 17th and 18th of December 2013.
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Fig. 7. Optical layer power consumption of the mobile metro-core network in
Milan city during 16/12/2013, using four different optical resource allocation
techniques based on VWP

the optical layer of the synthetic MCN of Milan city. Fig. 5
shows the topology used for WP-based techniques (number of
wavelengths per link were dimensioned for WP model). When
dimensioning the topology for VWP model, the number of
wavelengths per link varies, however the VWP topology was
omitted to simplify the presentation of this work.

By modifying or shutting down some building blocks of
the matheuristic proposed in section IV, we can define a set
of different optical routing techniques. In the following we
describe several techniques, that can be applied either using
WP or VWP models:
• Static: this is the current method of operation, where

all the elements are active to cope with the peak hour
demand of the historical data set.

• Hourly-Oracle: hourly reconfigurations, Off-line planning
based on the solution of optimization models for a perfect
traffic prediction (oracle).

• Hourly-Average: hourly reconfigurations, Off-line plan-
ning based on the solution of optimization models for
the average traffic pattern, and On-line routing based
on matheuristic reported in [9]. In fact, Hourly-Average
corresponds to the case of On-line opt. weight in [9].

• Hourly-ANN: hourly reconfigurations, Off-line planning
based on the solution of optimization models for the
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Fig. 8. Optical layer power consumption of the mobile metro-core network
in Milan city during 16/12/2013, using the six different optical resource
allocation techniques with WP
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Fig. 9. Optical layer power consumption of the mobile metro-core network in
Milan city during 16/12/2013, using: VWP-Hourly-Oracle, VWP-Scheduled-
Oracle and VWP-Scheduled-ANN

ANN-based traffic prediction (section V) using one hour
horizon, and On-line routing based on the matheuristic
reported in [9].

• Scheduled-Oracle: scheduled reconfigurations, Off-line
planning using a perfect traffic prediction, and On-line
routing using minimum-cost algorithm.

• Scheduled-ANN: this is the proposed Algorithm 1: Off-
line scheduling using 24 hour ANN-based traffic predic-
tion, Off-line planning using ANN-based prediction of
the next reconfiguration time point, and On-line routing
using minimum-cost algorithm.

Fig. 7 and Fig. 8 depicts the energy consumption when
applying static network configuration and three different tech-
niques with hourly network reconfigurations (oracle, average
and ANN), using VWP and WP, respectively. In both Figures,
the major energy dissipation E (kWh) comes from the flat
lines that represent the over-provisioned static network config-
uration. WP-static (Fig. 8) consumes 20.5% less energy than
VWP-static (Fig. 7), thanks to the use of optical bypass. The
rest of the curves with a step-wise behavior, correspond to
minimization of active resources hourly (|T | = 24). Table V
summarizes the energy dissipation and the optimality gap of
dynamic routing techniques with hourly reconfigurations.
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During the first experiment day we note that the VWP-
Hourly-Average and WP-Hourly-Average curves allows to
reduce E by 11.6% and 9.7%, respectively when compared
with the static case. However the use of average traffic pattern
of previous days cannot follow the daily variations of the traffic
leading to an optimality gap of 3% (VWP-Hourly-Average)
and 4% (WP-Hourly-Average), when compared to the oracle
benchmarks 6: VWP-Hourly-Oracle and WP-Hourly-Oracle,
respectively.

Figures 7 and 8 demonstrate the effectiveness of the
proposed matheuristic with ANN prediction, X-Hourly-ANN
curves depict an almost perfect match with the X-hourly-
Oracle. The use of traffic prediction allows reduce the opti-
mality gap below 0.2% (VWP-Hourly-ANN) and 0.45% (WP-
Hourly-ANN), while the matheuristic with average traffic pat-
tern displays optimality gap above 3%, and a simple heuristic
based on fixed weights to perform On-line routing (no Off-line
planning) reports an optimality gap of almost 10% [9]. In the
second part of the Table V we showed even the performances
of the second experiment day.

The curves with long steps in Fig. 9 represent the results
of applying the Off-line scheduling phase as proposed by
algorithm 1. For comparison purpose Fig. 9 shows also the
VWP-Scheduled-Oracle, and the VWP-Hourly-Oracle. As in
the hourly results, the ANN prediction allows to do On-line
routing that performs as good as the the Off-line planning
(based on perfect prediction) with reconfiguration. Here, we
have shown how to optimize network resources only in certain
times of the day thanks to the use of a variable predictor
based on neural networks. This promising result is part of
a preliminary work that will guide us in the optimization of
strategic reconfiguration points and significantly reduce the
service disruption rate, exploiting also new ways to optimize
the network.

VIII. OPEN ISSUES

In this section we provide a discussion on two open issues
that can be considered to improve our methodology.

1) Network rules update: While Algorithm 1 uses an Off-
line-scheduling phase to reduce the number of reconfigurations
per day to perform, it only computes the new network state.
However, Algorithm 1 does not specify the set of actions
to enforce a quick and congestion-free reconfiguration of the
network.

For instance, [39] presented SWAN, a system that re-
configures the network’s data plane, based on current traffic
demand, in a congestion-free mode to maximize network
utilization. The key points of this system are the following:
1) reservation of a scratch capacity s (e.g., 10%) for each link
in order to avoid congestion situation; 2) an algorithm that
finds a congestion free plan with a minimum number of steps
that is at most [1/s]− 1. Testbed experiments and data-driven
simulations show that SWAN can carry 60% more traffic
than the current practice (e.g., MPLS-TE) when applying

6VWP-Hourly-Oracle and WP-Hourly-Oracle are considered as bench-
marks because they represent a system with perfect traffic prediction (oracle),
therefore the energy consumption is the same as solving the Optimization
models and gives the best results we can get.

reconfigurations every 5 minutes with real-time traffic flows.
From time point of view, computes allocation and rule plan in
1.3s, congestion-controlled plan in 0.7s and change openflow
switch rules in 0.6s. Other systems, such as Dionysus [40] and
zUpdate in [41], have explored smart ways to re-configure the
network routing rules at the nodes as well. Dionysus achieves
fast, consistent network updates through dynamic scheduling
of rule updates. Instead of statically selecting an order (as in
SWAN), this method implements on-the-fly ordering based on
the real-time behavior of the network and the switches. This
approach allows to improve the median network update speed
by 53%-88% over static scheduling.

In order to avoid extra delay and overhead to the dynamic
routing, we could add another Off-line phase that implements
a reconfiguration system to minimize the delay due to the
change of routes, and avoids congestion of links.

2) Cross-layer Optimization: While SDN allows to gather
multi-layer and multi-domain control and visibility, we only
focused on the optical layer. A future work might include a
cross-layer optimization to take into account multiple layers,
such as IP and optical.

The WP model has little impact on the IP layer, it exploits
the relatively small distances of metro networks to establish
all-optical connections, reducing the flows that need to be
processed at the IP layer, and in consequence reduces delay,
energy and costs in the network [27]. VWP make extensible
use of the IP layer, as it uses traffic grooming at every
node, with the cost of adding more load to the IP layer
of the network, but increasing the wavelengths utilization.
An advanced traffic grooming approach can be explored to
establish a smart selection of all-optical paths and traffic
grooming points. Such approach can optimize the aggregation
of IP flows into the optical layer [15].

IX. CONCLUSIONS

This paper proposes an effective matheuristic with ANN
traffic prediction for energy efficient dynamic optical routing
in mobile metro-core networks. Exploiting the programmabil-
ity and full network visibility leveraged by SDN in the mobile
metro-core network, this technique can be deployed as an SDN
application to perform reconfiguration of the network based on
historical and current traffic-load.

Our models were tested by synthesizing a network topology
from real cell cite locations, and a real traffic dataset from the
city of Milan, Italy. Our results demonstrate that the use of
traffic prediction represents an essential component to optimize
the network with dynamic optical routing or other advanced
techniques. Moreover, the mobile metro-core networks pro-
vide highly predictable aggregated traffic patterns, which was
proven to be a valuable feature for network optimization.
Another feature of the mobile metro-core network is the
relatively small link length, that allows to exploit optical
bypass capabilities to avoid costly optical-to-electrical and
electrical-to-optical conversions.

The proposed matheuristic with ANN prediction, that per-
forms On-line optical routing, reported energy consumption
levels of a network that is configured by solving an optimiza-
tion problem with a perfect traffic prediction (Oracle). When
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TABLE V
ENERGY DISSIPATION AND OPTIMALITY GAP, IN MILAN CITY DURING 16-17 DECEMBER OF 2013

VWP WP

16/12/2013 Static Hourly
(Oracle)

Hourly
(Average)

Hourly
(ANN) Static Hourly

(Oracle)
Hourly

(Average)
Hourly
(ANN)

Total Energy (kWh) 638.28 546.93 563.86 548.08 506.88 439.28 457.66 439.76
Energy Saving (compared to static) 14.3% 11.6% 14.1% 13.3% 9.7% 13.2%
Optimality Gap (with oracle) 3% 0.2% 4% 0.1%

17/12/2013 Static Hourly
(Oracle)

Hourly
(Average)

Hourly
(ANN) Static Hourly

(Oracle)
Hourly

(Average)
Hourly
(ANN)

Total Energy (kWh) 638.28 548.90 563.86 549.16 506.88 442.62 457.66 444.64
Energy Saving (compared to static) 14% 11.6% 13.9% 12.6% 9.7% 12.2%

Optimality Gap (with oracle) 2.6% 0.04% 3.2% 0.45%

comparing VWP-Static, the common approach in today’s
mobile metro-core networks, with WP-Hourly-ANN energy
savings of 31% can be achieved, thanks to load adaptive net-
work operation and optical bypass. Finally, all the advantages
reported by our methods can be achieved with a time overhead
of less than 60 µs, thanks to a very lightweight On-line phase,
and more complex Off-line phases.
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