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Production Quality Improvement During Manufacturing Systems Ramp-up 
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2 ITIA-CNR, Institute of Industrial Technologies and Automation, Via Bassini 15, 20133, Milan, Italy 

Abstract: In the current manufacturing context, characterized by short product life-cycles, large product variety, product customization 
and short innovation cycles, achieving target production quality performance is challenging, especially due to the frequent ramp-up 
phases the system undergoes along its life-cycle. Available production quality methods focus on high-volume productions and long-term 
system performance, while they lose effectiveness during the system ramp-up, where instability and unknown disturbances affect the 
system dynamics. This paper proposes a reference framework for improving production quality performance during the system ramp-up 
phase. Two strategies for properly dealing with this problem are discussed, consisting in anticipating ramp-up problems during the 
design phase and performing continuous improvement of production quality performance measures during the system ramp-up. The 
most effective approaches following these strategies are revised and future research directions in this new research area are drawn.  
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1. Introduction, motivation and objectives

Manufacturing companies are continuously facing the challenge 
of operating their manufacturing processes and systems in order 
to deliver the required production rates of high quality products 
while minimizing the use of resources. In response to these 
needs, “Production Quality” was recently formulated as the 
discipline that combines quality, production logistics, and 
maintenance methods and tools to maintain the throughput and 
the service level of conforming parts under control and to 
improve them over time, with minimal waste of resources and 
materials [1]. Several emerging market trends have considerably 
reshaped the boundaries within which quality, production 
logistics and maintenance aspects interact.  
The increasing product variety and customization [2] have 
significantly reduced production lots, thus making traditional 
mass production contexts infrequent. Moreover, the fast 
introduction of emerging manufacturing and sensor technologies 
has significantly reduced innovation cycles, causing the need of 
continuous adaptations of the system configuration to integrate 
these technological enablers. Furthermore, reconfigurability [3], 
changeability [4] and co-evolution [5] are nowadays highly 
accepted paradigms in industry, enabling a strong coordination 
between the dynamics of the system life cycle and the dynamics 
of the product and process life cycles. As a consequence, 
manufacturing systems are continuously evolving during their 
life-cycles.  
After a reconfiguration, the system usually fails in delivering the 
required production quality performance, due to the increased 
production of defective items and unexpected machine failures 

caused by the implemented changes at physical or control level. 
Time-consuming and expensive interventions are needed to 
understand and react to these disturbances. This phase is usually 
denoted as the ramp-up phase of a manufacturing system, 
commonly defined as the period from the production of the first 
item after a system reconfiguration until the achievement of the 
specified target output rate. The length of this period is referred 
to as the “ramp-up-time” [6] or “time-to-volume” [7], and it is 
characterized by an increasing output production rate and quality 
yield [8]. For example, it was shown that in the automotive 
industry the ramp-up phase after a new model introduction can 
typically last between 20 and 30 weeks and can contribute to 
substantial extra production costs due to capacity and quality 
losses as well as personnel extra-cost [9], [10]. During the ramp-
up phase, disturbances that impact both productivity [11] and 
product quality [12] are faced with a higher frequency, due to the 
system’s instability [13] after the process changes and system 
reconfigurations. The major problems that need to be addressed 
during the ramp-up phase include the adjustment of the 
production system capability and capacity [14], the reliability of 
manufacturing equipment to meet the target production rate [15], 
the understanding of the new process behavior [16], [17], and the 
improvement of product quality [18], [19].  
If a system evolves with fast dynamics, new challenges arise for 
production quality. In particular, the long-term production quality 
performance of the system becomes less important, while 
production quality performance during system ramp-up assumes 
fundamental relevance. Traditional Six-Sigma and just-in-time 
methods have proved effective in stable, large volume, 
production contexts, since they rely on the statistical analysis of 
large data samples collected in stable process conditions. 
However, they are not effective for such dynamically changing 



contexts. At the same time, the industry 4.0 revolution has 
provided capability to exploit emerging digital technologies for 
supporting a faster transition to target production quality 
performance level during the system ramp-up phase. 
This paper discusses and formalizes the problem of improving 
production quality during the ramp-up phase of manufacturing 
systems to achieve a fast convergence to the desired production 
targets, with minimal production and resource losses. It revises 
the most recent methods and tools in this field and highlights 
open research challenges that should be addressed for achieving a 
systematic approach towards ramp-up management.  
The paper is structured as follows. In the next section, a new 
reference framework for approaching the production quality 
improvement problem during the system ramp-up phase is 
proposed. In section 3, the most relevant and mature approaches 
for targeting the considered problem are revised. In section 4, the 
key emerging technologies for ramp-up reduction are discussed 
and future research needs are highlighted in section 5. 

2. Reference framework 

In this section, specific definitions setting the boundaries of the 
ramp-up management problem are provided and a reference 
framework, identifying proper strategies for addressing this 
problem, is discussed. 

3.1 Effective throughput curve during the system ramp-up 

According to the production quality theory, the most significant 
performance measure in manufacturing systems, synthetizing the 
joint effect of quality, production and maintenance control 
methods, is the system effective throughput, denoted as THEff, 
defined as the production rate of conforming products delivered 
by the system. It can be expressed as the product of the system 
total throughput, i.e. the total number of parts delivered by the 
system in a given time unit, and the system yield, defined as the 
fraction of conforming items delivered by the system. 
In line with this view, the ramp-up time can be defined as the 
time span between the production of the first part after a system 
reconfiguration and the stable production of parts at the target 
effective throughput level. Ideally, a zero ramp-up time would be 
desirable, as the target effective production rate would be reached 
without any production loss. However, in real systems this ideal 
condition is usually not achieved, since several causes for 
production losses are observed. This phenomenon is represented 
in Figure 1.  The horizontal red line represents the target effective 
throughput, THTarget, of the system after a reconfiguration that 
ends at time t=0. The blue curve represents the average effective 
production rate curve observed in real systems after a 
reconfiguration. For example, it can be considered as the average 
daily, or single shift, throughput curve. The ramp up time, tramp, 
indicated as a blue tick on the horizontal axis, is the time the 
system requires to reach the target effective production rate. The 
red area indicates the cumulative throughput loss, THLoss, 
observed during the ramp-up phase. It can be estimated as 
follows: 
 

             (1) 

 

 
Figure 1: Cumulative effective throughput loss during ramp-up. 
 
The effective throughput loss problem is even more significant in 
the presence of multiple reconfigurations of the system. This case 
is represented in Figure 2. After the first configuration reaches 
the target effective throughput level, a system reconfiguration 
takes place. During the reconfiguration time, the system is not 
delivering parts and the effective production rate is zero. Once 
the system is restarted, a new ramp-up is observed, that brings 
the system to the new target effective throughput level in the new 
configuration. Additional production losses are then observed, 
that directly affect the profitability of the new configuration. It is 
worth to notice that the not unusual case in which the initial 
effective throughput of the new configuration is lower than the 
target effective throughput of the previous configuration is 
represented in Figure 2. Given the relevance of the effective 
throughput losses during the system ramp-up along the system 
life-cycle, it is important to deeply understand the causes for 
these losses. This topic is investigated in the next section. 
 

 
Figure 2: System ramp-up times along multiple reconfigurations. 

2.1 Causes for effective throughput loss during system ramp-up 

The causes for effective throughput losses observed during the 
ramp-up phase are usually related to a mismatch among system 
design assumptions and actual verified conditions. In other 
words, the incomplete knowledge of the system behavior 
exploited during the system design phase may cause the system 
to behave differently once the reconfiguration is implemented, 
leading to the need of acquiring more knowledge to bridge this 
knowledge gap and implement countermeasures. This mismatch 
is generated by disturbances [9] that are defined as unexpected 
events affecting the dynamics of the system during the ramp-up 
phase, making it different from the known dynamics of the 
system, considered during the system design phase [20].  
Such causes can be then classified in two categories, namely 
internal and external causes. While internal causes are related to 
a mismatch originated within the system, external causes are due 
to disturbances originated outside the system boundary that have 
an indirect effect on the system behavior. Examples of typical 

TH Loss = TH Target −TH Eff (t)( )dtt=0

t=tramp∫



internal causes for effective throughput losses during the ramp-up 
phase are related to: 
• Equipment behavior: this cause is especially relevant when 

the reconfiguration entails the integration of a new 
equipment. During the design phase it is usual to consider 
nominal equipment conditions and information about 
standard failure modes and periodic maintenance actions, 
typically provided by the equipment manufacturer. However, 
more causes for machine failures and defect generation may 
emerge once the equipment is integrated in the real system. 
For example, unexpected jammings, collisions, excessive 
frictions, component deformations, vibrations can be 
experienced. 

• Behavior emerging from the integration of multiple resources 
in the system: several types of disturbances may emerge by 
the integration of resources in a system, that are very difficult 
to capture during the design phase. For example, specific 
defect propagation mechanisms can be observed along the 
system stages, due to unknown inter-stage correlations. 
Moreover, variations in process times can be observed, that 
translate into propagation of blocking and starvation. 
Furthermore, vibrations generated within a process can 
propagate to other neighboring machines, undermining their 
process stability.  

• Part variability: process planning and parameters selection is 
usually conducted considering nominal part geometries. 
However, in real settings, parts flowing in the system are 
characterized by variability that may lead to problems in part 
fixing and centering, excessive tool wear, poor robot gripping 
capabilities, etc. 

• Poor design of the system: the lack of knowledge about 
degraded states and real equipment conditions may cause 
system design decision to prove sub-performing. For 
example, poor allocation or positioning of sensors, poor 
allocation of buffers, poor design of fixtures and clamping 
devices, poor design of grippers are typical consequences. 

• Poor design of the plant control system: the designed system 
control logics and software may prove to work poorly while 
integrated within the real system, due to wrong specifications 
or unexpected system states.  

• Human errors and slow learning processes: human operators 
may experience a slower learning curve than expected, 
resulting in excessive processing times of manual operations, 
excessive corrective maintenance times or imprecise 
inspection tasks.  

Examples of external causes for effective throughput losses 
during the ramp-up phase are as follows: 
• Mismatch in the incoming raw materials conditions: when 

designing a system it is common to consider nominal 
conditions of incoming raw materials and semi-finished part 
supplies. However, although within tolerances, incoming raw 
parts are affected by variability, both within a supplier and 
between different suppliers. Such variability is difficult to 
predict and may alter the planned process conditions, 
resulting in unexpected defective part rates.  

• Mismatch in plant service conditions (energy supply, 
aspiration system, lighting system, etc.): perfect stability of 
plant service supply is usually considered while designing a 
system. However, in the real settings plant services are 
affected by disturbances in the external network that creates 
instability that may affect the machine behavior.  

• Mismatch due to cultural and organizational behavior: The 
reaction of the organization and the workers to a 

reconfiguration of the system is very difficult to predict. 
Problems may arise from the lack of specific skills, 
unformalized company procedures for executing specific 
tasks, or unbalanced personnel allocation to different 
operations in the reconfigured system. 

The ultimate effects of these causes for mismatch are unexpected 
quality problems, low machine availabilities due to unexpected 
machine failures, and high maintenance costs. 

2.2 Strategies for reducing effective throughput losses during 
the system ramp-up 

Given the causes for production quality losses discussed in the 
previous section, the key question that this paper addresses is 
“How can the design, management and control of manufacturing  
systems be improved to reduce the effective throughput losses 
due to the system ramp-up?”. With the objective to reduce the 
gap and the subsequent mismatch between design knowledge and 
the verified real system behavior, two major strategies for ramp-
up reduction can be identified: 
Strategy 1: to anticipate the potential disturbances arising in the 
ramp-up phase during the design phase. This strategy consists in 
capturing potential problems occurring in the ramp-up phase 
already in the design phase by, for example, (i) modeling 
potential failures and disruptions of machines, (ii) modeling real 
variable parts instead of ideal parts, (iii) provide redundancy and 
robustness to the designed system, (iv) capturing the effect of the 
control logics on the system performance. 
Strategy 2: to acquire new knowledge about the actual system 
behavior, through data gathering and analysis, once the 
reconfigured system is implemented, and to perform system 
improvement by exploiting this information.  
Both strategies may contribute to the reduction of the effective 
throughput losses during the ramp-up time, although the effect of 
the application of these two strategies is significantly different. 
Referring to Figure 3, the application of strategy 1 contributes to 
the reduction of the throughput losses by enabling to start the 
production with a system providing an effective throughput 
which is closer to the target. Indeed, the anticipation of potential 
ramp-up problems provides a system design that is more robust 
to disturbances, thus enabling a performance improvement by 
design. The application of strategy 2 instead contributes to the 
reduction of the throughput losses by shortening the ramp-up 
time. Indeed, this strategy provides capability for a fast 
identification and removal of system bottlenecks. Since both 
strategies have a cost, either related to a more complex design 
problem (strategy 1) or to the availability of a data gathering 
system (strategy 2), and require specific support models and tools 
to be implemented, a combination between the two strategies 
may result to be an effective approach for ramp-up management.  

 
Figure 3: Effect of ramp-up reduction strategies. 



 
In the remainder of this paper, the existing contributions, models 
and methods addressing these two strategies are revised with the 
objective to provide an overview and guidelines for practitioners 
and researchers approaching this problem. 

3. Ramp-up management methods 

3.1 Ramp-up considerations during product and system design 

The design of complex manufacturing systems requires a long 
iterative procedure where several design changes are 
implemented and validated before the final solution is delivered. 
This process is constrained by strict time and monetary budgets 
that further undermine the ability to refine the solution in view of 
shorter ramp-up phase. As a consequence, a typical decision is to 
delay detailed system fine tunings to the installation and ramp-up 
phase. However, the increased availability of digital 
manufacturing tools has provided new opportunities for 
anticipating the consideration of ramp-up related issues during 
the system design process, without significantly extending the 
design time and the related costs. This is usually achieved by 
integrating specific effective throughput loss causes during the 
ramp-up phase within the manufacturing system models adopted 
to support the system design and redesign phases.  

A generalized classification of works targeting ramp-up 
management during the design phase and later reconfiguration 
phases is provided in [21]. Most of the available approaches 
focus on specific throughput loss causes during the ramp-up 
phase, in isolation. Among the methods considering internal 
causes for throughput losses, a wide set of contributions 
concentrates on the effect of equipment behavior on the system 
ramp-up, thus leading to a selection of equipment for system 
reconfigurations with favorable ramp-up conditions. For 
example, in [22], a combined analytical model and hybrid 
simulation environment is adopted to predict the expected ramp-
up profile derived from the integration of new production 
technologies into an existing production system. The method can 
be used to evaluate different alternative configurations, not only 
with respect to the attainable target effective throughput, but also 
with respect to the ramp-up duration. In [24], a capacity planning 
and machine selection problem along multiple system 
reconfigurations is considered that directly takes into account a 
simplified, linear, ramp-up model and the related costs with the 
objective to evaluate the best system capacity adjustment 
trajectories to cope with evolving production requirements. The 
analysis is based on the analytical solution of a Markov decision 
problem. Quality related aspects are not taken into account. The 
results show that sub-performing system reconfigurations can be 
selected if the ramp-up costs are neglected. A similar problem 
was formulated in [23] and solved through a heuristic approach 
to find the optimal reconfiguration trajectory along multiple 
reconfiguration paths. 

Other contributions showed that specific system architectures 
feature improved capabilities to cause short ramp-up times, by 
design [25], [24]. For example, in [26] the effect of adopting 
modular and hybrid system architectures on the system ramp-up 
is discussed and a generic approach for achieving a scalable 
production system characterized by short ramp-ups after 
configuration changes is proposed.  
The anticipation of machine failures and system integration 
issues in the design phase has also been largely investigated. This 
research area provides integrated analytic models, implemented 

within digital tools, for the analysis of the effective throughput in 
multi-stage systems, directly considering the interaction between 
quality, logistics and maintenance aspects. Among these, in [28] 
the authors developed a model of a multi-stage asynchronous 
serial line where machines are subject to failures and 
degradation. In operational states, the production of defective 
items is considered. Production control, preventive maintenance, 
and quality control policies can also be modelled in the same 
framework. The proposed analytic dynamic model, based on the 
decomposition of the entire system into sub-systems that are easy 
to analyze with exact technique, makes it possible to predict the 
system effective throughput under specific configurations. A 
recent review of this class of models can be found in [1]. These 
methods can be used as digital tools to test different 
configurations with respect to the predicted production quality 
performance, in the early stage system design phase. They enable 
to investigate the robustness of the designed system with respect 
to various causes for disturbances affecting the effective 
throughput of the system. Most of these approaches consider 
perfect knowledge about stochastic machine failures and repair 
event frequencies and durations. However, these data are usually 
emerging from the system behavior once the system is installed. 
In [28], the effect of uncertain reliability parameters estimates on 
the subsequent system design decisions is investigated. The 
authors show that, in order to cope with this uncertain 
information, a robust system design should be performed, 
resulting in a more-expensive over-capacitated configuration that 
can better cope with the ramp-up phase.    

Other works propose frameworks and methodologies that 
consider the production ramp-up already during the early stages 
of the New Product Introduction (NPI) process. In these works, 
the main goal is to support a fast introduction of new products 
and reduce unexpected and expensive delays in highly 
competitive industries, such as the automotive sector. The 
definition of ramp-up considered in these works slightly differs 
from the definition given in this paper. In this case, the ramp-up 
is considered as the transition from the completed product 
development to the volume production. In [29] the authors 
highlight the need for early consideration of the ramp-up phase in 
the development of complex products. A systematic approach 
supporting the early identification and minimization of possible 
ramp-up risks is presented. In [30] a quantitative methodology to 
predict critical risk factors and their potential effect on the 
extension of the ramp-up in the NPI process is provided. The 
experimental validation of the approach shows that good 
agreement among the predicted effects and the observed effects is 
met, thus making the approach a practical tool for anticipating 
ramp-up extension risks.  

Other strategies study the impacts on ramp-up by considering 
the joint co-creation of product and system designs into an 
integrated framework that explicitly considers the interaction 
between the two domains ([18], [31]). For example, in [32] the 
adoption of factory standards and standardized product 
architectures is proposed as a key step to mitigate disturbances 
arising due to ramp-up. Some approaches extend this concept to a 
broader perspective by jointly considering the product concept, 
the product development process, the logistics system, the 
manufacturing capability and the external environment within the 
same framework [33].  

A concrete example of an approach anticipating multiple 
ramp-up risk factors in the design phase is provided in [34], 
where a complete software toolkit to support the integrated 
system and workstation design as well as process planning and 



control, by jointly considering quality and reliability issues, was 
developed. The aim is to support the NPI phase caused by a 
transition from Resistance Spot Welding (RSW) to Remote Laser 
Welding (RLW) technologies in Body In White sheet metal 
joining in the automotive industry. The approach is based on the 
results achieved within the RLW Navigator EU FP7 Project. At 
system level, a plant configuration and optimization tool is 
developed supporting machine selection, buffer allocation and 
layout planning by taking into account machine failures. At 
workstation level, a robot simulation and off-line programming 
software is developed to determine the optimal configuration and 
operational conditions of the RLW station to process all joints 
(also called stitches) with minimal cycle time, respecting 
physical constraints. At process planning level, an engineering 
software for robust design of the door fixture, under non-ideal 
part geometries, modelled as multiple part variation modes, is 
developed. At process level, a meta-model for supporting laser 
parameter selection for feasible stich welding is proposed. These 
tools are integrated into an interoperable digital factory 
workflow, called the RLW Navigator, validated through 
application to a real case study in JLR UK. This systematic 
coordination of software modules across different stages of NPI 
enables ‘right-first-time’ solution capability, decreased 
commissioning time and cost, shorter design time, improved 
design robustness, and knowledge re-use, by which the overall 
NPI process can be accelerated. Overall, the proposed approach 
proved to enable a considerable reduction in the NPI process (-
30%) together with an improved system feasibility before the 
commissioning, which was predicted to shorten ramp-up times of 
about 20%.  

Some approaches propose methodologies that investigate the 
impact of external causes on the ramp-up length, for example at 
supply chain [35] and production network level [36]. These 
approaches take a product-centric perspective and investigate 
whether supplier involvement in a new product development 
process can produce significant improvements in financial 
returns and ramp-up performance. Under situations where there is 
a big misfit between the existing product and the new product 
variants that lead to substantial modifications on the existing 
manufacturing system, a significant instability in the whole value 
creation processes can be originated. In these cases, the methods 
assess the feasible set of product variants that can mitigate the 
negative effects of such instability [37]. In [12] the research 
conducted by the authors revealed that leading Japanese 
manufacturing firms in the high-tech electronic industry were 
utilizing their collaborative inter-firm manufacturing supply 
network to minimize time-to-volume as part of the total effort in 
speeding up NPI to market. The provided figures show that, with 
the inter-firm approach, the average in-line defects percentage 
was lowered from 50% at the production start down to less than 
4% in about 50 days, also considerably reducing the variability of 
the effective throughput in this transition.   

 The problem of integrating the control system design and 
verification within the system design phase has also been 
considered. These approaches aim at providing capability to 
perform a “virtual commissioning” of the manufacturing system, 
testing potential control related problems before the real system 
installation, thus reducing ramp-up and commissioning costs. 
Without virtual commissioning, a manufacturing system will 
have to be stabilized solely by real commissioning with real 
plants and real controllers, which is very expensive and time 
consuming. This aspect is emerging as particularly critical due to 
the increasing complexity of production system architectures. 

The typical approach to control software development and 
validation is as follows:  
• System definition: the process to be automated is described, 

and the objectives of the automation system are defined; 
• Control system specification: the tasks and the essential 

functions of the supervision and control system are defined;  
• Control system design: the supervision and control functions 

are designed through a suitable reference model; 
• Control system implementation: the control code is 

generated; 
• Control system verification: the designed control functions 

are verified against the requirements. 
 

The approach of virtual commissioning for control system 
verification entails the use of closed-loop simulation techniques, 
in particular “hardware-in-the-loop” simulation, [38]. In order to 
realize “hardware-in-the-loop” simulations it is necessary to 
design a real controller (control system area) that emulates the 
automation system control functionalities and that is connected to 
a second system (process simulator area) that simulates the 
physical behavior of the real plant. Another strategy is to apply 
the so called “reality-in-the-loop” approach, where a real factory 
is coupled with a virtual controller. In particular, if a small scale 
plant is adopted in the testing phase, this approach allows using 
the real communication protocols whose functionalities are not 
easily modelled in a software simulator, without extensive tests 
in the large scale manufacturing facility. A recent review of 
virtual commissioning approaches can be found in [39]. It was 
proved that virtual commissioning approaches could lead to a 
reduction of real commissioning time of 75%, resulting from 
enhanced quality of the manufacturing system at the start of real 
commissioning [40]. 

3.2 Continuous improvement during the ramp-up phase 

Once the design phase is completed and the ramp-up phase is 
initiated, methods and tools to gather information about the 
actual system behavior and perform root cause identification, 
error budgeting and system improvement can be implemented in 
order to reach the target effective throughput level. At this stage, 
more detailed information about the system behavior is available, 
that could not be precisely known in the design phase [41]. 
Empirical studies of real manufacturing ramp-up cases in 
automotive ([9], [8]), aeronautics [42], and electronics ([33] [43]) 
industries show that significant benefits can be achieved from an 
efficient application of ramp-up management methods in this 
critical phase. The methods developed to this purpose vary 
according to the specific nature of the ramp-up disturbance they 
tackle and the solution approaches used to quantitatively solve 
the problem. 

A wide body of literature is dedicated to the identification and 
control of quality correlations in multi-stage systems, in order to 
improve the system yield and decrease the production of 
defective items. In multi-stage manufacturing processes, 
understanding how a defect generated in a specific process stage 
propagates to the next process stages and what effect this 
propagation has on the final product quality is a complex task. 
Engineering methods and advanced Multivariate Statistical 
Process Control (MSPC) methods have been proposed to model 
and monitor quality correlations in multi-stage processes. Of the 
engineering methods, SOVA (Stream of Variations Analysis) 
[44] has been proposed for assembly systems and machining 
process-chains. This approach is based on a state-space 



representation of the correlation between the product deviations 
at consecutive process stages whose structure is driven by 
engineering knowledge about the processes and whose 
coefficients are tuned by KPC (Key Product Characteristics) 
measurements at the different stages. Being based on engineering 
models, the number of measurements required for capturing the 
dynamics of defect propagations and, consequently, identifying 
the most important causes for deviations is usually substantially 
lower than statistical methods, thus making SOVA a powerful 
tool for ramp-up management. Applications of SOVA to 
optimize a single ramp-up cycle in complex multi-stage 
manufacturing systems, by integrating multivariate statistics, 
control theory and design/manufacturing knowledge into a 
unified framework, can be found in [18]. Usually, these 
approaches focus only on part variation propagation along system 
stages and aim at increasing the system yield, while they neglect 
the effect of machine failures on logistics performance at system 
level. 

Other approaches focus on the identification and removal of 
disturbances related to the equipment behavior, machine failures 
and to the integration of resources in the system with a 
production oriented perspective. The typical continuous 
improvement loop applied by these methods is reported in Figure 
4, as suggested in [45], where the application of this procedure to 
an engine block production line in Scania, Sweden, was 
proposed. According to this framework, data about the machine 
state sequences and failure statistics are collected in-line through 
the production monitoring system, during the ramp-up phase. 
Such data are exploited to feed state-based resource models that 
are integrated into an engineering model of the system, capturing 
the dynamics of the material flow along the stages of the 
modelled multi-stage system through equations that are solved by 
an analytic approach. Once this model is available, it can be used 
as a digital twin for performing model-based dynamic bottleneck 
identification, system reconfiguration optimization and to 
perform sensitivity “what-if” analysis to virtually check the effect 
of specific interventions on the existing system. For example, 
those failures having the highest impacts on the production rate 
of the system can be identified in order to prioritize interventions 
during the ramp-up phase. 

 

 
Figure 4: Continuous improvement loop during the ramp-up 
phase. 

 
The application of this approach to the automotive engine 

block line under analysis proved that a production rate increase 
of about 20% could be achieved by identifying and prioritizing 
improvement interventions. A further extension of this approach 
considered action prioritization in presence of limited workforce 
during the ramp-up phase [46].  
Other approaches focus on productivity-oriented improvements 
by proposing methods for data-driven dynamic bottleneck 

identification based on data gathered on-line during the ramp-up 
phase. Production logistics bottlenecks in manufacturing systems 
are defined as those specific resources that feature disturbances 
with the highest effect on the entire system total throughput. A 
typical phenomenon during the ramp-up phase is the non-static 
distribution of bottlenecks: while specific problems are tackled 
and get solved during the production ramp-up, bottlenecks 
dynamically move from one station to another. With the 
objective to focus improvement efforts, such as cycle time and 
downtime reduction, on the most important stations and 
disturbance causes, a reliable and constant knowledge of 
bottlenecks is an important asset. In [47], a purely data-driven 
methodology for dynamic bottleneck identification to be used on-
line for continuous improvement is proposed. The method 
elaborates data collected from the Manufacturing Execution 
System (MES) and, at each time unit, detects the current 
bottleneck machine applying an algorithm based on state 
transformation. The application of this method to two real case 
studies showed that bottlenecks can be reliably identified after 
few hours of production, making the applicability of this 
approach to ramp-up reduction very promising. A different 
approach to on-line short-term bottleneck identification was 
proposed in [48], where the authors proposed to observe blocking 
and starvation probabilities and buffer levels records to infer the 
time-dependent location of the bottleneck. The method was 
validated against simulation and analytical methods and proved 
effective for a quick identification of bottleneck stations. 
Furthermore, in [49] a systematic method to identify the causes 
of permanent production losses in manufacturing systems based 
on a data-driven model that describes the production dynamics is 
proposed. This method can be applied to the bottleneck 
identification problem and can also be used to identify the impact 
of specific disruption types for which sensor data are available. 
With the development of computer technology and the increasing 
amounts of data collected by MES and distributed sensor 
networks, data-driven algorithms using the online production 
data present a new way to perform ramp-up management in an 
effective and highly reactive way. 

Other methods for ramp-up management focus on the effect of 
operators’ training and learning on production quality 
performance [8]. Some methods model the learning process in 
the form of experiments executed on the system during the 
system ramp-up to gather specific knowledge on the resource 
behavior. Such experiments reduce the production rate in the 
short run. Therefore, a trade-off between experimental effort and 
performance improvement needs to be solved. In [6], the authors 
proposed the interesting concept of using “gamification” for 
increasing the learning rate of workers in assembly lines during 
the system ramp-up. Similarly, in [50] a game-based simulation 
environment is used to train managers and workers in view of a 
more effective ramp-up management. In [51] augmented reality 
is proposed as a technology for supporting engineers during 
control system verification within the ramp-up cycle and for 
personnel training. Through this technology, faults in the 
installation and the control software can be easily identified, thus 
reducing the control commissioning time. Since training the 
employees is one of the most important and cost-intensive 
processes in ramp-up, these approaches can be highly beneficial, 
especially in contexts with substantial manual work content. 



4. Enabling technologies for ramp-up reduction 

Emerging Key Enabling Technologies (KETs), such as in-line 
data gathering solutions, data storage and communication 
standards, data analytics tools and digital manufacturing 
technologies offer new opportunities for ramp-up management in 
view of production quality performance targets, also in complex 
production environments. These technologies, listed in Figure 5, 
are increasingly becoming integral part of modern production 
systems, also due to the advent of the “Industry 4.0” paradigm. 
However, a problem-driven cross-KET approach should be 
envisaged in order to select and identify the proper technology 
mix to support the ramp-up management problem on a case-by-
case basis.  
In line with this vision, the H2020 ForZDM project “Integrated 
Zero-Defect Manufacturing Solution for High Value Adding 
Multi-stage Manufacturing Systems” was launched to propose a 
new production quality system specifically targeted to small lot, 
large variant productions, subject to frequent reconfigurations 
[52]. The key architecture of the system proposed in the project is 
represented in Figure 6. At lower level, a multi-sensor data 
gathering system is implemented, enabling to collect process 
variables, part quality, machine state, and part tracking 
information as well as codified and un-codified human feedback, 
through intuitive and user-friendly Human-Machine Interfaces 
(HMIs). This heterogeneous data set is collected and organized 
into a data management platform, that prepares data for higher 
level analyses. At middle layer, a set of data-analytics methods 
and tools are implemented, targeted to the identification of (i) 
correlations among the observed heterogeneous variables, (ii) 
correlations among different system stages, and (iii) non-ideal 
part variation patterns along the system stages. These models can 
be used to design specific model-based control systems to be 
implemented at shop floor levels. Moreover, at higher level, an 
analytic system-level model is implemented, with the goal to 
identify priorities of intervention, dynamic bottlenecks, and to 
verify that local improvement actions that are detrimental for the 
overall production quality performance are avoided. Within the 
ForZDM project, this architecture will be developed, tested and 
validated in three complex application domains, dealing with the 
production of engine shafts in the aeronautics industry, the 
production of axles in the railway industry, and the production of 
micro-catheters in the medical technology industry.  
 

 
 
Figure 5: Relevance of a cross-KETs approach for production 
quality ramp-up reduction. 
 

 
Figure 6: Reference architecture for short-run production quality 
improvement proposed within the ForZDM EU project [58]. 
 
If these key enabling technologies are properly integrated with a 
cross-KETs approach, new solutions can be designed and 
implemented at shop floor level, to efficiently support systemic 
ramp-up management methods. These potential innovations, 
which constitute opportunities for future research, are discussed 
in the next section, focusing both on design methods and 
continuous improvement methods during the ramp-up phase. 

5. Future Research Challenges 

Robust system design methods. Embedding uncertainty in the 
parameters considered during the system design phase is a 
potentially good strategy to anticipate ramp-up disturbances and 
to provide robustness to the system design. However, it usually 
results in over-capacitated resilient systems, which lead to higher 
system implementation costs. Therefore, a trade-off between 
robustness level and ramp-up risks is generated. Developing 
design methods for cost-aware system robustness analysis in 
view of ramp-up risks would be advisable to enable practitioners 
to compare different robustness levels and decide the best 
configuration, embedding the ramp-up costs in the problem. 
Multi-method, multi-level and multi-physics digital 
manufacturing system modelling. As highlighted in section 2, the 
causes for ramp-up extensions are several and affect the system 
production quality performance through different mechanisms. 
Nowadays, the computational performance of modern processors 
as well as the achievements in parallel and high-performance 
computing have enabled to set-up effective multi-level, multi-
method and multi-physics digital modelling and simulation 
environments, where several aspects contributing to the dynamics 
of complex systems can be analyzed in integrated workflows. 
However, such approaches are rarely adopted in manufacturing 
systems engineering, although they would be particularly 
suitable, especially for complex design problems where multiple 
domains interact to determine the quality of the proposed 
solution. For example, combining multi-body simulation, able to 
model the contact forces among rigid bodies composing a 
system, with discrete event material flow simulation would lead 
to a better understanding of collisions, frictions, and contacts 
among system equipment, moving parts and fixtures or 
transportation modules, enabling to anticipate currently neglected 
ramp-up disturbances already in the design phase. 
Cyber-Physical Systems. A very promising area of research in the 
ramp-up management literature is looking at exploiting the 
capabilities of cyber-physical systems to improve data-analytics, 
learning and self-adjustment capabilities of the system, towards a 
production quality improvement loop [53]. Cyber Physical 
Systems (CPSs) are usually defined as systems integrating 
computation and physical actuation capabilities [54]. In CPSs, 



embedded computers and networks monitor and control physical 
processes, usually with feedback loops, where physical processes 
affect computations and vice versa [55]. Innovative applications 
of CPSs for improving manufacturing efficiency and responding 
to emerging industrial problems are attracting the interest of both 
industries and researchers [56]. Given the continuous occurrence 
of new scenarios during the ramp-up phase, approaches for self-
directed systems capable of learning and adapting their behavior 
depending on the observed conditions and target goals are the 
new frontiers of this research. A first work in this direction was 
proposed in [56] where the authors presented a concept of self-
learning CPS agent, based on reinforcement learning, and 
demonstrated it in three ramp-up management contexts. 
Moreover, in [57] a CPS-based solution was implemented in a 
electric-drive assembly line in order to smooth the propagation of 
defective items along the stages of the multi-stage assembly line 
and meet an overall improvement of effective throughput of 
about 18%. Since these approaches are promising and suitable for 
on-line implementation, more effort should be devoted to the 
development of this area in view of production quality 
performance improvement during the ramp-up phase. 
Knowledge transfer methods among subsequent system 
reconfigurations and ramp-ups. Although the discussion about 
the use of big data analytics in manufacturing is on going within 
the scientific and industrial community ([58], [59]), the 
application of these techniques in real manufacturing contexts is 
still very limited. Since one of the key features of the ramp-up 
management problem is the need to address a limited number of 
disturbances of known type leading to specific and unique 
problems, which differ at each reconfiguration period, data 
analytics techniques appear as very promising approaches in this 
area. However, if these techniques are applied independently at 
each ramp-up management cycle, a large set of data may be 
needed before reliable tools for root cause analysis and 
improvement prioritization can be managed. A good strategy to 
apply data analytics in the ramp-up management context seems to 
be the following: (i) categorize the typical disturbance causes 
encountered during the ramp-up phase, (ii) store data about 
improvement actions and system responses along multiple ramp-
up cycles, (iii) apply data analytics and learning algorithms to 
generate a decision support engine based on knowledge re-use 
along different ramp-up management cycles. This approach is 
expected to provide a learning effect along system 
reconfigurations that can potentially result in significant cost and 
time savings, after few ramp-up management cycles are carried 
out. 
Improve learning capabilities by heterogeneous data gathering 
and analysis. Available quality monitoring, control and 
improvement techniques are usually based either on product 
quality characteristics data, gathered by product inspection 
devices, process variables’ data, gathered by process sensors, or a 
combination of both, in the most advanced cases. However, as 
proposed within the ForZDM project approach, multiple 
distributed data sources can nowadays be exploited to gather 
heterogeneous process, part quality, machine state, part location 
and human-feedback data on-line at shop floor level. By using 
these data with more advanced data analytics and learning 
algorithms, additional knowledge can be acquired on the system 
behavior that can be useful for system improvement during the 
ramp-up phase. For example, by modelling the effect of a 
degraded machine state on the variability of a part quality feature 
processed by that machine, an effective and responsive yield 
improvement action can be implemented. For instance, the time 

the machine spends in that degraded state can be reduced through 
the implementation of preventive maintenance. Similar examples 
motivate the adoption of a more holistic approach to data 
correlation analysis for production quality improvement during 
the ramp-up phase.    
Reduce variability of effective production rate. While most of the 
methods for production quality improvement focus on the 
reduction of the ramp-up time, related to the average effective 
throughput production rate, very little attention has been 
dedicated to the reduction of the throughput variability during the 
ramp-up phase. However, as shown in Figure 7, elaborated from 
a real ramp-up profile of an automated assembly system in the 
furniture industry, the variability of the throughput during the 
ramp-up is significant.  
 

 
Figure 7: Throughput profile showing high variability during the 
ramp-up phase. 
 
Along the ramp-up, high throughput fluctuations are negative as 
structural throughput improvement trends are hidden by the 
throughput variability and over-adjustments in the system 
behavior can be induced. Moreover, large throughput variability 
affects the service level and the due-time performance of the 
system Errore. L'origine riferimento non è stata trovata.. To 
avoid these effects, more efforts should be devoted to the 
mitigation of the production quality variability during the ramp-
up phase, in order to reach at the same time the target effective 
production rate with smoothed throughput variability, as 
highlighted in Figure 8. 

 
Figure 8: Reduction of effective throughput variability during the 
ramp-up phase. 

6. Conclusion and key messages 

This paper has provided a reference framework for defining 
strategies to improve manufacturing systems production quality 
performance during the ramp-up phase and has revised the 
available methods and tools supporting this goal. The main 
messages contained in the paper can be summarized as follows:  



• The effective throughput is the most relevant performance 
measure to be improved during the ramp-up phase; it is 
jointly affected by quality, maintenance and production 
logistics decision variables 

• Effective strategies to reduce ramp-up losses include (i) 
anticipating disturbances during the design phase and (ii) 
monitoring the production to react to unknown disturbances. 

• Digital system and process modeling play a relevant role in 
ramp-up reduction, as it allows capturing and understanding 
complex system dynamics and phenomena.  

• System reconfigurations and adaptations are additional 
burdens on ramp-up management, as the system is frequently 
in transient behavior.  

• A Cross-KET approach, grounding on the most recent 
technologies for data gathering, modeling and analysis, 
should be investigated to properly address ramp-up reduction 
challenges in the Factory of the Future. 

Future research directions are also highlighted that could support 
the fast transition to new ramp-up management solutions, 
exploiting the opportunities of the most recent industry 4.0 
technologies. 
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