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Formal calculation of exchange correlation e�ects on annihilation lifetimes

of positronium con�ned in small cavities
G Tanzi Marlotti,1 G Consolati,2, 3 and F Castelli1, 3, a)
1)Department of Physics “Aldo Pontremoli”, Università degli Studi di Milano, via Celoria 16 I-20133 Milano,
Italy
2)Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34 I-20156 Milano Italy
3)INFN, sezione di Milano, via Celoria 16 I-20133 Milano, Italy

(Dated: 9 September 2019)

Positronium atoms (Ps) are widely used as a probe to characterize voids or vacancies in non-metallic materials. The
annihilation lifetime of trapped Ps is strongly modified by pickoff, depending on the cavity size and on the appropriate
external electron density. The connection between these material characteristics and Ps annihilation lifetimes is usually
based on models that do not consider the requirements of full electron indistinguishability, that must be taken into
account for a correct description of pickoff annihilation processes. In this report we provide a formal theoretical
framework in which exchange correlation effects between confined Ps and surrounding electrons are introduced in a
natural way, giving a clear and versatile picture of the various contributions to pickoff annihilation. Moreover, our
results provide a simple explanation of the lowering of the contact density (the Ps–electron density at the positron
position) as a direct consequence of the electrons indistinguishability, at variance with previous interpretation based
on spatial deformations of Ps wavefunction. Calculations are performed within the “symmetry adapted perturbation
theory” approach, and the results are compared with available experimental data on Ps lifetimes for polymers and
molecular solids. Finally, our analysis gives a formal justification to the approximations involved in early models based
on the well known Tao-Eldrup approach, and gives a simple interpretation of Ps properties in subnanometric voids.

Keywords: positronium lifetime spectroscopy, exchange
correlations, nanoporous materials, contact density

I. INTRODUCTION

In recent years the hydrogenlike bound state of an elec-
tron and a positron, namely the positronium atom (Ps), has
been extensively studied in the context of structural analy-
sis of porous materials, especially insulators and molecular
solids. In these materials Ps is usually found confined in free
spaces after formation by implanting positrons. The tech-
nique of positron annihilation lifetimes spectroscopy (PALS)
is one of the few methods available to obtain information
about these nanometric and sub-nanometric porous structures
(i.e. defects, voids, cavities and free spaces in general) which
may be present inside a sample1. Here, Ps lifetimes result
deeply different from the corresponding vacuum values. De-
pending on Ps internal spin configuration, in vacuum one has
τ2γ = λ

−1
2γ

= 0.125ns and τ3γ = λ
−1
3γ

= 142ns for the singlet
(para-Ps, or p-Ps ) and triplet (ortho-Ps, or o-Ps ) state respec-
tively, where λ2γ and λ3γ are the corresponding annihilation
rates.

In porous materials, the presence of both short and long
lifetime components in PALS spectra can be directly related
to the presence of a statistical mixture of Ps–like singlet/triplet
states trapped inside the porous structure (see the discussion
in Section II). It is common practice to improperly call these
states again as p-Ps and o-Ps , to stress the fact that both their

a)Electronic mail: fabrizio.castelli@unimi.it

spin configuration and their spatial wavefunction tend to those
of corresponding vacuum states for larger pores. Moreover,
experimental evidence requires the description of these Ps–
like annihilation channels to be different from the one used
for positron annihilation in metals and other materials where
a single spin–averaged lifetime is generally observed.

At present, the theory of Ps annihilation inside porous mat-
ter is usually achieved through approximate one or two-body
descriptions of the so called pickoff process, i.e. the possibil-
ity for the positron to annihilate with an electron of the sur-
roundings, different from that to which is bound in a Ps atom.

The most used one-body models describing Ps inside ma-
terials with small cavities are based on the Tao-Eldrup (TE)
approach2,3, which relates pick-off annihilation rates λpo to
pore sizes by considering Ps as a single quantum particle
trapped inside an infinite potential well. At the state of the
art, these models have been greatly extended to describe vari-
ous cavity geometries and temperature effects4,5. On the other
hand these models cannot describe the lowering of the contact
density (i.e. the electron density at the positron position) ob-
served for Ps in materials6,7, which is of course a property of
a bound two-body system.

Historically introduced as a natural extension of TE, two-
body models describe also the internal structure of Ps by con-
sidering separate degrees of freedom for the positron and the
electron8–10. Also, fully ab initio treatments of a two parti-
cle bound system inside a host material can in principle be
done11, but they are usually avoided given the huge computa-
tional efforts required.

In this context, it has long been assumed in literature that
Ps interaction with external electrons can be described as a
small perturbation. This assumption is implicitly at the ba-
sis of every one-body and two-body models, where the ex-
ternal electronic environment accounts for pickoff annihila-
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tions without any correlation with the spatial waveform and
the spin configuration of Ps in a bound state. On the other
hand, it is believed that a two-body approach is the simplest
one capable of describing any variation of the intrinsic rela-
tive contact density parameter kr, defined as the probability of
finding the Ps-electron at the positron position in units of the
vacuum value k0 = 1/8πa3

0 (a0 being the Bohr radius). We
used the term “intrinsic” to differentiate this quantity from the
analogous “total” contact density parameter usually found in
positron physics, which is proportional to the probability of
finding any electron at the positron position.

However, the validity of a theoretical treatment in which
the Ps is seen as a separate “entity” and where the Ps-electron
is somehow privileged with respect to external electrons must
be questioned against the requirement of full electron indistin-
guishability, especially given its direct relation to the pickoff
annihilation. As mentioned, the possibility of treating the Ps-
electron in a different way come from PALS experiments in
materials showing different lifetime signatures, whereas com-
plete electron indistinguishability is evident in materials and
compounds exhibiting a single lifetime component (the sim-
plest example of a Ps–like system having only one lifetime
component is Ps−). Furthermore, we note that a Ps-like com-
ponent in the spatial (or momentum) part of the wavefunc-
tion describing a positron in matter does not necessarily imply
the presence of different Ps states (for example, a delocalized
Ps may be present as a single superposition of singlet/triplet
states).

In this work we analyze in detail this problem, providing
a theoretical framework in which electron indistinguishability
can be introduced perturbatively in a natural way, thus pre-
serving the concept of para/ortho Ps atoms essential for the
analysis of nanoporous materials. To this aim, our treatment
takes into account explicitly spin configurations and positron–
electron correlations in the description of the Ps–environment
system and in the perturbative calculation of annihilation
rates. We will focus primarily on a particular aspect of this
problem that we call “over-counting”, which plays an impor-
tant role in the annihilation processes of Ps in cavities and
which is often overlooked. Then we introduce a symmetry–
adapted perturbation theory (SAPT)12 especially developed
for our case, and derive formal expressions for pickoff and
total annihilation rates of Ps by using a local density approx-
imation (LDA) to describe the properties of the electron sys-
tem. Numerical results on Ps lifetimes and contact density as
a function of the small cavity radius and of the surrounding
electron density are obtained and interpreted physically. The
role of the exchange effects on Ps pickoff lifetimes is put in ev-
idence. Finally, a comparison of our results with known PALS
experimental data for some polymers and molecular crystals
is presented.

Our picture offers a formal and rigorous justification of
the assumptions underlying the TE model and its variants, in
particular for application in subnanometric voids where con-
fined Ps has a non negligible interaction with the surround-
ings. Moreover, it will also provide a simple explanation for
the above discussed phenomenon of the lowering of the in-
trinsic contact density with respect to its vacuum value, as

it is found in many solid materials. By connecting this phe-
nomenon to electron indistinguishability, we will show how it
is by no means related to a spatial deformation of Ps wave-
function, as previously believed.

II. THE OVER�COUNTING PROBLEM

The most common set of equations used to describe anni-
hilation rates of o-Ps and p-Ps confined in porous matter, re-
spectively λt and λs, is given in literature by13:

λt = krλ3γ +λpo , (1a)
λs = krλ2γ +λpo . (1b)

For long time it has been thought of kr, the usual rela-
tive contact density, as an intrinsic property of the confined
Ps, whereas the term λpo, which is identical in both equa-
tions. (1a) and (1b), was associated to the pickoff annihilation
process with external electrons. Given that pickoff is by nature
a surface process, in every model λpo was assumed to depend
on a geometrical probability, commonly denoted by Pout, of
finding Ps outside the free-space (inner) region defining the
cavity:

λpo = Poutλb , (2)

where λb is a suitable bulk annihilation rate. It has become a
common practice to fix λb to the weighted average of singlet
and triplet decay rates λ̄ :

λb = λ̄ ≡ 1
4

λ2γ +
3
4

λ3γ = 2.01[ns]−1 , (3)

following a prescription originally due to TE. Being indepen-
dent of the electronic properties of the surrounding medium,
such an assumption must be regarded as an effective approxi-
mation, which holds provided that the geometrical parameters
of the model are consequently chosen to fit the correct pickoff
annihilation in real systems.

It came to our attention that there are many different hy-
pothesis about the proper way of treating Ps in the inner and
surface regions. In many works (for example in Refs.14–16)
Ps, described as a single particle with kr = 1, is considered
affected on the same foot by both intrinsic and pickoff annihi-
lations in the outer part of the cavity:

λt = λ3γ +Poutλb ,

λs = λ2γ +Poutλb .
(4)

On the other hand, a few one-particle models (to our knowl-
edge this was done only in Refs.5,17,18) completely differenti-
ate the inner and surface description of Ps. In these, Ps anni-
hilates with its intrinsic vacuum annihilation rate only in the
inner part of the cavity, whereas the surface region is dom-
inated by pickoff. Following Goworek17, equations (4) are
written in this picture as:

λt = (1−Pout)λ3γ +Poutλb

λs = (1−Pout)λ2γ +Poutλb ,
(5)
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being (1−Pout) = Pin the probability of finding Ps in the inner
free-space region. Remarkably, a direct comparison between
equations (1) and (5) show that the latter have by construction
an intrinsic relative contact density kr = Pin lower than unity.
Surprisingly enough, to our knowledge this important connec-
tion has gone unnoticed by the authors and by the positronium
community until now. In Ref.17 this was due to an erroneous
interpretation of the contact density, while in Ref.5 no consid-
erations about the contact density were done at all.

Finally, a somehow intermediate situation is found in all
two-particle models (for example in Refs.9,19,20), where pick-
off annihilation is proportional to the probability P+

out of hav-
ing the positron outside the cavity, which is somehow similar
to Pout:

λpo = P+
out λb . (6)

In these models, intrinsic annihilation is assumed to take
place only in the region allowed to the Ps-electron that, anal-
ogously to equations (4) and (5), can be either extended to the
whole space19 or limited to the inner cavity (if Ps-electron is
strictly confined, like in Ref.9).

In our view, all these different approaches are due to a gen-
eral lack of clarity about the meaning of terms appearing in
equations (1). In particular, the fact that both the expressions
for λt and λs in equations (1) have the same structure, has been
erroneously interpreted by some as the prove that o-Ps and
p-Ps are affected by the same pickoff annihilation rate. In
other words, it is assumed that a particular spin configuration
of the Ps–electron does not affect in any way the pickoff anni-
hilation behavior of Ps–positron in the outer layer. As a direct
consequence, the pickoff process was exclusively linked to the
term λpo in equations (1), while kr was associated to possible
modifications of the internal spatial structure of Ps wavefunc-
tion.

In this picture, no “shielding” effect due to electron ex-
change correlation effects (Pauli exclusion principle) is as-
cribed to the Ps–electron. Hence the positron is free to an-
nihilate with all surrounding electrons, independently from
their spin, with a consequent over–counting of annihilation
processes inside the surface region (as sketched in figure 1).
Surprisingly, this no–shielding assumption was neither fully
justified nor properly discussed from a theoretical point of
view. The possibility of having different pickoff annihilation
rates for o-Ps and p-Ps due to spin exchange was only noted,
to our knowledge, by Mogensen and Eldrup in 197721, but
never further investigated. Anyway, the lack of such a discus-
sion represents a minor problem to the positronium commu-
nity since the over–counting has a negligible effect on the total
annihilation rate of the o-Ps system (i.e. the easily measurable
long life component of PALS spectra), where λpo� λ3γ . The
same is not true for p-Ps , where pickoff and intrinsic annihi-
lation rates may be comparable.

The question is whether this over–counting is legitimate or
not must be answered in the framework of many–body quan-
tum mechanics. This will be discussed in detail in the follow-
ing sections, where we will show how the pickoff annihilation
rate is indeed different for o-Ps and p-Ps . Here, we just note
that this statement is not in contrast with equations (1) as long

FIG. 1. Effect of electron shielding on positron annihilation. Rc
and ∆ are commonly used symbols delimiting the inner and surface
region, respectively. Top: without shielding, the positron is free to
annihilate with external electrons of any spin configuration. Bottom:
if shielding is considered, the positron will most likely annihilate
with electrons having opposite spin with respect to Ps–electron.

as one realizes that they can be written as:

λt = λ3γ +
[
(kr−1)λ3γ +λpo

]
, (7a)

λs = λ2γ +
[
(kr−1)λ2γ +λpo

]
, (7b)

where the term in square brackets can be interpreted as the
overall contribution to the annihilation due to the external
electrons, i.e. the pickoff. This kind of formula has exactly
the same form of the one that will be derived from our theory.

III. THE PS�ENVIRONMENT SYSTEM

The detailed quantum state of an electron–positron pair in-
side a cavity is extremely complex. Whereas in the inner part
of the free–space region it will resemble an isolate Ps bound
state, in the outer part it will fade into a “spur state” (some-
times called quasi-Ps)22 of a positron interacting with the full
many–body environment. The main difficulty arises from the
fact that in the first scenario one deals with a separate Ps-
electron, while in the other one complete electron indistin-
guishability must be taken into account.

The formulation of a theoretical treatment apt to describe
the transition between these two limiting situations is an old
problem in both physics and chemistry. There are many sys-
tems (e.g. atoms in molecules) wherein individual compo-
nents are clearly identifiable and, in the non-interacting pic-
ture, may be described by an asymptotic-free hamiltonian
H0 = HA +HB where electrons are arbitrarily assigned to dif-
ferent subsystems A and B. In this asymptotic picture, the
ground state wavefunction ψ(0) = ψAψB can be written in a
factored form and does not need to be fully antisymmetric.
Since extramolecular interactions V in these systems are of-
ten small compared with the low-lying intramolecular (or in-
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traatomic or intraionic) level spacings, some sort of pertur-
bative treatment based upon non-interacting components is
suggested23.

To extend the treatment overcoming the antisymmetry
problem, since the 1960s a vast class of symmetry–adapted
perturbation theory (SAPT) were proposed.12 An accurate re-
view of SAPT is beyond the scope of the present discussion
and can be found in Ref.24. In particular, in all SAPT formula-
tions, the first order correction to the energy of the composite
systems reads:

E(1) =

〈
ψ(0)

∣∣∣V ∣∣∣A ψ(0)
〉

〈
ψ(0)|A ψ(0)

〉 . (8)

Here, A is an intermolecular antisymmetrizer operator, de-
fined as25

A =
1

N! ∑
p
(−1)pP , (9)

where P represents a permutation operator of N electrons,
while (−1)p stands for the parity of the permutation. The
factor

〈
ψ(0)|A ψ(0)

〉
=
〈

ψ(0)A |A ψ(0)
〉

at the denomina-
tor of equation (8) explicitly takes into account the so-called
intermediate-normalization condition24.

With the aim of applying SAPT methods to our prob-
lem, we proceed towards a suitable setting up of the Ps-
environment system. The most general Hamiltonian of a sys-
tem composed of a Ps atom weakly interacting with an N-
electron environment can be written as a sum of a free Ps
Hamiltonian Ĥ(0)

Ps , the Hamiltonian of the material Ĥb and
an interaction potential acting between these two subsystems.
Considering only Coulomb interactions and neglecting atomic
nuclei, which are not involved in the annihilation process, we
write:

Ĥ = Ĥ(0)
Ps (rp,re)+ Ĥb(r1,r2, · · · ,rN)+

N

∑
i=1

V̂int(rp,re,ri) ,

(10)
where V̂int(rp,re,ri) = V̂C(re,ri) − V̂C(rp,ri), while
V̂C(rx,ry) is the general expression of the Coulomb potential
between the particles x and y, whose spatial coordinates are rx
and ry. In the following, for the sake of simplicity in writing,
we will denote p = (rp,σp) and e = (re,σe) the spin–spatial
coordinates of the Ps positron and electron, respectively,
while numbers refer to the other electrons.

From the success of many theoretical models describing
Ps in porous materials, we know that the overall effect of
interactions can be well described by an effective potential
V̂eff(rp,re) acting only on the spatial coordinates of the Ps
atom as a whole. Although this potential can be found in dif-
ferent formulations in literature, the most important feature
they all share is the confining effect. As an example, in the
TE model this potential is taken as an infinite quantum well
V̂eff(rp,re) = V̂∞(R) acting on Ps center of mass R. Hence, it
is convenient to include this potential in the definition of an ef-
fective Ps hamiltonian ĤPs = Ĥ(0)

Ps +V̂eff, so that equation (10)

can be reformulated as:

Ĥ = ĤPs(rp,re)+ Ĥb(r1,r2, · · · ,rN)+V̂ , (11)

where V̂ =
[
∑

N
i=1 V̂int(rp,re,ri)−V̂eff(rp,re)

]
.

In the framework of a perturbative approach, by neglecting
the interaction potential V̂ , the Hamiltonian in equation (11)
becomes separable and its ground state will be the product of
a Ps wavefunction Ψ jm times the (antisymmetric) ground state
φ of the N-electron system:

ψ
(0)
jm (p,e,1, · · · ,N) = Ψ jm(p,e)φ(1,2, · · · ,N) , (12)

where j,m are the Ps spin S and spin projection Sz quantum
numbers ( j = 1 for o-Ps and j = 0 for p-Ps ). This wave-
function is by construction antisymmetric with respect to the
exchange of any two electrons in 1, . . . ,N since:

φ(1 · · · i · · · j · · ·N) =−φ(1 · · · j · · · i · · ·N) ∀i, j , (13)

but it is not antisymmetric with respect to the exchange with
Ps electron.

To ease the notation in the following discussion, we intro-
duce now some quantities which are usually well–known. The
external electron density is connected to the square modulus
of the N–electron normalized wavefunction and it is defined
as:

n(r) = N ∑
σ1

∫
|φ(r,σ1,2, · · · ,N)|2 d2 . . .dN . (14)

Here and in the following we use the compact notation
∫

di =
∑σi

∫
d3ri to represent both spin summation and spatial inte-

gration.
A commonly used concept in many body physics is that of

reduced density matrices (RDM), which offers a convenient
way of describing the internal structure of a many body system
of N indistinguishable particles without the complete knowl-
edge of its wavefunction. The term “reduced” refers to the fact
that attention is focused on a reduced number of coordinates,
being the density matrix of the total system averaged over all
the others. The simplest RDM is the one body reduced density
matrix (1RDM), which is defined as:

Γ
(1)(x;y) = N

∫
φ(x,2, · · · ,N)φ ∗(y,2, · · · ,N)d2 · · ·dN ,

(15)
where (as stated before) x and y denotes the couple (rx,σx)

and (ry,σy). The 1RDM has in principle 4 components Γ
(1)
↑↑ ,

Γ
(1)
↑↓ , Γ

(1)
↓↑ and Γ

(1)
↓↓ resulting from expansion in a complete set

of spin functions:

Γ
(1)(x;y) = ∑

i j
Γ
(1)
i j (rx;ry)si(σx)s∗j(σy) , (16)

where i and j may represent ↑ or ↓ spin states. Furthermore,
we can define the spatial 1RDM by integrating Γ(1) over the
spin variables:

Γ
(1)(rx;ry) = ∑

σx,σy
∑
i j

Γ
(1)
i j (rx;ry)si(σx)s j(σy) . (17)
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In general, if no spin mixing potential appears in the hamilto-
nian of the bulk system, as assumed here, the wavefunction φ

is an eigenstate of Sz and the two spin channels decouple, so
that Γ

(1)
↑↓ = Γ

(1)
↓↑ = 0 and26:

Γ
(1)(rx;ry) = Γ

(1)
↑↑ (rx;ry)+Γ

(1)
↓↓ (rx;ry) . (18)

Finally, the diagonal part of the spatial 1RDM is just the elec-
tron density defined in equation (14):

n(r) = Γ
(1)(r;r) = n↑(r)+n↓(r) , (19)

where n↑(n↓) is the local spin up(down) density.
Another useful quantity is the two body reduced density

matrix (2RDM), defined as:

Γ
(2)(x,x′;y,y′)

=

(
N
2

)∫
φ(x,x′,3, · · · ,N)φ ∗(y,y′,3, · · · ,N)d3 · · ·dN ,

(20)
which also can be expanded over a complete set of spin func-
tions, with a total of 16 components:

Γ
(2)(x,x′;y,y′) = ∑

i j,i′ j′
Γ
(2)
i ji′ j′(rx,rx′ ;ry,ry′)

× si(σx)s j(σx′)s
∗
i′(σy)s∗j′(σy′) .

(21)

As for 1RDM, a spatial 2RDM is introduced by integrating
Γ(2) over the spin variables σx, σx′ , σy and σy′ . The diagonal
part of the 2RDM, Γ(2)(rx,ry;rx,ry) = P(rx,ry), is the pair
distribution function, proportional to the conditional probabil-
ity of having an electron in ry given another one in rx. Since
the correlation between two electrons vanishes at long dis-
tances, in this limit is well known that P(rx,ry) satisfies the
condition:

P(rx,ry)≈ n(rx)n(ry) when |rx−ry| → ∞ . (22)

On the other hand, the probability of having two electrons
very close to each other is strongly suppressed in real systems
by both the Pauli exclusion principle (if they have the same
spin) and by the strong Coulomb repulsion.

When Ps approaches the external electronic system, its
wavefunction will begin to “overlap” with the system’s one
and exchange correlation effects must be considered. In this
sense it is useful to quantify this overlap by introducing a suit-
able parameter S with the following definition, whose special
formulation will become clear in the next section:

S =
N

∑
i=1

∫
Ψ
∗
jm(p,e)φ ∗(1, · · · , i, · · · ,N)Ψ jm(p, i)

×φ(1, · · · , i−1,e, i+1, · · · ,N) d pded1 · · ·di · · ·dN

= N
∫

Ψ
∗
jm(p,e)φ ∗(1,2, · · · ,N)

×Ψ jm(p,1)φ(e,2, · · · ,N) d pded1 · · ·dN

=
∫

Ψ
∗
jm(p,e)Ψ jm(p,1)Γ

(1)(e;1) d pded1 ,

(23)

where we used the antisymmetry properties of φ . Assuming a
Ps atom confined a priori in a certain free-space region (cav-
ity) means that the interaction with the external electrons will
take place only in a limited surface domain, so that the support
of integral in equation (23), hence the overlap, results small by
construction.

IV. FORMAL PERTURBATIVE APPROACH TO

ANNIHILATION RATE

As pointed out by many authors27, the QED phenomenon of
annihilation can be described in a simpler way through the in-
troduction of an effective absorption potential −ih̄λ̂/2 in the
ordinary time–dependent Schrödinger equation of the quan-
tum mechanical system under examination, where λ̂ is a suit-
able loss rate operator.28 Being imaginary, this potential leads
to an exponential decay of the positron (positronium) wave-
function, which accounts for particle loss and whose rate can
be determined via PALS experiments. This peculiar represen-
tation of the annihilation process makes possible its descrip-
tion in terms of imaginary part of the energy of the system. In
particular, the first order correction to the annihilation rate can
thus be derived from the (imaginary part of) first order correc-
tion to energy. This correction can in turn be calculated in
SAPT framework using equation (8), with just the knowledge
of the unperturbed ground state of the system.29

To take advantage of SAPT description, we need to split
the loss rate operator into a “intramolecular” part λ̂e, related
only to the intrinsic annihilation of the positron with the Ps-
electron e, and an “extramolecular” part ∑

N
i=1 λ̂i, related to

pickoff annihilations coming from the other N electrons. The
Hamiltonian operator (11) becomes now:

Ĥ = ĤPs(rp,re)− i
h̄
2

λ̂e + Ĥb(r1, · · · ,rN)+

[
V̂ − i

h̄
2

N

∑
i=1

λ̂i

]
.

(24)
The explicit expression of the annihilation operator in this pic-
ture is given by13:

λ̂i = 8πa3
0 δ

3(rp−ri)

[
1−Σp,i

2
λ2γ +

1+Σp,i

2
λ3γ

]
, (25)

where 8πa3
0 is the inverse contact density of unperturbed

positronium, rp and ri are positron and electrons coordinates,
respectively, and Σp,i is the spin exchange operator. In this ap-
proximation λ̂ is basically a “contact operator”, being a linear
combination of delta functions of the electron–positron dis-
tance. The spin exchange operator Σ guarantees that the an-
tisymmetric spin state annihilates via 2γ emission while the
symmetric spin state via 3γ emission. It’s easy to see that
this form of λ̂i gives the correct annihilation rates for p-Ps and
o-Ps states in vacuum.

It is now straightforward to calculate the total annihilation
rate for Ps as the sum:

λ = λ
(0)+λ

(1) , (26)
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6

where the zero-order term is simply the intrinsic annihilation
rate, which does not depend on external electrons

λ
(0) =

〈
ψ

(0)
jm

∣∣∣ λ̂e

∣∣∣ψ(0)
jm

〉
≡
〈
Ψ jm

∣∣ λ̂e
∣∣Ψ jm

〉
= 8πa3

0

∫ ∣∣Ψ jm(p, p)
∣∣2×{λ2γ if j = 0 (p-Ps )

λ3γ if j = 1 (o-Ps )

(27)

while the first-order correction represents the pickoff contri-
bution and is determined from equation (8):

λ
(1) =

〈
ψ

(0)
jm

∣∣∣∑N
i=1 λ̂i

∣∣∣A ψ
(0)
jm

〉
〈

ψ
(0)
jm |A ψ

(0)
jm

〉 . (28)

Explicitly, using the definition given in equation (9), we have:∣∣∣A ψ
(0)
jm

〉
=

1
(N +1)

[Ψ jm(p,e)φ(1,2, · · · ,N)

−
N

∑
i=1

Ψ jm(p, i)φ(1, · · · , i−1,e, i+1, · · · ,N)] ,

(29)
where the factor (N+1) at the denominator is the total number
of extra permutations of the Ps electron. The normalization
factor results: 〈

ψ
(0)
jm |A ψ

(0)
jm

〉
=

N

N +1
, (30)

where the quantity N depends only on the overlap S:

N =1−
∫

Ψ
∗
jm(p,e)Ψ jm(p,1)Γ(1)(e;1) d pded1

=1−S .
(31)

It is important to note that, by construction, the antisim-
metrized wavefunction of equation (29) can describe in a natu-
ral way positron–electron correlation factors for all surround-
ing electrons through suitable expressions of the two–particle
wavefunction Ψ jm(p,e), whereas Ps-electron–electron corre-
lation is not explicitly taken into account in our description
given its negligible contribution to annihilation.

From now on, for the sake of definiteness, we will focus on
a particular component of o-Ps . Hence we fix { jm} = {11},
but analogous calculation can be done for any Ps state. Taking
N on the left side of equation (28), and using the antisymmet-
ric property of φ to group together terms corresponding to the
same contribution, this formula can be written as:

N λ
(1) = N

∫
d pded1 · · ·dN{

Ψ
∗(p,e)φ ∗(1,2, · · · ,N) λ̂1 Ψ(p,e)φ(1,2, · · · ,N)

−N Ψ
∗(p,e)φ ∗(1,2, · · · ,N) λ̂1 Ψ(p,1)φ(e,2, · · · ,N)

−2
(

N
2

)
Ψ
∗(p,e)φ ∗(1,2, · · · ,N) λ̂1 Ψ(p,2)φ(1,e, · · · ,N)

}
(32)

Equation (32) shows that the overall correction to the annihi-
lation rate is the sum of 3 different contributions:

N λ
(1) = λsym +λex +λex-po . (33)

The first term λsym represents the direct contribution to the ex-
ternal annihilation, and has the same expression for o-Ps and
p-Ps , i.e. it is symmetric with respect to Ps spin configura-
tion, similarly to the “standard” pickoff annihilation rate of
equation (2) with the averaged annihilation rate λ̄ defined in
equation (3) (see Section II). To show that, we write λsym
separating the spatial and spin part of the Ps wavefunction
(Ψ jm(p,e) = Ψ(rp,re)χ jm(σp,σe)). Using the electron den-
sity representation over the single particle spin basis as de-
scribed in equations (14), (17) and (19) we get:

λsym =
∫
|Ψ(rp,re)|2n↑(r1)

×
[
χ11(σp,σe)s↑(σ1) λ̂1 χ11(σp,σe)s↑(σ1)

]
d pded1

+
∫
|Ψ(rp,re)|2n↓(r1)

×
[
χ11(σp,σe)s↓(σ1) λ̂1 χ11(σp,σe)s↓(σ1)

]
d pded1

=8πa3
0

∫
|Ψ(rp,re)|2δ (r1−rp)[

λ3γ n↑(r1)+
λ2γ +λ3γ

2
n↓(r1)

]
d3rp d3re d3r1

=8πa3
0 λ̄

∫
|Ψ(rp,re)|2n(rp)d3rp d3re .

(34)
where we have assumed uniform spin distribution of external
electrons, which implies:

n↑(r) = n↓(r) =
1
2

n(r) . (35)

In the second line, the expectation value of the spin exchange
operator inside λ̂1 (equation 25) has been obtained expanding
the spin part over the eigenstates of Σp,1 using the identities:

χ11(σp,σe)s↑(σ1) =χ11(σp,σ1)s↑(σe) ,

χ11(σp,σe)s↓(σ1) =
1√
2
[χ00(σp,σ1)+χ10(σp,σ1)]s↑(σe) .

(36)
Other two identities are written here for completeness, be-
cause they are useful in the analogue calculation on the
p-Ps state:

χ00(σp,σe)s↑(σ1) =
1√
2

[
χ11(σp,σ1)s↓(σe)

+
1√
2
(χ00(σp,σ1)−χ10(σp,σ1))s↑(σe)

]
,

χ00(σp,σe)s↓(σ1) =
1√
2

[
−χ1−1(σp,σ1)s↑(σe)

+
1√
2
(χ00(σp,σ1)+χ10(σp,σ1))s↓(σe)

]
.

The second and last integrals λex and λex-po in equation (32)
are exchange contributions to annihilation. In λex the annihila-
tion operator directly acts on the Ps spin wavefunction, so that
the remaining spin sum is easily performed using the same
method of equation (34). For o-Ps the result can be written
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in a simple form using the definition of the one-body reduced
density matrix equation (15):

λ
3γ
ex =−8πa3

0 λ3γ

∫
d3rp d3re

×Ψ
∗(rp,re)Ψ(rp,rp)Γ

(1)
↑↑ (re;rp) .

(37)

For p-Ps , λ
2γ
ex turns out with the same expression of the above

equation after substituting λ3γ with λ2γ (this is a consequence
of the uniform spin distribution and the fact that Γ

(1)
↑↑ = Γ

(1)
↓↓ ).

Finally, the last integral in equation (32) is an exchange–
correlation contribution to annihilation which can be related
to the two-body reduced density matrix Γ(2) of the system.
The expectation value of the annihilation operator can be cal-
culated using the spin expansion of Γ(2) in equation (21), so
that λex-po becomes formally:

λex-po =−2 ∑
i j,i′ j′

σ1,σ2

∑
σeσp

∫
d3rp d3re d3r1 d3r2

×Ψ
∗(rp,re)Ψ(rp,r2)Γ

(2)
i ji′ j′(r1,re;r1,r2)

×
[
χ11(σp,σe)si(σ1)s j(σ2) λ̂1 χ11(σp,σ2)si′(σ1)s j′(σe)

]
.

(38)
After some algebra, using the identities (36), one gets only
two non-vanishing contributions for o-Ps :

λex-po =−2(8πa3
0)
∫

d3rp d3re d3r2

×Ψ
∗(rp,re)Ψ(rp,r2)

[
λ3γ Γ

(2)
↑↑↑↑(rp,re;rp,r2)

+
λ2γ +λ3γ

2
Γ
(2)
↓↑↓↑(rp,re;rp,r2)

]
.

(39)

With the same reasoning, but slightly more lengthy calcula-
tions, symmetric expressions can be easily obtained for the
other o-Ps configurations. In the case of p-Ps one obtains:

λex-po =−2(8πa3
0)
∫

d3rp d3re d3r2Ψ
∗(rp,re)Ψ(rp,r2)

×
{

λ2γ +λ3γ

4

[
Γ
(2)
↑↑↑↑(rp,re;rp,r2)+Γ

(2)
↓↓↓↓(rp,re;rp,r2)

]
+

λ2γ −λ3γ

4

[
Γ
(2)
↑↓↓↑(rp,re;rp,r2)+Γ

(2)
↓↑↑↓(rp,re;rp,r2)

]
+

λ3γ

2

[
Γ
(2)
↑↓↑↓(rp,re;rp,r2)+Γ

(2)
↓↑↓↑(rp,re;rp,r2)

]}
.

(40)
Up to this point, the only assumption we made about the

system interacting with Ps is that of uniform spin distribution
(equation (35)), a condition which translates in the absence
of local spin polarization near the cavity region in the unper-
turbed ground state of the system. In particular, no assumption
on the form of φ has been done so that the formulation of the
annihilation rate as given in equation (33) is completely gen-
eral. To provide more physical insight we need to introduce
further approximations.

The simplest possible approach is given by the so called
local density approximation (LDA). In LDA, the properties of

an electronic system with a density profile n(r) are locally
modeled at r as given by a free electron gas with the same
density. In this simple picture, the 1RDM has an analytical
expression30:

Γ
(1)(x;y) = δσxσy

n(Rxy)

2
B
(
kF(Rxy) |rxy|

)
, (41)

where kF(Rxy) =
(
3π2n(Rxy)

)1/3 is a “local” Fermi momen-
tum and

B(x) = 3
sin(x)− xcos(x)

x3 . (42)

The spatial 1RDM is then:

Γ
(1)(Rxy;rxy) = Γ

(1)
↑↑ (Rxy;rxy)+Γ

(1)
↓↓ (Rxy;rxy) . (43)

In equation (41) and in the following we use the notation

Rxy =
x+y

2
rxy = x−y ,

(44)

to denote the average and the relative position of two particles
x and y, respectively.

Whereas the LDA extension of 1RDM is successfully
used in standard DFT calculations, a similar result does not
hold for 2RDM, which is generally unknown given that it
strongly depends on the system under examination. This
is particularly relevant for the calculation of λex-po, whose
terms are proportional to spatial integrals on Ps wavefunc-
tions Ψ∗(rp,re)Ψ(rp,r2)Γ

(2)(rp,re;rp,r2). However we
note that, by construction, these wavefunctions exponentially
vanish at large interparticle separation, i.e. when rpe,rp2 &
2a0 (the Bohr radius for positronium is twice that of hydro-
gen). Furthermore, any realistic form of Γ(2) should rapidly
vanish when inter–particle separation lies in the so called
“exchange–correlation hole” region, whose size is roughly
given by the Wigner-Seitz radius rs = (3/4πn)1/3, i.e. the
radius of a sphere which on average contains one fermion31.
Given that rs & 2a0 for common values of n(r), the integra-
tion domain in equations (39) and (40) is extremely reduced,
thus making λex-po an higher order contribution to the annihi-
lation rate. For these qualitative reasoning, and given that we
are considering only first order corrections to λ , we neglect
λex-po from now on.

Using the definitions introduced above, the exchange
overlap and all the corrections to the annihilation rate can
in principle be calculated if the electron density function
n(r) and the form of Ps spatial wavefunction are known
from other computations or other sources. In the follow-
ing section we will show how it is possible to include
basic qualitative features of these two quantities into the
discussion. However we stress that the theory presented
here and in particular equations (34), (37), (39) and (40)
can be evaluated starting from any given Ps and electron
bulk wavefunctions. As a byproduct, we also note that our
theory can easily accomodate any form of positron–electron
correlation factors by means of a suitable choice of the spa-
tial part of Ps wavefunctions, as usually done in literature.11,32
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V. CALCULATION OF PICKOFF ANNIHILATION RATE

AND DERIVATION OF TE MODEL

Reasonable expressions for the spatial Ps wavefunction
Ψ(rp,re) can be found by specifying the form of its hamil-
tonian, hence choosing some suitable effective potential V̂eff
acting on the two particles. For the sake of simplicity, having
in mind a comparison with the TE model, we will focus on
a spherical cavity geometry of radius Rc and assume that Ψ

can be written in simple factored form using relative rpe and
center of mass Rpe coordinates as:

Ψ(rp,re) = ψ(rpe)ΨTE(Rpe) . (45)

Here, the confining effect is taken into account using an in-
finite potential barrier that keeps the center of mass within a
distance Rc +∆ from the center, where ∆ represents the thick-
ness of the effective interacting region outside Rc. Hence the
center of mass ground–state wavefunction is given by:

ΨTE(Rpe) =
1√

2π(Rc +∆)

sin(πRpe/(Rc +∆))

Rpe
. (46)

Since we are neglecting all Coulomb potentials except the one
leading to the bound Ps atom, the radial part of the relative
wavefunction is supposed to be the same as to the unperturbed
Ps, i.e. an Hydrogen-like 1S orbital:

ψ(rpe) =
√

k0 e−
rpe
2a0 . (47)

We stress again that in place of equation (45) one can eas-
ily use any Ps ground state, obtained from either one-body or
two-body models.

On the other side, giving an accurate expression for the
electron density function n(r) is an extremely complicated
task if one has to consider all the interactions naturally present
in the system. Whereas electron–electron repulsion may add a
negligible contribution to annihilation, the opposite is true for
positron–electron attraction, which would lead to an enhance-
ment of the electron density at the positron position, therefore
increasing the annihilation rate. Without any knowledge of the
amount of the enhancement, we can just define a quantity ρe
to be the effective electron density felt by the Ps. Furthermore,
to keep an analogy with TE–like models where the interaction
region is limited to a shell layer33

n(r) =
{

ρe if r ≥ Rc

0 if r < Rc
(48)

Using equations (45), (48), and the LDA expressions (41),
the exchange overlap and the symmetric contribution to the
annihilation lead respectively to:

S =
ρe

2

∫
Re1>Rc

d3rp d3re d3r1

×ΨTE(Rpe)ΨTE(Rp1)ψ(rpe)ψ(rp1)B(kF re1) ,

λsym = λ̄
ρe

k0

∫
rp>Rc

d3rp d3re|ΨTE(Rpe)|2|ψ(rpe)|2 ,

(49)

whereas the exchange correction λ
3γ
ex is given for o-Ps by:

λ
3γ
ex =−

λ3γ ρe

2
√

k0

∫
Rpe>Rc

d3rp d3re

×Ψ
∗
TE(Rpe)ΨTE(rp)ψ(rpe)B(kF rpe) ,

(50)

while for p-Ps the exchange correction λ
2γ
ex is obtained by in-

terchanging λ3γ ↔ λ2γ . Finally, by collecting these first order
corrections (as listed in equation (33)) and adding the unper-
turbed intrinsic annihilation, the formal expressions for the
total annihilation rates of o-Ps and p-Ps are found:

λt =

[
λ3γ −

λ
3γ
ex

1−S

]
+

λsym

1−S
,

λs =

[
λ2γ −

λ
2γ
ex

1−S

]
+

λsym

1−S
.

(51)

These expressions clearly show that, between Ps states, a dif-
ference in pickoff annihilation rates can be ascribed to ex-
change contributions.

Despite all the approximations used, the integrals appearing
in these terms have no analytical expression, so that one still
needs to use numerical methods. This is easily done and we
will show calculation results in the following section.

However some insights about their qualitative behavior can
be deduced using simple geometrical considerations, as in the
following. Considering for example the integrand function in
the expression of S, we note that the radial distances between
the three particles p,e and 1 have a distribution shaped by the
exponentials factors ψ(rpe)ψ(rp1) = exp[−(rpe + rp1)/2a0].
In particular, this means that the integral will be substantially
different from zero only when rpe,rp1 . 2a0, i.e. when the
two electrons lay altogether around the positron position in
a sphere roughly the size of Ps. Hence, the center of mass
positions Rpe,Rp1 and Re1, which are midway from the cor-
responding particles, will in turn lay in a sphere of radius
≈ a0 around rp. This value is generally small compared to the
range Rc+∆ above which the TE center of mass wavefunction
ΨTE(R) extends, in practical cases well over the cavity size.
In first approximation, by neglecting the variation of Ψ on the
small scale a0 we may assume Rpe ∼ Rp1 ∼ Re1 ∼ rp ≡ R and
write:

ΨTE(Rpe)ΨTE(Rp1)n(Re1)≈ |ΨTE(R)|2n(R) . (52)

Given that n(R) has a step behavior, it’s convenient to in-
troduce the quantity P′out, defined as the probability of finding
the Ps center of mass in the interaction region outside Rc in
spherical coordinates:

P′out ≡ 4π

∫ Rc+∆

Rc

|ΨTE(R)|2R2 dR

= 1− Rc

Rc +∆
+

1
2π

sin
2πRc

Rc +∆
,

(53)

which is nothing but the well known expression derived from
the TE model.2,3,15,37 By using the same approximation to all
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FIG. 2. Plot of P′out as a function of Rc for ∆ = 2,3 and 4 a.u., as
indicated. The dashed line corresponds to the TE value ∆ = 3.13
atomic units (a.u.).

annihilation contributions, and changing integration variables
from (rp,ri, · · ·) to (R,rpi, · · ·), equations (49) and (50) be-
come:

S≈ ρe

2
P′out

∫
ψ(rpe)ψ(rp1)B(kF re1)d3rpe d3rp1 ,

λsym ≈ λ̄
ρe

k0
P′out

∫
|ψ(rpe)|2 d3rpe = λ̄

ρe

k0
P′out ,

λ
3γ
ex ≈−λ3γ

ρe

2
√

k0
P′out

∫
ψ(rpe)B(kF rpe)d3rpe ,

(54)

and similarly for λ
2γ
ex . Total annihilation rates for o-Ps and

p-Ps are then obtained in the usual form (see Section II), ex-
hibiting two separate contributions due to the pickoff pro-
cesses:

λt =

[
1− P′outA[ν ]

1−P′outC[ν ]

]
λ3γ +

[
ρe

k0

P′out

1−P′outC[ν ]

]
λ̄ ,

λs =

[
1− P′outA[ν ]

1−P′outC[ν ]

]
λ2γ +

[
ρe

k0

P′out

1−P′outC[ν ]

]
λ̄ ,

(55)

where we have defined two auxiliary functions A and C by

A[ν ] =
ρe

2
√

k0

∫
ψ(rpe)B(kF rep)d3rpe ,

C[ν ] =
ρe

2

∫
ψ(rpe)ψ(rp1)B(kF re1)d3rpe d3rp1 ,

(56)

with ν = 2kF a0, depending on ρe through kF . These functions
can be analytically calculated, resulting in:

A[ν ] =
2
π

[
arctan(ν)− ν

1+ν2

]
,

C[ν ] =
2
π

[
arctan(ν)−

ν− 8
3 ν3−ν5

(1+ν2)3

]
.

(57)

The main advantage of approximation (52) is that in equa-
tions (55) geometrical effects are well separated from those
effects due to electron exchange. In fact, geometrical param-
eters are contained only in the definition of the quantity P′out,

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ρ/k0

C[ν]

A[ν]

FIG. 3. Plot of C[ν ] and A[ν ], with ν = 2kF a0, as a function of
the ratio ρe/k0, where ρe is the external electron density felt by the
positron in the material.

which depends on the cavity radius Rc and on the thickness of
the interacting region ∆. In figure 2 we plot P′out as a function
of Rc for three values of ∆, chosen around the TE commonly
accepted value ∆ = 3.13 a.u.(= 0.166nm)2,15.

On the other hand, the two functions A and C depend on
the electron density ρe felt by the positron in the material. In
figure 3 we plot these quantities as a function of the normal-
ized electron density ρe/k0; both these functions increase for
increasing density values while they vanish at the low density
limit.

Note that within this approximation, the intrinsic relative
contact density is given by

kr =

[
1− P′outA[ν ]

1−P′outC[ν ]

]
. (58)

By definition, kr is a useful indicator of the dissociation de-
gree of Ps atom, i.e. of the separability of the Ps-electron. Its
maximum value kr = 1 (Ps in vacuum) is lowered by the over-
lap with surrounding electrons and vanishes as the original
Ps state fades. When kr = 0 no distinction between o-Ps and
p-Ps annihilation rates is possible because all electrons are
taken on equal footings. It is important to note that in this pic-
ture the vanishing behavior of the contact density is only due
to electron indistinguishability and it is by no means related
to a spatial deformation of Ps wavefunction, as previously ac-
cepted. In order to show kr behavior between these two limits,
in figure 4 we plot its value as a function of both P′out and ρe.

Now it is interesting to derive directly from the equa-
tion (55) the celebrated Tao–Eldrup (TE) result, in the form
which was discussed in Section II. Equivalence between the
symmetric parts of pickoff annihilation rates predicted by the
two models can be obtained by setting:

Pout =
ρe

k0

P′out

1−P′outC[ν ]
. (59)
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FIG. 4. Plot of kr as a function of the geometrical parameter P′out
and the electron density ρe felt by the positron in the material (equa-
tion (58)). In the top-right region, kr assumes negative values since
the description of a Ps atom weakly interacting with the environment
is no more possible.

Using this scaling condition, we can write equation (55) as:

λt =

[
1− k0

ρe
A[ν ]Pout

]
λ3γ +Poutλ̄ ,

λs =

[
1− k0

ρe
A[ν ]Pout

]
λ2γ +Poutλ̄ ,

(60)

which are very similar to equations (5) and of course can be in-
terpreted as in (7). In this equivalent version of the TE model,
the intrinsic relative contact density in the surface region, i.e.
when Ps is in the outer shell of thickness ∆TE, can be obtained
by taking Pout = 1 and turns out to be:

kout = 1− k0

ρe
A[ν ] . (61)

In the limit in which the probability of having an external elec-
tron at the positron position reaches the same value of free Ps
(i.e. when ρe→ k0), kout becomes:

lim
ρe→k0

kout = 1−0.472 = 0.527 , (62)

which is very close to the expectation value of the relative
contact density of one electron in the negative ion Ps−(see
Ref.34):

1
k0

〈
Ps−
∣∣ δ̂p1

∣∣Ps−
〉
=

1
k0

∫
d3rp d3r1 d3r2|φPs−(rp,r1,r2)|2δ (rp−r1)≈ 0.52 .

(63)
This analogy is not surprising, given that in the classical
picture of Ps− only one electron is closely bound to the
positron35, and the one-half factor in the contact density

comes mainly from the normalization of the total antisymmet-
ric wavefunction.

The result in equation (62) can be easily explained with the
following simple argument. Taking as a reference figure 1,
where particles are represented by rigid spheres, we focus on
the m= 1 o-Ps , so that both Ps positron and electron will have
↑ spin configuration. Then, the pickoff annihilation contribu-
tion due only to external electrons of opposite spin will be
proportional to the geometrical probability P↓(rp) of finding
a spin-down electron at the positron position:

Λ↑↓ = P↓(rp)λ↑↓ , (64)

where λ↑↓ is the average annihilation rate for opposite-spin
configuration. At the same way, the contribution due to exter-
nal electrons of the same spin will be given by the product:

Λ↑↑ = P↑(rp)λ↑↑ . (65)

From the general expression of the annihilation operator (25),
it is easy to find that

λ↑↓ =
ρe

k0

λ2γ +λ3γ

2
; λ↑↑ =

ρe

k0
λ3γ , (66)

where the first expression comes from the fact that the ↑↓ con-
figuration correspond to a superposition of a m = 0 o-Ps and a
p-Ps . The total annihilation rate then reads:

λt = λ3γ +Λ↑↓+Λ↑↑

= λ3γ +P↓(rp)
ρe

k0

λ2γ +λ3γ

2
+P↑(rp)

ρe

k0
λ3γ .

(67)

If no shielding effect is present, and considering uniform spin
distribution for external electrons, P↓(rp) and P↑(rp) would
be equally given by:

P↓(rp) = P↑(rp) =
1
2

Pout , (68)

where as usual Pout is the probability of having Ps in the in-
teraction region. However, the Ps electron tends to “repel”
electrons with the same spin, so that one has P↑(rp) <

1
2 Pout.

The range of this repulsion is usually associated to the size of
the exchange hole, which in turn is inversely proportional to
the electron density. If we assume ρe = k0, i.e. electron den-
sity at the positron matching the same value of a 1S ground
state wavefunction, at most two electrons can be found at the
positron position (the Ps electron and an external one with op-
posite spin). Hence we have P↑(rp) = 0 and:

λt = λ3γ +
1
2

Pout
λ2γ +λ3γ

2

= (1− 1
2

Pout)λ3γ +Poutλ̄ ,

(69)

which is just the result of equation (60). This suggests a sim-
plified picture in which Ps can be considered as such in the
internal cavity region, whereas it resembles a Ps− when in-
side the interaction region in the external shell. As a final
observation, we note that for lower electron density values,
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FIG. 5. Relationship between o-Ps lifetime τ and relative contact
density kr, for 3 different values of cavity radius Rc. The thickness
of the interaction layer ∆ was fixed to 3.13 a.u. to provide compar-
ison with the TE model. Curves are obtained by varying the elec-
tron density ρe felt by Ps. In particular, red points correspond to
ρe = k0. Increasing values of ρe correspond to smaller lifetimes and
smaller kr. Continuous lines are numerically calculated from equa-
tions (51), while dashed lines refer to the analytical approximation
given in equations (55). Qualitatively, a lower value of ∆ reproduces
the same result of a larger one, if the cavity radius Rc is consequently
scaled.

the range of the shielding effect will be wider and in partic-
ular for ρe = ρ0 ≈ 0.3k0 it is found that the intrinsic contact
density vanishes in the surface region:

kout = 1− k0

ρe
A[ν ]

∣∣∣∣
ρe=ρ0

= 0 , (70)

so that equations (60) become identical to (5):

λt |ρ0
= [1−Pout]λ3γ +Poutλ̄ ,

λs|ρ0
= [1−Pout]λ2γ +Poutλ̄ ,

(71)

then giving a someway stronger justification to the assump-
tions of the family of models discussed in Section II.

VI. NUMERICAL RESULTS

To better appreciate the role played by geometry in the pick-
off annihilation behavior, in figure 5 we plot the relationship
between lifetime τ = λ

−1
t and intrinsic relative contact den-

sity kr (equation (58)) for a confined o-Ps within 3 different
choices of the cavity radius parameter Rc. Here, the thickness
of the interaction layer was fixed to the TE value ∆= 3.13 a.u..
The electron density ρe varies in a reasonable range of values
and increasing values of ρe correspond to shorter lifetime val-
ues. In particular, red points correspond to the choice ρe = k0.
In these pictures, continuous lines refer to the exact numeri-
cal result obtained from equations (51), while dashed lines are
calculated using the analytical approximation given in (55).
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0
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o
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s
)

TE

ρe=0.1k0

ρe=0.3k0

ρe=0.5k0

ρe= 1k0

2

2.5

3

FIG. 6. Relationship between the cavity radius Rc and o-Ps lifetimes,
τOrtho, for different values of electron density ρe (each represented by
a different color). Each point was numerically calculated from equa-
tions (51) as a function of (Rc,∆), with ∆ = 2,2.5 and 3a.u. Black
line corresponds to the TE model prediction with ∆ = 3.13a.u.

As expected from the discussion in the previous section,
kr always lies below the vacuum limit kr = 1, and gets lower
with increasing values of ∆ or ρe (i.e. by increasing the over-
lap S). It is quite clear that approximations (52) do not hold
for small Rc+∆ values, where the heavily distorted wavefunc-
tion of the confined Ps undergoes large variations over short
distances.36 On the other hand, there is a general good agree-
ment for larger radii. Also, the difference in predictions be-
tween equations (51) and (55) seems not to be influenced by
the value of the electron density, being mainly related to the
system geometry.

In order to give a proper comparison with TE predictions,
figure 6 shows the relationship between the cavity radius Rc
and o-Ps lifetime, for different values of electron density ρe
and three choices of ∆. Here, each color corresponds to a spe-
cific value of ρe. In particular, red values represent the ρe = k0
limit, where the pickoff process can be related to a surface
formation of Ps−, as discussed after equation (62). On the
other hand, green values represent the ρe = ρ0 ≈ 0.3k0 limit
described in equations (70) and (5). Finally, we also plot an
intermediate region ρe = 0.5k0 (in orange) and a low density
limit ρe = 0.1k0 (in blue) for comparison. The black line is
the TE original result τT E = (λ3γ +P′out λ̄ )−1 (see equations
(2) and (4). It seems to be compatible with the Ps− formation
mechanism (red points), despite the fact that ∆ values consid-
ered in our calculation are generally smaller with respect to
the commonly accepted TE value.

In figure 7 we plot the relationship between o-Ps lifetime τ

and relative contact density kr, for different values of electron
density ρe, together with known experimental results (see be-
low). Points are numerically calculated from equations (51)
as a function of the couple (Rc,∆), while lines are obtained
by the corresponding analytical approximation given by equa-
tions (55). The cavity radius Rc and the shell thickness ∆ were
taken to vary in the range 1−15a.u. and 1−5a.u. respectively,
a choice in line with the assumption of subnanometric voids.
For comparison, it is worth to remember that the commonly
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used TE value of ∆ (3.13a.u.) was originally obtained from
vacancies in the range Rc ≈ 6− 8a.u.37. As expected, points
tend to saturate to the analytical approximation in the limit
∆� Rc, which can be interpreted as a Ps confined in a rela-
tively wide quantum well completely filled with electron gas.

To compare our model with experimental data, we used
known results on the contact density kr and PALS spectra ob-
tained for some polymers and molecular crystals. The data
are reported in table I. Spectra are decomposed in 3 or 4
lifetime and relative intensity components. In the usual inter-
pretation, the shorter component τ1 ∼ 0.125ns is associated
to p-Ps annihilation, the intermediate lifetime τ2 ∼ 0.3ns is
due to direct positron annihilation while the longest τ3,τ4 ∼
1−5ns are associated to o-Ps annihilating via pickoff process.
In the plot, points are given in the form (τ3,kr) or, for materi-
als having 4 components, as (τ4,kr), i.e. as a function of the
longest o-Ps lifetime component.

Despite this relationship between τ1,τ3,τ4 and Ps formation
is widely accepted, its implications on the relative intensities
I1, I3 and I4 of the two annihilation channels are rarely taken
into account. Indeed, we note that only a few spectra show
the correct I1/(I3 + I4) = 1/3 ratio predicted by any model
describing p-Ps /o-Ps formation by an unpolarized positron.
This condition could be imposed during the spectrum analy-
sis, but it is common practice to ignore it and let all the inten-
sities vary freely during the fitting procedure, thus improving
the fit convergence. This is because sometimes non-physical
values for the lifetimes are obtained by imposing constraints
on the intensities. We want to stress that, without this con-
dition, τ1 cannot in principle be associated to p-Ps without
introducing arbitrary assumptions on Ps formation mecha-
nism. This problem may implicate a bias in the estimate of
the shorter and longer components of the spectra (i.e. the one
associated to p-Ps and o-Ps respectively). On the other hand,
the relative contact density values kr in table I are mostly ob-
tained via magnetic quenching experiments, so that they are
largely independent of any possible bias in PALS analysis.

Figure 7 shows a general good agreement between our pre-
dictions and a substantial group of the experimental data,
which tend to accumulate in the ρe = k0 region associated to
the surface Ps− formation process. We note also that the other
data showing a poor agreement with our model are mostly ob-
tained by a free PALS analysis, that is, without any constraint
on the intensities ratio. For example, 4 of the 6 points ly-
ing in the down-right corner of figure 7 (near the blue curve)
present a p-Ps / o-Ps intensity ratio I1/I3 & 0.5 > 1/3. Evi-
dently, when free positrons annihilate in the bulk with a life-
time comparable to that of p-Ps , it is very hard to disentangle
the two components due to the finite resolution of the spec-
trometer and the interpretation of τ1 as pure p-Ps lifetime is
no longer valid. Thus it is not clear if they are effectively link-
able to a Ps trapped in a relatively big cavity (Rc +∆≈ 10a.u
with Rc ≈ 1a.u), completely filled with a low density electron
gas (ρe . 0.1k0), as would be predicted by the current model.
In particular, the unnaturally high value of kr found in PPD
is associated to an intensity ratio I1/I3 = 4.8� 1/3 which
prevents to identify τ1 as p-Ps .

At variance with results obtained with our old model20,
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FIG. 7. Relationship between o-Ps lifetime τ and relative contact
density kr, for different values of electron density ρe (each repre-
sented by a different color). Each point was numerically calculated
from equations (51) as a function of (Rc,∆), while lines are ob-
tained by the corresponding analytical approximation given by equa-
tions (55). Known experimental data taken from table I are plotted
for comparison (see text).
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FIG. 8. Relationship between o-Ps and p-Ps lifetimes, τortho and
τpara, for different values of electron density ρe (each represented
by a different color). Each point was numerically calculated from
equations (51) as a function of (Rc,∆), while lines are obtained by
the corresponding analytical approximation given by equations (55).
Known experimental data taken from table. I are plotted for compar-
ison. For materials with more than 3 lifetime components, only the
longest one is used. The straight black line represents p-Ps lifetime
in vacuum λ

−1
2γ

= 0.125ns.

where in the small cavity limit the relative contact density was
raised up to the (unphysical) hydrogen value kr = 8, here kr
tends to vanish. This different behavior is rapidly explained
given the lack, in the current picture, of a confining poten-
tial acting on Ps-electron only. Moreover, the wavefunction
describing the electron-positron relative distance inside Ps is
exactly the same as in vacuum and the vanishing of the con-
tact density for small values of Rc is a mere consequence of
having a higher overlap with external electrons.

Another useful relationship predicted by our model is that
between o-Ps and p-Ps lifetime components, which is plot-
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ted in figure 8 for different values of electron density ρe.
Like in figure 7, points are numerically calculated from equa-
tions (51), while lines are obtained by the corresponding an-
alytical approximation given by equations (55). The straight
black line represents p-Ps lifetime in vacuum λ

−1
2γ

= 0.125ns.
We can see that most data lay in the range predicted by our
model. Again, the few exceptions (in particular the PPI sam-
ple) present a ratio I1/I3 which does not satisfy the statistical
weights 1 : 3 of para-to-ortho Ps sublevels. As already seen in
figure 7, curves tend to saturate to the analytical approxima-
tion at the high ∆ limit, which corresponds to the situation of
a cavity being completely filled with electron gas.

VII. CONCLUSIONS

The description of annihilation behavior of Ps atoms in
nanoporous materials has been addressed in literature by
means of various theoretical frameworks, based both on one-
body or two-body basic models. Among these attempts, only
in a few cases attention was given to the unavoidable presence
of exchange effects between Ps-electron and external elec-
trons. These effects, supposedly, can affect in some relevant
extent the pickoff annihilation, and pose the question if Ps can
be effectively seen as a separate "entity" where the Ps electron
is somehow privileged with respect to external electrons.

In this paper we face this problem using a symmetry
adapted perturbation theory (SAPT), managing to set up a the-
oretical framework to formally calculate Ps annihilation rates
in realistic material conditions. With the help of the analy-
sis developed here, we were able to clarify some concepts that
had had many different interpretations in literature. In particu-
lar, we managed to provide insights about the meaning of the
relative contact density kr, which for long time has been re-
lated only to the spatial part of the confined Ps wavefunction.
Also, we clarify the form of the pickoff terms describing the
annihilation process of Ps in cavities, which has been always
considered to be identical for o-Ps and p-Ps . Furthermore,
we focused on a particular aspect of this problem, present on
simple descriptions of pickoff processes, which we call “over-
counting”.

Using a simplified model of a Ps interacting with an N-
electrons environment, we showed how the pickoff annihila-
tion rate is indeed different for o-Ps and p-Ps . In practice, we
found that a spin–shielding effect must be ascribed to the Ps–
electron, which makes the pickoff process asymmetric with
respect to the two Ps spin configurations, a feature often mis-
understood and never previously analyzed in literature. On
the other hand, it is possible to reconnect known results with
ours by recasting this difference in a symmetric form directly
related to the observed lowering of the intrinsic contact den-
sity, hence with a parallel and new interpretation of the whole
annihilation processes. Indeed, within SAPT framework, kr
essentially becomes an indicator of the dissociation degree of
Ps atom trapped in small cavities, i.e. of the separability of the
Ps–electron with respect to other electrons of the surround-
ings. Its maximum value kr = 1 (Ps in vacuum) is lowered
by the overlap with external electrons and it vanishes as the
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original Ps state fades. When kr = 0 no distinction between
o-Ps and p-Ps annihilation rates is possible because all elec-
trons are taken on equal footings.

In particular, we suggested a new model which only de-
pends on 3 parameters, namely the size Rc of the free space
region (cavity), the thickness of the interaction layer ∆ and the
value of the external electron density ρe effectively interacting
with the positron. Finally, our main result can be summarized
with the expressions of the total annihilation rate of o-Ps and
p-Ps (equations (51)).

Remarkably, we found that our model is capable to provide
a simple explanation for the lowering of the contact density,
despite it is characterized by the complete lack of any poten-
tial that could pull the electron and positron apart. Indeed, we
used an unperturbed expression for the Ps relative wavefunc-
tion which is exactly the same as in vacuum. The vanishing
of the contact density for small values of Rc or for high values
of ρe is then a mere consequence of having an higher over-
lap with external electrons, and it is by no means related to
a spatial deformation of Ps wavefunction, as previously be-
lieved and accepted. In other words, it is the concept of Ps
itself which inevitably fades out when electrons can no more
be distinguished. As a final remark, we note that, despite we
have used a simple form of the Ps wavefunction, our results
can be easily extended to any one-body and two-body models
describing Ps in matter as a separated entity, but also to effec-
tive models describing positron–electron spatial correlations,
as often proposed in literature.11,32

Further investigations are necessary to test and validate the
relationships provided by our model. In particular, PALS and
magnetic quenching experiments on materials subjected to ex-
ternal pressure, as for example47, can be extremely useful as
they reduce the number of unknown free parameters. As also
recommended above, to avoid interpretation bias future PALS
analysis should be performed assuming the correct intensity
ratio between p-Ps and o-Ps lifetime components, a condition
which can be easily achieved by a constrained fitting proce-
dure.
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