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Abstract. We report on the first mathematically rigorous proofs of a transition to a giant
vortex state of a superfluid in rotating anharmonic traps. The analysis is carried out within
two-dimensional Gross-Pitaevskii theory at large coupling constant and large rotational velocity
and is based on precise asymptotic estimates on the ground state energy. An interesting aspect
is a significant difference between ‘soft’ anharmonic traps (like a quartic plus quadratic trapping
potential) and traps with a fixed boundary. In the former case vortices persist in the bulk until
the width of the annulus becomes comparable to the size of the vortex cores. In the second
case the transition already takes place in a parameter regime where the size of vortices is very
small relative to the width of the annulus. Moreover, the density profiles in the annulus are
different in the two cases. In both cases rotational symmetry of the density in a true ground
state is broken, even though a symmetric variational ansatz gives an excellent approximation
to the energy.

1. Introduction
A superfluid confined in a rotating anharmonic trap, where the rotation speed can in principle
be arbitrarily large, undergoes several phase transitions as the speed increases. At first the fluid
is vortex free [22, 3] but then quantized vortices emerge, eventually forming a vortex lattice
[6, 16, 2, 23, 1, 7, 17] that may persist even when the speed is so large that the centrifugal force
creates a ‘hole’ with strongly depleted density in the middle of the trap [19, 8, 9, 10]. Above a
certain rotation speed a transition to a giant vortex state takes place. In this state the vortices
disappear from the annulus where the bulk of the superfluid is concentrated while a macroscopic
phase circulation remains. This phenomenon has been studied theoretically by variational and
numerical methods in the past [17, 18, 19, 20, 24, 26, 15] but mathematically rigorous proofs of
the giant vortex transition have been obtained only very recently [31, 11, 12, 13, 14, 32]. An
experimental realization of this transition appears to be still out of reach although anharmonic
traps have been available already for some time [4, 34, 21, 37]. In the following we report on
the main findings of this analysis with emphasis on [13, 14].
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2. Setting the Stage
2.1. The basic many-body Hamiltonian
The quantum mechanical Hamiltonian for N spinless bosons with an external potential, V , and
a pair interaction potential, v, in a rotating frame with angular velocity Ωrot is

H =
N∑
j=1

(
−1

2∇
2
j + V (xj)− Lj ·Ωrot

)
+

∑
1≤i<j≤N

v(|xi − xj |).

Here xj ∈ R3 and Lj = −ixj×∇j is the angular momentum of the jth particle. The Hamiltonian
can alternatively be written in the ‘magnetic’ form

H =
N∑
j=1

{
1
2(i∇j + A(xj))

2 + V (xj)− 1
2Ω2

rotr
2
j

}
+

∑
1≤i<j≤N

v(|xi − xj |) (1)

with the vector potential
A(x) = Ωrot × x = Ωrotr eϑ

where r denotes the distance from the rotation axis and eϑ the unit vector in the angular
direction. This way of writing the Hamiltonian corresponds to the splitting of the rotational
effects into Coriolis and centrifugal forces.

2.2. Harmonic vs. anharmonic traps
If V is a harmonic oscillator potential in the direction ⊥ to Ωrot, i.e.,

V (x) = 1
2Ωtrapr

2 + V ‖(z)

then stability requires Ωrot < Ωtrap. Rapid rotation means here that

Ωrot → Ωtrap

from below. On the other hand, if V is anharmonic and increases faster than quadratically in
the direction ⊥ to Ωrot, e.g. V (x) ∼ rs + V ‖(z) with s > 2, then Ωrot can in principle be as
large as one pleases and rapid rotation means simply Ωrot →∞.

These two cases are quite different both physically and mathematically. The former leads to
an effective many-body Hamiltonian in the lowest Landau level of the magnetic kinetic energy
term in (1) and bosonic analogues of the Fractional Quantum Hall Effect (see [39, 38, 7, 29]).
In the case of rapid rotation in an anharmonic trap, as considered here, it is usually sufficient
to employ Gross-Pitaevskii (GP) theory for an effective description. We remark, however, that
a small anharmonic term appropriately tuned can also lead to interesting modifications of the
Quantum Hall states of harmonic traps [33].

2.3. The Gross-Pitaevskii limit theorem
The following basic fact about the many-body Hamiltonian (1) for N → ∞ with Na and Ωrot

fixed, where a is the scattering length of the (repulsive, short range) interaction potential v was
proved in [27]:

There is (possibly fractionated) Bose-Einstein condensation in the ground state as N →∞,
and the wave function of the condensate (“superfluid order parameter”) is a minimizer (in general
not unique) of the GP energy functional

EGP
3D [Ψ] =

∫
R3

{
1
2 |(i∇+ A) Ψ|2 + (V − 1

2Ω2
rotr

2)|Ψ|2 + 2πNa |Ψ|4
}

(2)
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with
∫
|Ψ|2 = 1. The Gross-Pitaevskii partial differential equation{

(i∇+ A)2 + (V − 1
2Ω2

rotr
2) + 4πNa|Ψ|2

}
Ψ = µΨ

with the chemical potential µ is the variational equation corresponding to this minimization
problem.

The rigorous proof of this theorem is far from simple, as can be seen from the fact that a
Hartree variational ansatz for the Hamiltonian (1) (that would anyhow only lead to an upper
bound) is meaningless if the interaction potential has a hard core. Even for ’soft’ potentials a
naive computation would not lead to (2) with the scattering length as parameter, but rather the
integral

∫
v (that gives only the lowest Born approximation to the scattering length). For the

mathematical background of this and related results [28] may be consulted. A limit theorem
that holds uniformly the parameters Ωrot and Na as N → ∞, but is restricted to the leading
order, was proved in [5].

2.4. 2D Gross-Pitaevskii theory in anharmonic traps
The GP minimization problem has two parameters, Ωrot and Na. We shall be concerned with
phenomena that occur in anharmonic traps in the asymptotic regime where both Ωrot and Na
are large. For convenience introduce

ε ≡ (2πNa)−1/2

which is small if Na is large. (In appropriate units ε is the ‘healing length’.)
For traps that are sufficiently elongated along the rotational axis (z-direction) the properties

of the condensate are to a good approximation independent of z and we may consider a 2D1

energy functional

EGP
2D [Ψ] =

∫
R2

{
1
2 |(i∇+ A) Ψ|2 + (V − 1

2Ω2
rotr

2)|Ψ|2 +
|Ψ|4

ε2

}
with a trap potential of the form (for simplicity)

V (r) = krs (3)

with s > 2, k > 0. Here Ωrot can be arbitrary large.
The limiting case s → ∞ corresponds to a ‘flat’ trap with fixed boundary at r = 1. The

effective potential is then simply −1
2Ω2

rotr
2 and the integration is limited to the unit disc in R2.

A word of caution: The limit s→∞ can not be interchanged with the limits ε→ 0, Ωrot →∞
as discussed in Section 3.6 below.

The analysis of the GP minimizer is guided by the following heuristics:

• A vortex, i.e., a zero of the wave function Ψ(x) = |Ψ(x)| exp(iθ(x)) with an accompanying
nonzero winding number of the phase factor, reduces the kinetic energy because the
associated current ∼ ∇θ(x) compensates partly the velocity field generated by A(x) =
Ωrot × x.

• A vortex causes also a change in the density, however, (mass is moved from the vortex core
to the bulk) and this increases the interaction energy that depends on the density at the
potential location of the vortex. The energy balance decides whether or not a vortex is
favorable, and if that is the case, the size of the vortex core.

• A vortex is the more costly the higher the density. At sufficiently high rotational velocities
the compression due to centrifugal forces creates a ‘hole’ and the density in the bulk increases
until, at some point, vortices become too costly.

1 A 2D description is, of course, also appropriate in thin traps where the motion along the z-axis is ‘frozen’ [36].
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2.5. Scaling of the energy functional
The effective potential (krs− 1

2Ω2
rotr

2) has a unique minimum at r = (Ω2
rot/(sk))1/(s−2). Taking

this as a length unit we obtain the scaled energy functional

EGP[ψ] =

∫
R2

{
1
2 |(i∇+ Ωxeϑ)ψ|2 + Ω2W (x)|ψ|2 + ε−2|ψ|4

}
where x = |x|, Ω ∼ Ω

(s+2)/(s−2)
rot , and

W (x) =
(
1
sx

s − 1
2x

2
)
.

The scaled potential has a minimum at x = 1, independent of Ω.

3. Analysis of the GP Minimizers
3.1. Critical velocities
The basic facts for traps of the form (3) with 2 < s <∞ can be summarized as follows.

As Ω increases there are three critical velocities:

• Ω′c1 ∼ | log ε| marking the appearance of the first vortex.2

• Ωc2 ∼ ε−1 marking the appearance of a ‘hole’ due to the centrifugal forces.

• Ωc3 ∼ ε−4 marking the transition to a ‘giant vortex’.

For the first transition we refer to [2, 22, 1, 30]. For Ωc1 � Ω� Ωc3 the ground state energy
is well approximated by assuming a triangular vortex lattice in the bulk.3 In the limit ε → 0
the vorticity becomes uniformly distributed with density Ω [14]. For Ω > Ωc3 the bulk is free of
vortices but a macroscopic circulation around the origin remains [13, 14].

3.2. The vortex lattice regime
The ground state energy for Ωc1 � Ω� Ωc3 can be computed exactly to subleading order [14]:

Theorem 1 (Energy between Ωc2 and Ωc3) If ε−1 . Ω� ε−4 as ε→ 0, then

EGP = ETF + 1
6Ω| log(ε4Ω)|(1 + o(1)).

Here ETF denotes the energy without the kinetic term. Below Ω2c a similar formula holds (with
a different scaling, ε−2/(s+2) as length unit):

Theorem 2 (Energy between Ωc1 and Ωc2) If | log ε| � Ω′ . ε−1 as ε→ 0, then

EGP′ = ETF′ + 1
2Ω′| log(ε2Ω′)|(1 + o(1)).

3.3. Vortices reduce kinetic energy
The potential term ∼ Ω2 and the interaction term ∼ ε−2 become comparable when

Ω ∼ ε−1.

This is the order of the second critical speed Ωc2 above which the centrifugal force creates a
‘hole’. In the sequel we shall focus on rotation speeds around and above Ωc2 which means that
Ω & ε−1. In this regime the kinetic energy term 1

2 |(i∇+ A)Ψ|2 is formally also of order 1/ε2 if
Ω ∼ 1/ε. Its contribution to the energy is, however, of lower order, namely ∼ Ω| log ε|, because
a lattice of vortices emerges as ε→ 0 and reduces the kinetic energy as remarked in 2.4.

2 Here Ω′ ∼ ε−4/(s+2)Ωrot. This scaling is more convenient than Ω ∼ Ω
(s+2)/(s−2)
rot for Ω� 1/ε.

3 The reason why a triangular arrangement with hexagonal unit cells is optimal amongst regular lattices can be
made plausible by appealing to an electrostatic analogy and Newton’s theorem [10]: Hexagonal cells are as close
to being circular as possible and thus have smaller multipole moments and lower interaction energy than other
cells.
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3.4. The giant vortex regime
Consider a variational ansatz for the wave function of the form4

ψ(x) = g(x) exp(iΩϑ)

with a real valued function g, normalized such that
∫
g2 = 1.This gives

EGP[ψ] =

∫
R2

{
1
2 |∇g|

2 + 1
2Ω2(x− x−1)2g2 + Ω2

(
1
sx

s − 1
2x

2
)
g2 + ε−2g4

}
≡ Egv[g].

The unique positive minimizer ggv of Egv is rotationally symmetric and we denote the
corresponding energy by Egv.

The following results are proved in [13, 14].

Theorem 3 (Energy in the giant vortex regime) There is a constant 0 < Ω̄0 < ∞ such
that for Ω = Ω0 ε

−4 with Ω0 > Ω̄0 the ground state energy is

EGP = Egv +O(| log ε|9/2).

Theorem 4 (Absence of vortices in the bulk) There is a constant c > 0 such that for
Ω = Ω0 ε

−4 with Ω0 > Ω̄0 and ε sufficiently small the minimizer ψGP is free of zeros in the
annulus

A = {x : |1− x| ≤ cΩ−1/2| log ε|1/2}.

3.5. On the proof of the GV transition
The main issue is a precise lower bound to the energy. We restrict Egv to the annulus A,
obtaining a positive minimizer g0. Define u(x) on the annulus by writing

ψGP(x) = g0(x)u(x) exp(iΩϑ).

The function u contains all possible zeros of ψGP in the annulus.
The variational equation for g leads to the lower bound

EGP ≥ Egv
A + EA[u]

with a functional of Ginzburg-Landau type with g20 as weight:

EA[u] =

∫
A
g20
{
1
2 |∇u|

2 −B · J(u) + ε−2g20(1− |u|2)2
}

where B = Ω (x − x−1) eϑ and J(u) = i
2(u∇u∗ − u∗∇u). The main task is to estimate the

negative term −
∫
g20 B · J(u).

For this purpose one writes g2B = ∇⊥F with ∇⊥ = (−∂x2 , ∂x1) and a potential function F .
Integration by parts and estimates of F (this is the key point!) give∫

A
g2
{
1
2 |∇u|

2 −B · J(u)
}
≥ −CΩ2

0| log ε|3/2

leading to the lower energy bound.
A consequence of this bound, combined with the variational upper bound Egv

A ≤ 0 is an
upper bound on the interaction term for large Ω0:∫

A
ε−2g40(1− |u|2)2 ≤ CΩ2

0| log ε|3/2.

Together with the upper bound to the kinetic energy and standard inequalities this implies
that u must be close to 1, in particular free of zeros.

4 For simplicity of notation we assume that Ω is an integer which is justified since Ω→∞.
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3.6. Comparison with the ‘flat’ case
The flat case, s =∞, that is treated in detail in [11, 12], differs from the case s <∞ in several
respects:

• The GV transition takes place at Ω ∼ ε−2| log ε|−1 rather than Ω ∼ ε−4.
• The density profile in the GV regime is of ‘Thomas-Fermi’ type in the ‘flat’ case, but for
s <∞ it is gaussian around x = 1.

• The ‘last’ vortices before the GV transition have size ∼ ε3/2 that is much smaller than the
thickness of the annulus ∼ ε| log ε|. For s <∞ the size of vortices, ∼ ε2 and the size of the
annulus, ∼ ε2| log ε|1/2, are almost comparable.

The techniques of proof in the two cases are also by necessity different: While vortex ball
constructions and subsequent jacobian estimates (see [35]) for the potential function are
applicable for the ‘small’ vortices in a ‘flat’ trap they are useless for s < ∞ and new ideas
are required.

3.7. Circulation and symmetry breaking
At low rotation speeds below the onset of the second vortex the GP minimizer has rotationally
symmetric density, but a vortex lattice clearly breaks the symmetry. On the other hand, the giant
vortex variational ansatz, that gives an excellent approximation to the energy and circulation
for Ω0 > Ω̄0, is an eigenfunction of angular momentum. A true minimizer does not have this
property, however:

Theorem 5 (Circulation and rotational symmetry breaking) In the giant vortex regime
Ω0 > Ω̄0 the circulation of any GP minimizer is 2πΩ +O(Ω0 | log ε|9/4), but no minimizer is an
eigenfunction of angular momentum.

Theis result holds both for s <∞ and s =∞ [11]–[14].

4. Summary
The study of the GP equation for dilute Bose gases in rotating, anharmonic reveals a surprising
rich landscape, both from the mathematical and physical point of view. Detailed analysis can
be carried out in an asymptotic regime where both the coupling constant and the rotational
speed are large. Among the results found are:

• Energy asymptotics corresponding to a distribution of vorticity in a lattice of vortices for
Ωc1 � Ω� Ωc3.

• Emergence of a ‘hole’ with strongly depleted density above a critical rotation speed
Ωc2 ∼ ε−1.

• Transition to a ‘giant vortex’ state above Ωc3 ∼ ε−4 where the vortex lattice disappears
from the bulk and all vorticity resides in the ‘hole’, creating a macroscopic circulation in
the bulk.

• Breaking of rotational symmetry, also in the giant vortex regime.
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