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\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper discusses and analyzes two domain decomposition approaches for electro-
magnetic problems that allow the combination of domains discretized by either N\'ed\'elec-type polyno-
mial finite elements or spline-based isogeometric analysis. The first approach is a new isogeometric
mortar method and the second one is based on a modal basis for the Lagrange multiplier space,
called state-space concatenation in the engineering literature. Spectral correctness and in particular
inf-sup stability of both approaches are investigated numerically, and analytical results are obtained
for the isogeometric mortar method. The new mortar method is shown to be unconditionally stable.
Its construction of the discrete Lagrange multiplier space takes advantage of the high continuity of
splines and does not have an analogue for N\'ed\'elec finite elements. On the other hand, the approach
with modal basis is easier to implement but relies on application knowledge to ensure stability and
correctness.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . isogeometric analysis, electromagnetism, domain decomposition

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35Q60, 49M27, 65D07, 68Q25, 68R10, 68U05, 78M10

\bfD \bfO \bfI . 10.1137/18M1235211

\bfone . \bfI \bfn \bft \bfr \bfo \bfd \bfu \bfc \bft \bfi \bfo \bfn . In electrical engineering numerical modeling and simulations
have become more and more invaluable in the design process of new devices and
components. In particular, we are often interested in electromagnetic devices where
the geometry plays an important role in their performance. Given this requirement, we
choose to investigate the applicability of isogeometric analysis (IGA) to the simulation
of complex electromagnetic structures such as, e.g., radio frequency (RF) cavities
(see Figure 1) as used in particle accelerators. The main building block of IGA for
electromagnetic problems are the B-spline spaces with nonuniform rational B-splines
(NURBS) mappings as introduced by Buffa and co-authors in [11, 10]. They allow
us to parametrize our domain of interest exactly in terms of computer aided design
(CAD), thus avoiding geometrical errors, and grant us a straightforward way to deal
with deformations or shape optimization processes, e.g., [5].

However, it is known that, when dealing with complicated structures, one might
not always be able to easily construct a volumetric parametrization as required by
IGA, and no robust automatic tools exist to alleviate the burden of this task. It is
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Fig. 1. A superconducting TESLA cavity. (Copyright 2006 DESY)

then of interest to investigate the possibility of substructuring and coupling domains,
possibly using different type of discretization with each other. A particular example
of electromagnetic devices with problematic parametrization are electrical machines
where the rotor part of the domain is rotating with respect to the stator [6].

To address those issues, we investigate the domain decomposition method (DDM)
for electromagnetic problems solved with isogeometric methods. In particular, we are
interested in methods that allow for the coupling of nonconforming meshes and of dif-
ferent discretization schemes such as IGA and the classical N\'ed\'elec-type finite element
method (FEM). Two methods are considered: a new mortar method, which allows for
the coupling of different grids and exploits the inherent properties of the isogeometric
basis to naturally define the approximation space for the Lagrange multipliers, and
the state space concatenation (SSC) method recently introduced by Flisgen, Glock,
and van Rienen [21], which exploits a modal basis on the connecting interfaces instead.
SSC can also be interpreted as a problem-specific port reduction method [19, 26]. In
the following, we discuss the proper mathematical construction of such a basis, its
stability, and correctness and show numerical simulations of a real world application
example.

\bfone .\bfone . \bfA \bfp \bfp \bfl \bfi \bfc \bfa \bft \bfi \bfo \bfn \bft \bfo \bfr \bfa \bfd \bfi \bfo \bff \bfr \bfe \bfq \bfu \bfe \bfn \bfc \bfy \bfc \bfa \bfv \bfi \bft \bfi \bfe \bfs . The motivational application
example of this paper is the simulation of RF cavities which are used to give energy
to the beam in particle accelerators. A resonating electromagnetic field is induced
inside these structures in such a way that the field oscillation is synchronous with the
passing of the charges and that they experience only an accelerating field [32].

More specifically, we consider the TeV-Energy Superconducting Linear Accelera-
tor (TESLA) cavity [2, 18], a 9-cell cavity built in superconducting niobium for the In-
ternational Linear Collider (ILC), currently in operation at the Deutsches Elektronen-
Synchrotron (DESY) facility in Hamburg (see Figure 1). The TESLA cavity operates
with a transverse magnetic (TM) standing wave mode at f0 = 1.3GHz. Very strin-
gent tolerancies are required in production in order for the accelerating frequency to
be as close as possible to this value. This high precision is also required from the
numerical simulation.

However, many cavity simulation codes still rely on two-dimensional axysimmetric
FEM, thus disregarding the three-dimensional effects of the Higher Order Mode Cou-
pler (HOMC) present at the ends of the cavity (see Figures 1--2). Three-dimensional
FEM needs a very high number of elements in order to achieve a sufficient accuracy.
The use of IGA in cavity simulation has been proven to be beneficial both in terms of
accuracy and of overall reduction of the computational cost [15, 14]. Moreover, IGA
allows for a better treatment of geometry deformations, e.g., due to Lorentz detuning
[15].

The overall goal is to be able to discretize the central part of the cavity with
an isogeometric scheme (as this is the region where the geometry description plays a
paramount role in the definition of the eigenfrequencies and where the wall deforma-
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Fig. 2. HOMCs of the TESLA cavity. On the left the downstream coupler, on the right the
upstream one. Images are created with CST Microwave Studio [16].

tions occur) and finite element (FE) in the end beampipes, where the fine details of
the HOMCs (see Figure 2) make it difficult to build the structured mesh required by
IGA, while they can be captured with a fine mesh of (possibly curved) tetrahedra.
Furthermore, given the modularity of the geometry, we consider the application of
DDM also for cell-to-cell coupling.

The paper is organized as follows. Maxwell's eigenvalue problem in the cavity is
recalled in section 2, along with the IGA framework used. Two DDMs, the mortar
method and the SSC method, are presented in section 3, followed by a complete
analysis of the mortar method in section 4, and numerical tests in section 5. Section 6
draws some conclusions and final remarks.

\bftwo . \bfI \bfs \bfo \bfg \bfe \bfo \bfm \bfe \bft \bfr \bfi \bfc \bfa \bfn \bfa \bfl \bfy \bfs \bfi \bfs \bff \bfo \bfr \bfM \bfa \bfx \bfw \bfe \bfl \bfl '\bfs \bfe \bfq \bfu \bfa \bft \bfi \bfo \bfn \bfs . This section first in-
troduces notation for Sobolev spaces and trace operators. The Maxwell eigenvalue
problem is formulated in its weak form in the second subsection. Although focusing
on the eigenvalue problem, all methods can be applied to source problems as well.

\bftwo .\bfone . \bfS \bfo \bfb \bfo \bfl \bfe \bfv \bfs \bfp \bfa \bfc \bfe \bfs \bfa \bfn \bfd \bft \bfr \bfa \bfc \bfe \bfo \bfp \bfe \bfr \bfa \bft \bfo \bfr \bfs . We distinguish between two-di-
mensional and three-dimensional domains by using the notation \Gamma and \Omega , respectively.
We denote by Hs(\Gamma ) and Hs(\Omega ) the Sobolev spaces of regularity s \in \BbbR , and by \| \cdot \| s,\Gamma 
and \| \cdot \| s,\Omega the corresponding norms. The domain subindices will be removed from
the norms when there is no ambiguity. Moreover, assuming that \Gamma \subset \partial \Omega , we follow

the notation introduced in [28] and make use of the space H
1/2
00 (\Gamma ) of functions such

that their extension by zero is in H1/2(\partial \Omega ), and denote its dual by H
 - 1/2
00 (\Gamma ). For

vector fields, the spaces will be denoted with bold letters, for example, \bfH s(\Omega ).
We will also make use of the spaces of vector fields

\bfH (\bfc \bfu \bfr \bfl ; \Omega ) = \{ \bfv \in \bfL 2(\Omega ) : \bfc \bfu \bfr \bfl \bfv \in \bfL 2(\Omega )\} ,
\bfH (div; \Omega ) = \{ \bfv \in \bfL 2(\Omega ) : div\bfv \in L2(\Omega )\} .

Denoting by \bfn the unit normal vector exterior to \Omega , for scalar fields we introduce the
standard trace operator \gamma : H1(\Omega )  - \rightarrow H1/2(\partial \Omega ), while for vector fields in \bfH (\bfc \bfu \bfr \bfl ; \Omega )
we introduce the two trace operators

\bfitgamma (\bfu ) = \bfu  - (\bfu \cdot \bfn )\bfn \equiv (\bfn \times \bfu )\times \bfn ,

\bfitgamma \bot (\bfu ) = \bfu \times \bfn 

and define\bfH 0(\bfc \bfu \bfr \bfl ; \Omega ) as the subspace of functions in\bfH (\bfc \bfu \bfr \bfl ; \Omega ) with vanishing trace
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\bfitgamma on the boundary \partial \Omega . We recall that the trace operators and differential operators
commute, and in particular \bfg \bfr \bfa \bfd \Gamma (\gamma \phi ) = \bfitgamma (\bfg \bfr \bfa \bfd \phi ) (see, for instance, [9]). Finally,
for \Gamma \subset \partial \Omega we denote by \gamma \Gamma , \bfitgamma \Gamma and \bfitgamma \bot ,\Gamma the restriction of the trace operators to \Gamma ,
and denote by \bfH \Gamma (\bfc \bfu \bfr \bfl ; \Omega ) the functions of \bfH (\bfc \bfu \bfr \bfl ; \Omega ) with vanishing trace on \Gamma . In
particular, the trace operators \bfitgamma \Gamma and \bfitgamma \bot ,\Gamma map the functions in \bfH (\bfc \bfu \bfr \bfl ; \Omega ) into the
Sobolev spaces

\bfH  - 1/2(\bfc \bfu \bfr \bfl ; \Gamma ) = \{ \bfv \in \bfH  - 1/2(\Gamma ) : curl\Gamma \bfv \in H - 1/2(\Gamma )\} ,

\bfH  - 1/2(\bfd \bfi \bfv ; \Gamma ) = \{ \bfv \in \bfH 
 - 1/2
00 (\Gamma ) : div\Gamma \bfv \in H

 - 1/2
00 (\Gamma )\} ,

respectively. We will endow these spaces with the usual graph norms, which we,
respectively, denote by \| \cdot \|  - 1/2, \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l} and, for simplicity, \| \cdot \|  - 1/2, \mathrm{d}\mathrm{i}\mathrm{v} .

\bftwo .\bftwo . \bfF \bfo \bfr \bfm \bfu \bfl \bfa \bft \bfi \bfo \bfn \bfo \bff \bfM \bfa \bfx \bfw \bfe \bfl \bfl \bfe \bfi \bfg \bfe \bfn \bfv \bfa \bfl \bfu \bfe \bfp \bfr \bfo \bfb \bfl \bfe \bfm . Under the assumption
of time-harmonicity, the electric field in an RF cavity is governed by a second order
partial differential equation (PDE) in terms of the electric field phasor \bfE only

(1) \bfc \bfu \bfr \bfl \bfc \bfu \bfr \bfl \bfE = \varepsilon 0\mu 0\omega 
2\bfE ,

where \varepsilon 0 and \mu 0 are the vacuum electric permittivity and magnetic permeability, re-
spectively, [27]. Equation (1) is an eigenvalue problem, whose solutions are a sequence
of eigenmodes (\omega 2

n,\bfE n) which represent the excitable modes in the cavity. In the lossy
case, the conductivity can be considered by introducing a complex-valued permittiv-
ity and the modal analysis will consequently lead to solutions in the complex plane.
In this work we focus on the lossless approximation where also the cavity walls are
considered to be perfect conductors, which is a reasonable assumption for supercon-
ducting resonators such as the TESLA cavity. While the treatment of lossy materials
should be straightforward, the introduction of more complex boundary conditions,
e.g., impedance boundary conditions [24], is more involved since it affects the defini-
tion of all function spaces. Although we do not expect problems, only the real-valued
case with boundary conditions for perfect electrical conductors is considered in the
following.

Following [4], we introduce the weak formulation of Maxwell's eigenproblem (1)
as follows: Find \omega \in \BbbR and \bfE \in \bfH 0(\bfc \bfu \bfr \bfl ; \Omega ) with \bfE \not = 0 such that

( \bfc \bfu \bfr \bfl \bfE , \bfc \bfu \bfr \bfl \bfv ) = \varepsilon 0\mu 0\omega 
2 (\bfE ,\bfv ) \forall \bfv \in \bfH 0(\bfc \bfu \bfr \bfl ; \Omega ).(2)

In the context of classical FE analysis, the numerical approximation of problem (2)
requires either some form of stabilization of the divergence part or the use of the so-
called edge elements introduced by N\'ed\'elec [30], which have the property of directly
satisfying the commuting de Rham diagram [29].

In [11, 10], Buffa and co-authors introduce a sequence of B-spline spaces that also
satisfies the de Rham diagram, opening up the possibiliy of applying IGA to elec-
tromagnetic problems. In the remainder of this section, we introduce some notation
regarding B-spline spaces and introduce the discretization scheme used.

\bftwo .\bfthree . \bfB -\bfs \bfp \bfl \bfi \bfn \bfe \bfb \bfa \bfs \bfi \bfs \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn \bfs . Given a degree p, B-splines are defined from a
so-called knot vector

(3) \Xi = [\xi 1, . . . , \xi n+p+1] 0 \leq \xi i \leq \xi i+1 \leq 1,

using the Cox--De Boor recursion formula [31], where n is the number of functions
(see Figure 3). We assume that the knot vector is open, which means that the first
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Fig. 3. Example of B-spline basis functions of degree 1 (on the left) and degree 2 (on the right).

and last knots are repeated p + 1 times and that all the internal knots are repeated
at most p times. We denote by \widehat Bp

i the ith basis function of degree p on the reference
domain (0, 1) and define the space of B-spline as

Sp(\Xi ) = span
\Bigl\{ \widehat Bp

i , i = 1, . . . , n
\Bigr\} 
.

We will denote by h the maximum size of the nonempty elements (\xi i, \xi i+1), and we
assume that the mesh is locally quasi-uniform, that is, there exists \theta \geq 1 such that
the size ratio for two adjacent elements satisfies \theta  - 1 \leq hi/hi+1 \leq \theta .

Multivariate spaces in the reference domain are defined following a tensor product
approach, e.g, in three dimensions, we define the degrees pj , the knot vectors \Xi j , and
the integers nj for j = 1, 2, 3 to get the basis functions

\widehat B\bfp 
\bfi (\bfitxi ) =

\widehat Bp1

i1
(\xi 1) \widehat Bp2

i2
(\xi 2) \widehat Bp3

i3
(\xi 3),

on (0, 1)3. Here we have defined the degree vector \bfp = [p1, p2, p3] and the multi-index
\bfi \in \scrI = \{ [i1, i2, i3] : 1 \leq ij \leq nj\} . The space spanned by the multivariate B-splines is
denoted by Sp1,p2,p3

(\Xi 1,\Xi 2,\Xi 3) and its dimension by N =
\prod 

j nj .
NURBS basis functions are defined as rational B-splines as

\widehat N\bfp 
\bfi =

w\bfi 
\widehat B\bfp 
\bfi \sum N

j=1 w\bfj 
\widehat B\bfp 
\bfj 

with w\bfi weights associated to each basis function. In the case w\bfi = 1 for all \bfi we revert
to the B-spline case. NURBS geometries are built as a map from the reference domain\widehat D = (0, 1)d to the physical space by defining a control polyhedron in the physical
space. Each control point \bfP \bfi \in \BbbR k with k \geq d in the polyhedron is associated to a
basis function, defining the map

\bfF (\bfitxi ) =

N\sum 
i=1

\widehat N\bfp 
\bfi \bfP \bfi 

from \widehat D to D \subset \BbbR k. As already mentioned, the domain will be denoted by \Gamma when
d = 2, and by \Omega when d = 3.

\bftwo .\bffour . \bfI \bfs \bfo \bfg \bfe \bfo \bfm \bfe \bft \bfr \bfi \bfc \bfd \bfi \bfs \bfc \bfr \bfe \bft \bfi \bfz \bfa \bft \bfi \bfo \bfn . We assume that our geometry is defined
through a NURBS mapping \bfF : \widehat \Omega = (0, 1)3 \rightarrow \Omega \subset \BbbR 3, and to prevent singularities in
the mapping we assume that the mapping is a bi-Lipschitz homeomorphism. More-
over, let us assume for simplicity that the degree is the same in all directions, i.e.,
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p = p1 = p2 = p3. Following [10], we first define the spline spaces in the reference
domain as

S0
p(\widehat \Omega ) = Sp,p,p(\Xi 1,\Xi 2,\Xi 3),(4)

S1
p(\widehat \Omega ) = Sp - 1,p,p(\Xi 

\prime 
1,\Xi 2,\Xi 3)\times Sp,p - 1,p(\Xi 1,\Xi 

\prime 
2,\Xi 3)\times Sp,p,p - 1(\Xi 1,\Xi 2,\Xi 

\prime 
3),(5)

where \Xi \prime 
j = [\xi j2, . . . , \xi 

j
nj+p] for j = 1, 2, 3 is a modified knot vector with the first and

last knot removed. This corresponds to lowering by one the degree and the regularity
of the basis functions in the jth direction. Then, considering the mapping \bfF and its
Jacobian D\bfF , the spline spaces in the physical domain \Omega are defined by push-forward
as

S0
p(\Omega ) = \{ u \in H1(\Omega ) : u \circ \bfF = \^u \in S0

p(
\widehat \Omega )\} ,(6)

S1
p(\Omega ) = \{ \bfu \in \bfH (\bfc \bfu \bfr \bfl ; \Omega ) : \bfu \circ \bfF =

\bigl( 
D\bfF \top \bigr)  - 1

\^\bfu , \^\bfu \in S1
p(\widehat \Omega )\} .(7)

To deal with boundary conditions, let \Sigma \subseteq \partial \Omega , and for simplicity we assume that
\Sigma = \bfF (\widehat \Sigma ), where \widehat \Sigma \subseteq \partial \widehat \Omega is the union of some boundary sides of the reference
domain. We introduce the discrete spaces with vanishing boundary conditions on
\Sigma \subseteq \partial \Omega as

S0
p(\Omega ;\Sigma ) = \{ u \in S0

p(\Omega ) : \gamma (u) = 0 on \Sigma \} ,
S1
p(\Omega ;\Sigma ) = \{ \bfu \in S1

p(\Omega ) : \bfitgamma (\bfu ) = \bfzero on \Sigma \} .

Analogous to Lagrangian and N\'ed\'elec's edge elements, the spline spaces defined above
are part of a more general family of isogeometric spaces that form a discrete exact
sequence. There also exists a set of commutative projectors such that they conform
a commutative de Rham diagram, and it can be proved that the discretization of the
eigenvalue problem (2) with the space S1

p(\Omega ; \partial \Omega ) is spurious free. For more details we
refer to [10] and [3, Chapter 5].

\bftwo .\bffive . \bfI \bfs \bfo \bfg \bfe \bfo \bfm \bfe \bft \bfr \bfi \bfc \bfs \bfp \bfa \bfc \bfe \bfs \bfo \bfn \bfa \bfs \bfu \bfr \bff \bfa \bfc \bfe . For substructuring methods, and in
order to deal with discrete spaces defined on the interface between two subdomains,
we have to make use of isogeometric spaces defined on a surface. Let \Gamma \subset \partial \Omega , and we
assume that \Gamma is the image through the parametrization \bfF of one boundary side of
the reference domain \widehat \Omega . Thus, it can be parametrized as \bfF \Gamma : \widehat \Gamma \rightarrow \Gamma \subset \BbbR 3. Applying
the trace operators defined in section 2.1, we obtain

\bfitgamma \Gamma : S1
p(\Omega )  - \rightarrow S1

p(\Gamma ),(8)

\bfitgamma \bot ,\Gamma : S1
p(\Omega )  - \rightarrow S1\ast 

p (\Gamma ),(9)

where, similarly to (5), we first define the spaces in the parametric domain

S1
p(\widehat \Gamma ) = Sp - 1,p(\Xi 

\prime 
k,\Xi l)\times Sp,p - 1(\Xi k,\Xi 

\prime 
l),(10)

S1\ast 

p (\widehat \Gamma ) = Sp,p - 1(\Xi k,\Xi 
\prime 
l)\times Sp - 1,p(\Xi 

\prime 
k,\Xi l),(11)

and the indices of the knot vectors 1 \leq k < l \leq 3 depend on the chosen boundary
side. The trace spaces are then defined analogously to (7) as

S1
p(\Gamma ) = \{ \bfv : D\bfF \top 

\Gamma (\bfv \circ \bfF \Gamma ) \in S1
p(\widehat \Gamma )\} ,(12)

S1\ast 

p (\Gamma ) = \{ \bfv : | D\bfF \Gamma | D\bfF +
\Gamma (\bfv \circ \bfF \Gamma ) \in S1\ast 

p (\widehat \Gamma )\} ,(13)
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where D\bfF \Gamma is the Jacobian matrix of \bfF \Gamma with size 2\times 3, for which we also define the

measure | D\bfF \Gamma | =
\surd 
det(D\bfF \top 

\Gamma D\bfF \Gamma ), and the Moore--Penrose pseudoinverse D\bfF +
\Gamma =

(D\bfF \top 
\Gamma D\bfF \Gamma )

 - 1D\bfF \top 
\Gamma .

Analogous to the three-dimensional case, these trace spaces are part of a de Rham
diagram. In fact, if we introduce the spaces

S0
p(\widehat \Gamma ) = Sp,p(\Xi k,\Xi l), S2

p(\widehat \Gamma ) = Sp - 1,p - 1(\Xi 
\prime 
k,\Xi 

\prime 
l),

and then apply a push-forward with the usual maps for differential forms, we obtain
(see [9] for further details)

(14) \BbbR S0
p(\Gamma ) S1\ast 

p (\Gamma ) S2
p(\Gamma ) 0,

\bfc \bfu \bfr \bfl \Gamma \mathrm{d}\mathrm{i}\mathrm{v}\Gamma 

where the subscript \Gamma is used to denote the surface differential operators. Moreover,
we can define spaces with vanishing boundary conditions, and in particular functions
in S0

p(\Gamma ; \partial \Gamma ) vanish on \partial \Gamma , while for S1
p(\Gamma ; \partial \Gamma ) the tangential component vanishes.

Introducing the notation S2
p(\Gamma ; \partial \Gamma ) = S2

p(\Gamma ), we also have the exact sequence

(15) 0 S0
p(\Gamma ; \partial \Gamma ) S1

p(\Gamma ; \partial \Gamma ) S2
p(\Gamma ; \partial \Gamma ) \BbbR .

\bfg \bfr \bfa \bfd \Gamma \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}\Gamma 

Obviously, the construction of the spaces on the surface can be generalized to arbitrary
degree.

\bfthree . \bfS \bfu \bfb \bfs \bft \bfr \bfu \bfc \bft \bfu \bfr \bfi \bfn \bfg . In this section we present two instances of DDMs. The
aim is twofold. Given the typical structure of RF cavities, it is desirable to obtain
a substructuring method able to exploit the modularity of the design in order to
speed up matrix assembly and eventually reduce memory consumption. On the other
hand, we are interested in the flexibility of coupling different discretizations across
different domains. A classical Galerkin approximation cannot be straightforwardly
applied, since the discrete space consists of discontinuous functions across the con-
necting interface, and hence it is not a subset of \bfH (\bfc \bfu \bfr \bfl ; \Omega ) anymore. The approach
is to give a weak formulation of (1) compatible with the independent definition of the
finite-dimensional spaces on each subdomain, with the addition of a weak coupling
condition for the tangential fields across the interfaces. We will refer in the following
only to the eigenvalue problem introduced and its weak formulation (2), although the
methods proposed can be applied to source problems as well.

\bfthree .\bfone . \bfT \bfh \bfe \bfg \bfe \bfn \bfe \bfr \bfa \bfl \bfs \bfe \bft \bft \bfi \bfn \bfg . Let us assume that the domain is decomposed in
N\mathrm{d}\mathrm{o}\mathrm{m} nonoverlapping subdomains, such that \Omega =

\bigcup N\mathrm{d}\mathrm{o}\mathrm{m}

i=1 \Omega i. Let us denote \Gamma ij =
\Omega i \cap \Omega j for i < j, such that \Omega i will play the role of the slave subdomain, and by
\bfn \Gamma ij

, or \bfn \Gamma to simplify notation, the unit normal vector to \Gamma ij pointing outward \Omega i

(see Figure 4). We also introduce \bfscrI the collection of couples (i, j) with i < j such
that \Gamma ij is not empty. Moreover, for each \Omega s we set \Sigma s = \partial \Omega \cap \partial \Omega s. On each

subdomain we introduce the space Vs = \bfH \Sigma s(\bfc \bfu \bfr \bfl ; \Omega s) and define V =
\prod N\mathrm{d}\mathrm{o}\mathrm{m}

s=1 Vs.
Moreover, for each interface \Gamma ij we introduce the spaceMij = \{ \bfc \bfu \bfr \bfl \bfv \times \bfn \Gamma ij : \bfv \in Vi\} 
and define M =

\prod 
(i,j)\in \bfscrI Mij . With this notation, the tangential continuity of the

electromagnetic field across the interfaces can be enforced weakly by means of a
Lagrange multiplier, and the Maxwell eigenvalue problem (2) is equivalent to the
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\Gamma 16

\Omega 6

\Omega 1

Fig. 4. Schematics of substructuring into two subdomains (blue and yellow). The two subdo-
mains consist of several patches \Omega i with i = 1, . . . , 5 and \Omega j with j = 6, . . . , 10, respectively. These
patches are glued to each other by the multipatch approach. Lagrange multipliers are used across the
subdomain interface, e.g., on \Gamma 16.

mixed variational problem: Find \bfE \in V , \bfitlambda \in M , and \omega \in \BbbR + such that

(16)
a(\bfE ,\bfv ) + b(\bfv ,\bfitlambda ) = \epsilon 0\mu 0\omega 

2
N\mathrm{d}\mathrm{o}\mathrm{m}\sum 
s=1

(\bfE ,\bfv )\Omega s
\forall \bfv \in V,

b(\bfE ,\bfitmu ) = 0 \forall \bfitmu \in M,

where we define the bilinear forms

a(\bfE ,\bfv ) :=

N\mathrm{d}\mathrm{o}\mathrm{m}\sum 
s=1

( \bfc \bfu \bfr \bfl \bfE , \bfc \bfu \bfr \bfl \bfv )\Omega s
,

b(\bfv ,\bfitmu ) :=
\sum 

(i,j)\in \bfscrI 

([\bfitgamma \Gamma ij
(\bfv )],\bfitmu )\Gamma ij =

\sum 
(i,j)\in \bfscrI 

([(\bfn \Gamma ij \times \bfv )\times \bfn \Gamma ij ],\bfitmu )\Gamma ij ,

and the brackets [\cdot ] denote the jump across the interface \Gamma ij . We note that in the
continuous setting \bfitlambda = \bfc \bfu \bfr \bfl \bfE \times \bfn \Gamma , and the tangential components of \bfE are contin-
uous.

For the discretization of (16), let us assume that N\mathrm{d}\mathrm{o}\mathrm{m} = N\mathrm{I}\mathrm{G}\mathrm{A} +N\mathrm{F}\mathrm{E}\mathrm{M} and that
the first N\mathrm{I}\mathrm{G}\mathrm{A} of subdomains are defined through a NURBS parametrization and
carry an IGA discretization, while the last N\mathrm{F}\mathrm{E}\mathrm{M} ones carry a FEM discretization.
More precisely, for the IGA subdomains, i.e., for s = 1, . . . , N\mathrm{I}\mathrm{G}\mathrm{A}, we define the spaces
Vs,h = S1

p(\Omega s; \Sigma s), and with some abuse of notation we let S1
p(\Omega s; \Sigma s) = S1

p(\Omega s) when
\Sigma s is empty. Similarly, for the FEM subdomains, i.e., for s = N\mathrm{I}\mathrm{G}\mathrm{A}+1, . . . , N\mathrm{d}\mathrm{o}\mathrm{m}, we
denote by Vs,h = Xh(\Omega s; \Sigma s) the corresponding spaces of N\'ed\'elec finite elements with
vanishing tangential component on \Sigma s. Then, we define the discrete space as Vh =\prod N\mathrm{d}\mathrm{o}\mathrm{m}

s=1 Vs,h. Moreover, for every nonempty interface \Gamma ij we assume for simplicity that
the slave subdomain \Omega i carries an IGA discretization, that is, for every couple (i, j) \in 
\bfscrI , it holds that 1 \leq i \leq N\mathrm{I}\mathrm{G}\mathrm{A}. Then, the Lagrange multiplier is approximated in the
discrete space Mh =

\prod 
(i,j)\in \bfscrI Mij,h, where the discrete space on each interface Mij,h

will depend on the chosen method, and will be detailed in the next subsections. After
we have defined the approximation spaces, we write the discrete weak formulation of
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the problem: Find \bfE h \in Vh, \bfitlambda h \in Mh, and \omega h \in \BbbR + such that

(17)
a(\bfE h,\bfv h) + b(\bfv h,\bfitlambda h) = \epsilon 0\mu 0\omega 

2
h

N\mathrm{d}\mathrm{o}\mathrm{m}\sum 
s=1

(\bfE h,\bfv h)\Omega s
\forall \bfv h \in Vh,

b(\bfE h,\bfitmu h) = 0 \forall \bfitmu \in Mh.

We will say that problem (17) is a spectrally correct approximation of (16) if
all the nonzero eigenvalues are approximated by a correct number of discrete eigen-
values with the right multiplicity, and the corresponding eigenspaces are also well
approximated. Moreover, there are no eigenvalues different from zero (in exact arith-
metic) that converge to zero. This avoids the pollution of the spectrum by nonexact
approximations of the zero eigenvalue; see [12, 4] for more details.

\bfthree .\bftwo . \bfT \bfh \bfe \bfs \bft \bfa \bft \bfe \bfs \bfp \bfa \bfc \bfe \bfc \bfo \bfn \bfc \bfa \bft \bfe \bfn \bfa \bft \bfi \bfo \bfn \bfm \bfe \bft \bfh \bfo \bfd . This section discusses the SSC
method introduced by Flisgen and co-authors [21, 20] and its properties with respect to
standard DDMs. It was proposed for the simulation of long chains of resonant cavities
as they are present in particle accelerators. In this case, the connection between each
resonator is a short waveguide with a circular or rectangular cross-section. The field in
these interconnecting parts is assumed to resemble that of a waveguide (the longer the
connection, the more this assumption is reasonable) and SSC aims at exploiting this a
priori knowledge to choose the Lagrange multiplier. Furthermore, SSC applies model
order reduction to reduce the dimension of Vh in order to allow for the simulation of
very large structures. However, we will only focus here on the domain decomposition
aspect.

Although the method arises from physical considerations, the technique proposed
can be considered in a more general setting as a DDM where a modal basis is chosen
for the Lagrange multipliers; see the related method in [17]. We assume that the
interface \Gamma is a simply connected planar surface such that \partial \Gamma \subset \Sigma , that in general
can be made by several pieces, in the form \Gamma =

\bigcup 
(i,j)\in \bfscrI \Gamma 

\Gamma ij with \bfscrI \Gamma \subset \bfscrI . We
also assume that the interface \Gamma is perpendicular to the boundary, in the sense that,
denoting by \bfn the unit normal vector exterior to \Omega , it holds that \bfn \Gamma \cdot \bfn = \bfzero . The
Lagrangian basis is obtained from the modes that can be excited in a waveguide with
\Gamma as the cross-section. These are the TM and Transverse Electric (TE) modes, [27,
Chapter 8.3]. Assuming for simplicity of notation \bfn \Gamma = \bfn z, then they are given, up to
a multiplicative constant, by \bfg \bfr \bfa \bfd \Gamma Ez and \bfc \bfu \bfr \bfl \Gamma Hz, where Ez and Hz are solutions
of the eigenvalue problems

(18)

\Biggl\{ 
\Delta \Gamma Ez + \gamma 2Ez = 0 in \Gamma ,

Ez = 0 on \partial \Gamma ,

\left\{   
\Delta \Gamma Hz + \gamma 2Hz = 0 in \Gamma ,

\partial Hz

\partial \bfn 
= 0 on \partial \Gamma 

with the transverse Laplace operator \Delta \Gamma v(x, y) = \Delta v(x, y)  - \partial 2

\partial z2 v(x, y) on the in-
terface \Gamma . Assuming that the boundary of \Gamma is smooth enough, the modes \bfitvarphi k, i.e.,
either \bfg \bfr \bfa \bfd \Gamma Ez,k or \bfc \bfu \bfr \bfl \Gamma Hz,k, can be obtained as the numerical or closed-form
solution of the eigenvalue problems on \Gamma . The equations (18) have an infinite number
of solutions which constitute an orthogonal set of basis functions that can be sorted
in ascending order according to their separation constants (\gamma 1 \leq \gamma 2 \leq \gamma 3 \leq . . . ) and
form a basis of \bfL 2(\Gamma ). This means that for all \bfitvarphi \in \bfL 2(\Gamma ) there exist \{ \alpha k\} k\in \BbbN such
that \bfitvarphi =

\sum 
k \alpha k\bfitvarphi k.
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To obtain the saddle-point formulation (17) we introduce a new variable \bfitvarphi \in 
\bfL 2(\Gamma ) and consider the problem on each subdomain:

(19)

\bfc \bfu \bfr \bfl 
\bigl( 
\mu  - 1
0 \bfc \bfu \bfr \bfl \bfE s

\bigr) 
= \omega 2\varepsilon 0\bfE s in \Omega s,

\bfE s \times \bfn = 0 on \partial \Omega \cap \partial \Omega s,\bigl( 
\mu  - 1
0 \bfc \bfu \bfr \bfl \bfE s

\bigr) 
\times \bfn \Gamma = \bfitvarphi =

\sum 
k

\alpha k\bfitvarphi k on \Gamma ,

that is, we impose on \Gamma a superposition of the waveguide modes as the Neumann
data. By translating (19) in the weak sense and by adding the weak continuity of the
solution across \Gamma we obtain (16).

The discrete space Mh = span\{ \bfitvarphi k, k = 1, . . . , N\Gamma \} is obtained by truncating the
series, selecting the first N\Gamma < \infty modes, and we arrive at (17). If the interface is
placed in correspondence of a waveguide-like section, it is possible to exploit physical
knowledge on the dispersion relation to estimate the number of modes required to
obtain a sufficiently good approximation [21]. However, in general many modes may
be necessary for an accurate representation, which may endanger stability.

\bfthree .\bfthree . \bfT \bfh \bfe \bfM \bfo \bfr \bft \bfa \bfr \bfm \bfe \bft \bfh \bfo \bfd . We now propose the new isogeometric mortar
method, where we approximate the Lagrange multiplier with a suitable space of
splines. To define Mh we will define the space Mij,h associated to each interface
separately. By our assumptions, we know that for each interface \Gamma ij the slave sub-
domain \Omega i is discretized with IGA, and \Gamma ij is a full mapped face of that subdomain.
Moreover, as we have seen in (8), the tangential trace operator \bfitgamma \Gamma ij

maps the iso-

geometric discrete space defined in \Omega i, S
1
p(\Omega i; \Sigma i), into the space S1

p(\Gamma ij), and more
precisely onto S1

p(\Gamma ij ; \partial \Gamma ij \cap \partial \Omega ), the space with boundary conditions.
The approximation of the Lagrange multiplier \bfitlambda = \bfc \bfu \bfr \bfl \bfE \times \bfn requires a discrete

space of divergence conforming splines, and such that the pairing with the image of
\bfitgamma \Gamma ij

satisfies an inf-sup stability condition on b(\cdot , \cdot ). A natural candidate would be

the discrete space S1\ast 

p (\Gamma ij), which is the image of the trace operator \bfitgamma \bot ,\Gamma ij
. Unfor-

tunately, this choice does not satisfy the inf-sup stability condition. In our mortar
method we choose an analogous space with lower degree, and essentially defined from
the same knot vector. We start by introducing the following assumption, which im-
plies that S1

p(\Omega i; \Sigma i) consists of continuous functions (both the normal and tangential
components) when restricted to \Omega i.

Assumption 3.1. The degree satisfies p \geq 2, and all the internal knots of \Xi k for
k = 1, 2, 3 are repeated at most s times, with 1 \leq s < p.

Under the previous assumption, we can choose any degree q such that 1 \leq q \leq 
p  - s. To build the mortar space of the multiplier we remove from the knot vectors
p  - q repetitions of the first and last knots, in such a way that we get an open knot
vector for degree q, while the internal knots remain unchanged. For instance, from
the knot vector \Xi in (3), we would define

\widetilde \Xi = [\xi p+1 - q, . . . , \xi n+q+1].

Thanks to the previous assumption on the multiplicity, we can define spaces analogous
to those in section 2.4 starting from degree q. In particular, with obvious notation for
the knot vectors, we can define the curl-conforming space in the parametric domain

S1
q (\widehat \Omega ) = Sq - 1,q,q(\widetilde \Xi \prime 

1, \widetilde \Xi 2, \widetilde \Xi 3)\times Sq,q - 1,q(\widetilde \Xi 1, \widetilde \Xi \prime 
2, \widetilde \Xi 3)\times Sq,q,q - 1(\widetilde \Xi 1, \widetilde \Xi 2, \widetilde \Xi \prime 

3),
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and the space in the physical domain for the patch \Omega i, which we denote by S1
q (\Omega i),

is defined analogously to (7). The space of the Lagrange multiplier is then defined on
the interface, applying the same notions in (2.5), as the image of the trace operator

Mij,h := \bfitgamma \bot ,\Gamma ij
(S1

q (\Omega i)) = S1\ast 

q (\Gamma ij).

Obviously, the practical implementation of the multiplier does not require the con-
struction of the volumetric space S1

q (\Omega i), and the space S1\ast 

q (\Gamma ij) can be constructed
directly analogously to (11)--(13). Indeed, it is enough to know the position of the
interface \Gamma ij inside the patch to identify the indices k, l, and replace the knot vectors

in (11) by the corresponding \widetilde \Xi k, \widetilde \Xi \prime 
k and \widetilde \Xi l, \widetilde \Xi \prime 

l.
The analysis of the mortar method, which we develop in section 4, reveals that

our choice of the discrete space is stable for q = p - 1 when the maximum multiplicity
is s = 1. Moreover, the numerical tests in section 5 show stability for q = p - k when
k is odd, while it is unstable when k is even.

Remark 1. The construction of the discrete space takes advantage of the high
continuity of splines and does not have an analogue for N\'ed\'elec finite elements. Indeed,
Assumption 3.1 implies that both the tangential and the normal components of the
functions are continuous, which is not the case in FEM.

\bfthree .\bffour . \bfD \bfi \bfs \bfc \bfu \bfs \bfs \bfi \bfo \bfn \bfo \bff \bft \bfh \bfe \bft \bfw \bfo \bfa \bfp \bfp \bfr \bfo \bfa \bfc \bfh \bfe \bfs . It is worth noticing that, with re-
spect to the mortar method, the SSC has the advantage that the computation of the
coupling terms b(\bfv h,\bfitmu h) is completely independent on each side since the Lagrange
multipliers \bfitvarphi k on the interfaces live on spaces independent of the volume discretiza-
tion. When dealing with the coupling of nonconforming meshes across \Gamma , the mortar
method requires the construction of a common mesh given by the intersection of the
meshes on the two sides. In the SSC case, however, the coupling matrices can be
straightforwardly assembled on completely different meshes. Furthermore, for accel-
erator cavities with common shapes, the intersection surface \Gamma is usually sufficiently
simple that even closed-form solutions for the eigenmodes can be used. However,
spectral correctness and inf-sup stability of SSC are not guaranteed as we will show
in the example section. On the other hand, we show these properties for our mor-
tar method in the next section. Another important difference is that for the SSC
case the interface must be perpendicular to the boundary, and its boundary must be
contained on the boundary of the domain, while the mortar method can deal with
arbitrary interfaces.

\bffour . \bfA \bfn \bfa \bfl \bfy \bfs \bfi \bfs \bfo \bff \bft \bfh \bfe \bfm \bfo \bfr \bft \bfa \bfr \bfm \bfe \bft \bfh \bfo \bfd . In this section we analyze the mortar
method introduced in section 3.3. We start by introducing the conditions for the
spectral correctness of any method written in the general setting (17).

\bffour .\bfone . \bfC \bfo \bfn \bfd \bfi \bft \bfi \bfo \bfn \bfs \bff \bfo \bfr \bfs \bfp \bfe \bfc \bft \bfr \bfa \bfl \bfc \bfo \bfr \bfr \bfe \bfc \bft \bfn \bfe \bfs \bfs . In order to analyze the spectral
correctness of the method, we need to define the space of discrete functions satisfying
the weak continuity condition, namely,

Vh,M := \{ \bfu h \in Vh : b(\bfu h,\bfitmu h) = 0 \forall \bfitmu h \in Mh\} .

We also define the discrete kernel as the subspace

(20) Kh,M := \{ \bfu h \in Vh,M : a(\bfu h,\bfv h) = 0 \forall \bfv h \in Vh,M\} ,

and denote by Wh,M = K\bot 
h,M the orthogonal space to Kh,M with respect to the L2

product.
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Several (necessary and sufficient) conditions have to be checked to ensure that
the solution of (17) provides a spectrally correct approximation of (16).

Property 1 (inf-sup stability). There exists a constant \beta > 0 and h0 > 0 such
that for h < h0 it holds that

(21) sup
\bfu h\in Vh

b(\bfu h,\bfitmu h)\Bigl( \sum Ndom

s=1 \| \bfu h\| 20, \bfc \bfu \bfr \bfl ,\Omega s

\Bigr) 1/2
\geq \beta 

\biggl( \sum 
(i,j)\in \bfscrI 

\| \bfitmu h\| 2 - 1/2, \mathrm{d}\mathrm{i}\mathrm{v} ,\Gamma ij

\biggr) 1/2

\forall \bfitmu h \in Mh.

Property 2 (completeness of the discrete kernel). For any \phi \in H1
0 (\Omega ), we have

that

(22) lim
h\rightarrow 0

inf
\bfu h\in Kh,M

\| \bfg \bfr \bfa \bfd \phi  - \bfu h\| 0 = 0.

Property 3 (gap property, or discrete compactness (see [4] or [8])). There exist
constants \sigma ,C > 0 such that for every \bfw h \in Wh,M there exists \bfw \in \bfH 0(\bfc \bfu \bfr \bfl ; \Omega ) \cap 
\bfH (div; \Omega ) with div\bfw = 0 such that

\| \bfw h  - \bfw \| 0 \leq Ch\sigma \| \bfw \| 0, \bfc \bfu \bfr \bfl .

In the gap property, the exponent \sigma depends on the degree of the approximation
spaces and on the regularity of the functions in\bfH 0(\bfc \bfu \bfr \bfl ; \Omega )\cap \bfH (div; \Omega ), which depends
on the regularity of the domain.

\bffour .\bftwo . \bfP \bfr \bfo \bfp \bfe \bfr \bft \bfi \bfe \bfs \bfo \bff \bft \bfh \bfe \bfm \bfo \bfr \bft \bfa \bfr \bfm \bfe \bft \bfh \bfo \bfd . In what follows we prove Properties 1
and 2 for the mortar method, while the proof of the gap property, which is more
intricate, is left for further studies.

For simplicity, in the following we restrict ourselves to the case of two nonover-
lapping subdomains, \Omega = \Omega 1\cup \Omega 2 with a common interface \Gamma = \Gamma 12 = \partial \Omega 1\cap \partial \Omega 2, and
assume that both subdomains are discretized with IGA. The extension to the case
of \Omega 2 discretized with FEM is straightforward and only affects the proof of Proposi-
tion 4.5. From now on, we assume that q = p  - 1, that is, the Lagrange multiplier
belongs to the space S1\ast 

p - 1(\Gamma ).
The proofs rely on two known results: the Helmholtz decomposition and the gap

property, both at the level of the interface.

Lemma 4.1 (Helmholtz decomposition). The two following Helmholtz decomposi-
tions hold:

S1
p(\Gamma ; \partial \Gamma ) = Z1

p \oplus \bfg \bfr \bfa \bfd \Gamma (S
0
p(\Gamma ; \partial \Gamma )), S1\ast 

q (\Gamma ) = Z1\ast 

q \oplus \bfc \bfu \bfr \bfl \Gamma (S
0
q (\Gamma ) \cap L2

0(\Gamma ))

with

Z1
p = \{ \bfu \in S1

p(\Gamma ; \partial \Gamma ) : (\bfu ,\bfg \bfr \bfa \bfd \Gamma \phi ) = 0 \forall \phi \in S0
p(\Gamma ; \partial \Gamma )\} ,

Z1\ast 

q = \{ \bfv \in S1\ast 

q (\Gamma ) : (\bfv , \bfc \bfu \bfr \bfl \Gamma \psi ) = 0 \forall \psi \in S0
q (\Gamma )\} ,

and L2
0(\Gamma ) the L

2 functions with zero average value.

Proof. The result is a consequence of the commuting projectors defined in [10].

Lemma 4.2 (gap property on the interface). There exists a positive constant
\sigma > 0 such that, for each \bfu h \in Z1

p , there exists a function \bfw \in \bfH 0(\bfc \bfu \bfr \bfl ; \Gamma ) with
(\bfw ,\bfg \bfr \bfa \bfd \Gamma \phi ) = 0 for all \phi \in H1

0 (\Gamma ), satisfying

curl\Gamma \bfu h = curl\Gamma \bfw , \| \bfu h  - \bfw \| 0 \lesssim h\sigma \| curl\Gamma \bfu h\|  - 1/2.
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Similarly, for each \bfv h \in Z1\ast 

q , there exists a function \bfz \in \bfH (div; \Gamma ) with (\bfz , \bfc \bfu \bfr \bfl \Gamma \psi ) =
0 for all \psi \in H1(\Gamma ), satisfying

div\Gamma \bfv h = div\Gamma \bfz , \| \bfv h  - \bfz \| 0 \lesssim h\sigma \| div\Gamma \bfv h\|  - 1/2.

Moreover, (\bfw , \bfz ) = 0.

Proof. The proof of the existence, and of the two inequalities, is an adaption to
the two-dimensional case of Lemma 6.1 in [10], using in particular [23, Theorem 4.1]
and [25, Lemma 2.3] (see also [25, Lemma 6.2]). The orthogonality is a consequence
of Helmholtz decomposition, because div\Gamma \bfw = 0 and curl\Gamma \bfz = 0.

As a consequence of the gap property, we have the following discrete Friedrichs'
inequalities.

Corollary 4.3. For \bfu h \in Z1
p and for \bfv h \in Z1\ast 

q , it holds that

\| \bfu h\| 0 \lesssim \| curl\Gamma \bfu h\|  - 1/2, \| \bfv h\| 0 \lesssim \| div\Gamma \bfv h\|  - 1/2.

\bffour .\bftwo .\bfone . \bfP \bfr \bfo \bfo \bff \bfo \bff \bft \bfh \bfe \bfi \bfn \bff -\bfs \bfu \bfp \bfc \bfo \bfn \bfd \bfi \bft \bfi \bfo \bfn . The inf-sup condition (21) is a con-
sequence of the following proposition, in particular (23b), and the continuity of the
trace operators.

Proposition 4.4 (inf-sup condition). Let the spaces Si
p(\Gamma ; \partial \Gamma ) for i = 0, 1, 2 be

defined as in (15), starting from the knot vectors \Xi 1,\Xi 2, and let Assumption 3.1 hold.
Let the spaces Si

p - 1(\Gamma ) for i = 0, 1\ast , 2 be defined as in (14), starting from knot vectors
\Xi \prime 
1,\Xi 

\prime 
2. Then, there exist \beta 0, \beta 1, \beta 2 > 0 and h0 > 0 such that the following inf-sup

conditions hold for s \in [0, 1] and for all h < h0:

sup
u\in S0

p(\Gamma ;\partial \Gamma )

\int 
\Gamma 
uv

\| u\| Hs

\geq \beta 0\| v\| H - s \forall v \in S2
p - 1(\Gamma ),(23a)

sup
\bfu \in S1

p(\Gamma ;\partial \Gamma )

\int 
\Gamma 
\bfu \cdot \bfv 

\| \bfu \|  - 1/2, \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}
\geq \beta 1\| \bfv \|  - 1/2, \mathrm{d}\mathrm{i}\mathrm{v} \forall \bfv \in S1\ast 

p - 1(\Gamma ),(23b)

sup
u\in S2

p(\Gamma ;\partial \Gamma )

\int 
\Gamma 
uv

\| u\| H - s

\geq \beta 2\| v\| Hs \forall v \in S0
p - 1(\Gamma ).(23c)

Proof. The condition (23a) was already proved in [7, Theorem 12] for s = 0 and
in [1, Theorem 3.6] for s \in [0, 1]. The inf-sup condition (23c) for s = 0 is trivial, since
both spaces are the same. The condition for s \in (0, 1] is proved as in [1], defining a
Fortin operator with the help of the commutative projectors in [10], noting that since
the two spaces are equal, we can exchange their roles in the inf-sup condition.

Now letting \bfv \in S1\ast 

p - 1(\Gamma ), using Helmholtz decomposition we can write \bfv =

\bfc \bfu \bfr \bfl \Gamma \psi + \bfv \bot with \psi \in S0
p - 1(\Gamma ) \cap L2

0(\Gamma ) and \bfv \bot \in Z1\ast 

p - 1. We have to find some \bfu \in 
S1
p(\Gamma ; \partial \Gamma ) such that the inequality holds. First, we apply Helmholtz decomposition

to write \bfu = \bfg \bfr \bfa \bfd \Gamma \phi + \bfu \bot with \phi \in S0
p(\Gamma ; \partial \Gamma ) and \bfu \bot \in Z1

p . Thanks to the
discrete Friedrichs' inequalities, and the zero average value for \psi , we can work with
the equivalent norms

\| \bfv \|  - 1/2, \mathrm{d}\mathrm{i}\mathrm{v} \simeq \| \psi \| 1/2+ \| div\Gamma \bfv \bot \|  - 1/2, \| \bfu \|  - 1/2, \mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l} \simeq \| \phi \| 1/2+ \| curl\Gamma \bfu \bot \|  - 1/2.

It is readily seen that\int 
\Gamma 

\bfu \cdot \bfv =  - 
\int 
\Gamma 

\phi div\Gamma \bfv \bot +

\int 
\Gamma 

\psi curl\Gamma \bfu \bot +

\int 
\Gamma 

\bfu \bot \cdot \bfv \bot ,
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and thanks to Lemma 4.2, there exist \sigma > 0, \bfz \in \bfH (div; \Gamma ) and \bfw \in \bfH 0(\bfc \bfu \bfr \bfl ; \Gamma ) such
that \bigm| \bigm| \bigm| \bigm| \int 

\Gamma 

\bfu \bot \cdot \bfv \bot 

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \int 
\Gamma 

(\bfu \bot  - \bfw ) \cdot \bfz + (\bfv \bot  - \bfz ) \cdot \bfw + (\bfu \bot  - \bfw ) \cdot (\bfv \bot  - \bfz )

\bigm| \bigm| \bigm| \bigm| 
\lesssim h\sigma \| curl\Gamma \bfu \bot \|  - 1/2\| div\Gamma \bfv \bot \|  - 1/2.

Using (23a) and (23c), we can choose \phi \in S0
p(\Gamma ; \partial \Gamma ) and \bfu \bot \in S1

p(\Gamma ; \partial \Gamma ) such that\int 
\Gamma 

\phi div\Gamma \bfv \bot \geq \beta 0\| \phi \| 1/2\| div\Gamma \bfv \bot \|  - 1/2,

\int 
\Gamma 

\psi curl\Gamma \bfu \bot \geq \beta 2\| curl\Gamma \bfu \bot \|  - 1/2\| \psi \| 1/2.

Moreover, the inf-sup condition makes these choices continuous, and we have

\| \phi \| 1/2 \simeq \| div\Gamma \bfv \bot \|  - 1/2, \| curl\Gamma \bfu \bot \|  - 1/2 \simeq \| \psi \| 1/2,

and gathering these last four results, we obtain (23b).

\bffour .\bftwo .\bftwo . \bfC \bfo \bfm \bfp \bfl \bfe \bft \bfe \bfn \bfe \bfs \bfs \bfo \bff \bft \bfh \bfe \bfd \bfi \bfs \bfc \bfr \bfe \bft \bfe \bfk \bfe \bfr \bfn \bfe \bfl .

Proposition 4.5. Let Mh = S1\ast 

p - 1(\Gamma ), and Kh,M be defined as in (20). Then
Property 2 holds.

Proof. We start characterizing the space Kh,M . For \bfu h \in Kh,M , by the definition
of a(\cdot , \cdot ) it holds that \bfc \bfu \bfr \bfl \bfu h| \Omega k

= \bfzero for k = 1, 2, and there exists \phi k,h \in S0
p(\Omega k; \Sigma k)

such that \bfu h| \Omega k
= \bfg \bfr \bfa \bfd \phi k,h. Moreover, from the definition of Kh,M (and Vh,M ),

applying the definition of the surface gradient, the fact that differential and trace
operators commute, and integration by parts, we know that

b(\bfu h,\bfitmu h) =

\int 
\Gamma 

\bfg \bfr \bfa \bfd \Gamma (\gamma \Gamma (\phi 1,h) - \gamma \Gamma (\phi 2,h)) \cdot \bfitmu h

=  - 
\int 
\Gamma 

(\gamma \Gamma (\phi 1,h) - \gamma \Gamma (\phi 2,h)) \cdot div\Gamma \bfitmu h = 0 \forall \bfitmu h \in Mh.

Let us now focus on the mortar constraint. By construction, we know that div\Gamma \bfitmu h \in 
S2
p - 1(\Gamma ), and using the results in [1] we know that there exists a Fortin projector

\Pi F : L2(\Gamma )  - \rightarrow S0
p(\Gamma ; \partial \Gamma ), based on the pairing of the two spaces in (23a), such that

\| \Pi F\varphi \| s \leq \| \varphi \| s for s \in [0, 1], \varphi \in Hs(\Gamma ).

Moreover, we denote by \Pi 0
\Omega k

and \Pi 1
\Omega k

, for k = 1, 2, the commutative projectors
introduced in [10] into the spaces S0

p(\Omega k; \Sigma k) and S1
p(\Omega k; \Sigma k), respectively. With

some abuse of notation, we will also denote \Pi 0
\Omega k
\phi \equiv \Pi 0

\Omega k
(\phi | \Omega k

).
Given \phi \in H1

0 (\Omega ), in order to prove (22) we construct \bfu h \in Kh,M in the following
way:

\bfu h :=

\biggl\{ 
\bfg \bfr \bfa \bfd (\Pi 0

\Omega 1
\phi ) - \bfg \bfr \bfa \bfd \scrR \Omega 1

\bigl( 
\Pi F

\bigl( 
\gamma \Gamma (\Pi 

0
\Omega 1
\phi ) - \gamma \Gamma (\Pi 

0
\Omega 2
\phi )
\bigr) \bigr) 

in \Omega 1,
\bfg \bfr \bfa \bfd (\Pi 0

\Omega 2
\phi ) in \Omega 2,

where \scrR \Omega 1
is a continuous extension operator into S0

p(\Omega 1; \Sigma 1) that solves the discrete
Laplacian in \Omega 1 imposing a Dirichlet condition on its boundary. To prove the result,
we need to show that \bfu h \in Kh,M and that it converges to \bfg \bfr \bfa \bfd \phi .

From the definition of \bfu h, it is obvious that its restriction to \Omega k belongs to
S1
p(\Omega k; \Sigma k) and is irrotational, and hence a(\bfu h,\bfv h) = 0 for any \bfv h \in Vh. The
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second condition to belong to Kh,M , namely, b(\bfu h,\bfitmu h) = 0 for all \bfitmu \bfh \in Mh, also
holds. Indeed, subsequently applying the commutativity of the trace and differential
operators, the fact that \gamma \Gamma \circ \scrR \Omega 1

is equal to the identity, integration by parts, and
that \Pi F is a projector, we obtain

b(\bfu h,\bfitmu h) =

\int 
\Gamma 

[\bfitgamma \Gamma \bfu h] \cdot \bfitmu h =

\int 
\Gamma 

\Bigl( 
\bfg \bfr \bfa \bfd \Gamma (\gamma \Gamma (\Pi 

0
\Omega 1
\phi ) - \gamma \Gamma (\Pi 

0
\Omega 2
\phi ))

 - \bfg \bfr \bfa \bfd \Gamma 

\bigl( 
\gamma \Gamma 

\bigl( 
\scrR \Omega 1

\bigl( 
\Pi F

\bigl( 
\gamma \Gamma (\Pi 

0
\Omega 1
\phi ) - \gamma \Gamma (\Pi 

0
\Omega 2
\phi )
\bigr) \bigr) \bigr) \bigr) \Bigr) 

\cdot \bfitmu h

=  - 
\int 
\Gamma 

\Bigl( 
\gamma \Gamma (\Pi 

0
\Omega 1
\phi ) - \gamma \Gamma (\Pi 

0
\Omega 2
\phi ) - \Pi F

\bigl( 
\gamma \Gamma (\Pi 

0
\Omega 1
\phi ) - \gamma \Gamma (\Pi 

0
\Omega 2
\phi )
\bigr) \Bigr) 

\cdot div\Gamma \bfitmu h = 0,

which proves that \bfu h \in Kh,M .
Regarding the convergence, by the commutativity of the \Pi 0

\Omega k
and \Pi 1

\Omega k
projectors

with the gradient, we have

\| \bfg \bfr \bfa \bfd \phi  - \bfu h\| 0 \leq 
2\sum 

k=1

\| \bfg \bfr \bfa \bfd \phi  - \Pi 1
\Omega k

(\bfg \bfr \bfa \bfd \phi )\| 0,\Omega k

+ \| \bfg \bfr \bfa \bfd \scrR \Omega 1

\bigl( 
\Pi F

\bigl( 
\gamma \Gamma (\Pi 

0
\Omega 1
\phi ) - \gamma \Gamma (\Pi 

0
\Omega 2
\phi )
\bigr) \bigr) 

\| 0,\Omega 1
.

The first term in the sum converges to zero when h tends to zero by the results in
[10]. For the second term, we use the definition of the continuous extension operator
\scrR \Omega 1

, the continuity of the Fortin projector \Pi F and the trace operator \gamma \Gamma , and the
triangular inequality to obtain

\| \bfg \bfr \bfa \bfd \scrR \Omega 1

\bigl( 
\Pi F

\bigl( 
\gamma \Gamma (\Pi 

0
\Omega 1
\phi ) - \gamma \Gamma (\Pi 

0
\Omega 2
\phi )
\bigr) \bigr) 

\| 0,\Omega 1

\leq C\| \Pi F

\bigl( 
\gamma \Gamma (\Pi 

0
\Omega 1
\phi ) - \gamma \Gamma (\Pi 

0
\Omega 2
\phi )
\bigr) 
\| 1/2,\Gamma 

\leq C\| \gamma \Gamma (\Pi 0
\Omega 1
\phi  - \phi ) - \gamma \Gamma (\Pi 

0
\Omega 2
\phi  - \phi )\| 1/2,\Gamma 

\leq C(\| \Pi 0
\Omega 1
\phi  - \phi \| 0,\Omega 1 + \| \Pi 0

\Omega 2
\phi  - \phi \| 0,\Omega 2),

where C denotes a generic constant independent of h. Applying again the results in
[10], this term also converges to zero, which finishes the proof.

Remark 2. We conjecture that the gap property (3) is valid for our mortar method,
since the numerical examples in section 5.1 show spectral correctness, and in principle
all the necessary ingredients to prove it are already available: the set of commutative
and stable projectors, the good approximation properties of the discrete spaces [10],
the Helmholtz--Hodge decomposition at the discrete level, and continuous extension
operators. The proof, which is based on the construction of a continuous function
from a given discrete one, is rather technical and more complex than the ones of the
previous properties, and it is left for further studies.

\bffive . \bfR \bfe \bfs \bfu \bfl \bft \bfs . This section presents some numerical results of the applicability of
the two substructuring methods introduced in section 3.

\bffive .\bfone . \bfM \bfo \bfr \bft \bfa \bfr \bfm \bfe \bft \bfh \bfo \bfd .
Cube with two patches. The first test we report is a single patch-to-patch coupling

with a trivial geometrical mapping. The unit cube domain \Omega is split in half along
the z direction into \Omega 1 and \Omega 2 (see Figure 5(a)). The coupling interface \Gamma is the
square \{ 0 < x < 1, 0 < y < 1, z = 1/2\} . Maxwell's eigenvalue problem (1) is
solved using the mortar approach described in section 3.3. In \Omega 1 we chose an IGA
curl-conforming discretization with degree p\mathrm{I}\mathrm{G}\mathrm{A} = 4 and high regularity r\mathrm{I}\mathrm{G}\mathrm{A} = 3,
i.e., Vh = S1

4(\Omega 1; \Sigma 1). On the domain \Omega 2 a FEM discretization with N\'ed\'elec-type
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(a) Cube with two conforming patches. (b) Conforming multipatch case of the
pillbox cavity.

Fig. 5. Geometry of the domains used in the tests of section 5.1, with subdomains \Omega 1 (in blue)
and \Omega 2 (in orange).

0 5 10 15 20

10 - 8

10 - 6

10 - 4

mode

| \lambda 
 - 
\lambda 
\ast | 
/\lambda 

\ast 

Fig. 6. Mortaring of two single-patch unit cube domains with nonconforming meshes: relative
error of the first 20 eigenvalues with pIGA = 4, pFEM = 3, q = 3, Ndof = 21 160.

hexahedral elements is used with degree p\mathrm{F}\mathrm{E}\mathrm{M} = 1, 2, 3. This can be straightforwardly
accomplished by constructing a B-spline space on \Omega 2 while setting the regularity of
the basis functions to r\mathrm{F}\mathrm{E}\mathrm{M} = 0. The grids on the two sides are chosen in such a way
that they do not match for any refinement.

On the interface \Gamma we build the space of Lagrange multipliers S1\ast 

q (\Gamma ) with degree
q = 1, 2, 3 and regularity r = q - 1. The mesh used for the quadrature is given by the
intersection of the meshes on both sides, which is easy to compute given the tensor
product nature of the IGA hexahedral grid.

The relative errors of the first 20 eigenvalues with respect to the closed form
solution are below 10 - 5 for the stable case of p\mathrm{F}\mathrm{E}\mathrm{M} = 3, q = 3 and with a total
number of degrees of freedom N\mathrm{D}\mathrm{o}\mathrm{F} = 21 160 (see Figure 6), which shows that there
are no spurious eigenvalues. To validate the inf-sup stability we evaluate the inf-sup
constant \beta \mathrm{i}\mathrm{n}\mathrm{f}\mathrm{s}\mathrm{u}\mathrm{p} numerically [13] while increasing the mesh refinement level. Figure 7
confirms the stability properties expected from the theory: the method is inf-sup
stable when we choose q = p\mathrm{I}\mathrm{G}\mathrm{A}  - 1 = 3. Moreover, we see that the method is also
stable for q = 1, while it is unstable for q = 2. In general, the inf-sup stability is
obtained if q = p\mathrm{I}\mathrm{G}\mathrm{A}  - k with k odd, while it is unstable when k is even.
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103 104 105
10 - 1

100

N\mathrm{d}\mathrm{o}\mathrm{f}

\beta 
\mathrm{i}\mathrm{n}
\mathrm{f}\mathrm{s}
\mathrm{u}
\mathrm{p}

p\mathrm{F}\mathrm{E}\mathrm{M} = 1, q = 1
p\mathrm{F}\mathrm{E}\mathrm{M} = 1, q = 2
p\mathrm{F}\mathrm{E}\mathrm{M} = 1, q = 3
p\mathrm{F}\mathrm{E}\mathrm{M} = 2, q = 1
p\mathrm{F}\mathrm{E}\mathrm{M} = 2, q = 2
p\mathrm{F}\mathrm{E}\mathrm{M} = 2, q = 3
p\mathrm{F}\mathrm{E}\mathrm{M} = 3, q = 1
p\mathrm{F}\mathrm{E}\mathrm{M} = 3, q = 2
p\mathrm{F}\mathrm{E}\mathrm{M} = 3, q = 3

Fig. 7. Mortaring of two single-patch unit cube domains with nonconforming meshes: \beta infsup

constants for different space choices. If q = pIGA  - 2, \beta infsup goes to zero.

Pillbox cavity. We then extend our testing to the case of multipatch geometries.
In order to consider a nontrivial mapping, the same test is performed on a cylindrical
cavity of radius R = 1 and length L = 2 filled with vacuum. The geometry is exactly
described using rational splines, in particular ten NURBS patches of degree 2 (see
Figure 5(b)). As before, we split the cavity in two subdomains separated by the
interface \Gamma = \{ (x, y, z) : x2 + y2 < 1, z = 1\} and use an IGA discretization of degree
4 in \Omega 1 and a FEM discretization with different degrees in \Omega 2, maintaining the exact
geometry by using curved finite elements. The discretization spaces on both sides are
constructed following the classical multipatch approach such that degrees of freedom
lying on adjacent interfaces are glued together. Instead, the Lagrangian multipliers
basis is built independently on each of the patches that belong to \partial \Omega 1 \cap \Gamma and that
fully describe the interface \Gamma , and the full discrete space Mh is obtained by the union
of all of them without any constraint on the connecting lines, i.e., the basis can present
jumps across the patches on \Gamma .

In Figure 8 the results for the inf-sup constant are shown, for different values of
the degree for the FEM spaces and the multiplier; the behavior matches the one of the
single-patch coupling and the expected one. We also report in Table 1 the computed
eigenfrequencies for p\mathrm{I}\mathrm{G}\mathrm{A} = 4, q = 3, and p\mathrm{F}\mathrm{E}\mathrm{M} = 1 in the second mesh (N\mathrm{D}\mathrm{o}\mathrm{F} \approx 
16000), along with the exact values, which confirms that no spurious eigenvalues
appear.

Cube with nonconforming patches. Finally, we consider again the unit cube, but
we further split the subdomain \Omega 1 along the x direction into three patches of equal size,
while \Omega 2 is left unchanged, which gives a geometry described with four nonconforming
patches and with nonconforming meshes. The construction of the discrete spaces on
each side and for the Lagrange multiplier follows along the same lines as that for
the pillbox cavity; the fact that the patches are not conforming does not pose any
difficulty, since the multiplier is defined on each patch separately.

The behavior of the inf-sup constant, presented in Figure 9, is analogous to the
previous cases. Moreover, the convergence of the 10th eigenvalue, which we report in
Figure 10, shows that the order of convergence is dominated by the lowest degree of
the different discretization spaces.
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103 104 105
10 - 1

100

N\mathrm{d}\mathrm{o}\mathrm{f}

\beta 
\mathrm{i}\mathrm{n}
\mathrm{f}\mathrm{s}
\mathrm{u}
\mathrm{p}

p\mathrm{F}\mathrm{E}\mathrm{M} = 1, q = 1
p\mathrm{F}\mathrm{E}\mathrm{M} = 1, q = 2
p\mathrm{F}\mathrm{E}\mathrm{M} = 1, q = 3
p\mathrm{F}\mathrm{E}\mathrm{M} = 2, q = 1
p\mathrm{F}\mathrm{E}\mathrm{M} = 2, q = 2
p\mathrm{F}\mathrm{E}\mathrm{M} = 2, q = 3
p\mathrm{F}\mathrm{E}\mathrm{M} = 3, q = 1
p\mathrm{F}\mathrm{E}\mathrm{M} = 3, q = 2
p\mathrm{F}\mathrm{E}\mathrm{M} = 3, q = 3

Fig. 8. Mortaring of two conforming multipatch pill-box domains with nonconforming meshes:
\beta infsup constants for different space choices. If q = pIGA  - 2, \beta infsup goes to zero.
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Fig. 9. Mortaring of two nonconforming multipatch unit cube domains: \beta infsup constants for
different space choices. If q = pIGA  - 2, \beta infsup goes to zero.

\bffive .\bftwo . \bfS \bft \bfa \bft \bfe \bfs \bfp \bfa \bfc \bfe \bfc \bfo \bfn \bfc \bfa \bft \bfe \bfn \bfa \bft \bfi \bfo \bfn . For the SSC method we perform analogous
tests as for the mortar case. Given that we do not have a proof for the stability of
the coupling, we are particularly interested in investigating numerically the behavior
of the solution with respect to the number of waveguide modes selected as Lagrange
multipliers.

Cube with two patches. Let us consider the two-patch geometry in Figure 5(a).
We discretize with IGA on each subdomain, and since the interface is a square, the
waveguide eigenmodes \bfitvarphi k can be computed analytically [20]. Figure 11 shows the
convergence of the first eigenvalue to the exact solution for the case of matching
and nonmatching grids, and for different choices of the discretization degrees, while
keeping fixed the number of waveguide modes N\Gamma = 18.

In Figure 12 we present the relative errors of the first 20 computed eigenfrequen-
cies in the cube obtained with a fixed B-spline discretization on both sides (p1 = 3,
r1 = 2 and p2 = 2, r2 = 1 with nonmatching grids on the interface) while increas-
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Fig. 10. Mortaring of two nonconforming multipatch unit cube domains: 10th eigenvalue
convergence for different choices of the discretization degrees.

10 - 2 10 - 1 100
10 - 8

10 - 6

10 - 4

h

| \lambda 
 - 
\lambda 
\ast | 
/
\lambda 
\ast 

same degree p,
matching
same degree p,
non-matching
different degrees,
matching
different degrees,
non-matching

Fig. 11. SSC coupling of two conforming unit cube patches: first eigenvalue convergence for
different choices of the discretization degrees and maximum regularity, i.e., p = p1 = p2 = 2,
r = r1 = r2 = 1 (red circles) and p1 = 3, p2 = 2, r1 = 2, r2 = 1 (blue squares), and for matching
and nonmatching grids on \Gamma (dashed and nondashed lines). The number of waveguide modes is fixed
to N\Gamma = 18.

ing the number of analytical waveguide modes on the interface. It is noticeable how
N\Gamma influences the spectrum approximation; in particular, when not enough modes
are chosen, since some eigenfunctions cannot be represented by the Lagrange multi-
plier, some of the higher order modes are not correctly captured. However the size
of the coupling space cannot be taken arbitrarily big since the saddle point becomes
unstable. This is illustrated in Figure 13, where the \beta \mathrm{i}\mathrm{n}\mathrm{f}\mathrm{s}\mathrm{u}\mathrm{p} constant is approxi-
mated for different choices of N\Gamma using the numerical test from [13]. It is evident
that increasing N\Gamma causes the method to fail if the two subdomains are not refined
accordingly.

As mentioned in section 3.4, the SSC coupling allows for straightforward cou-
pling of completely different grids, since the construction of the coupling matrices is
completely independent on each side. In Figure 14 the approximation of the first 40
eigenvalues in the cube for an IGA-FEM coupling is shown. Domain \Omega 1 is discretized
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(a) Number of waveguide modes N\Gamma = 2.
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(b) Number of waveguide modes N\Gamma = 6.
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(c) Number of waveguide modes N\Gamma = 18.
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(d) Number of waveguide modes N\Gamma = 34.

Fig. 12. SSC coupling between two patches: convergence of the first 20 eigenvalues for a fixed
discretization on the two subdomains and an increasing number of waveguide modes N\Gamma .
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Fig. 13. SSC coupling of two patches:
\beta infsup constants for an increasing number of
modes, instability for N\Gamma \rightarrow \infty .
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Fig. 14. SSC coupling of IGA (p1 = 3,
r1 = 2, N\Gamma = 25) and tetrahedral lowest order
FEM: spectrum approximation.

with IGA (p1 = 3, r1 = 2, N\mathrm{D}\mathrm{o}\mathrm{F} \approx 500), while domain \Omega 2 employs classical first order
tetrahedral edge elements FEM (N\mathrm{D}\mathrm{o}\mathrm{F} \approx 50000). The main advantage here is that
no computation of the intersection mesh is required.
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Table 1
Comparison between the exact eigenfrequencies in GHz of the pillbox cavity and the ones com-

puted using mortaring and SSC. For mortar we present the case pIGA = 4, q = 3, pFEM = 1
(NDoF \approx 16000), while for SSC we chose p1 = 2, p2 = 1, N\Gamma = 25 (NDoF \approx 7000).

fexact fmortar fSSC

0.035 857
0.035 857
0.577 485
0.584 617
1.841 232
1.841 232
2.253 919
2.254 197

2.373 958 2.373 960 2.373 968
2.373 958 2.373 960 2.373 968
2.705 705 2.705 706 2.704 475
2.705 705 2.705 706 2.704 475

fexact fmortar fSSC

2.942 116 2.942 116 2.942 116
3.036 078 3.036 078 3.036 078
3.182 680 3.182 681 3.182 785
3.182 680 3.182 681 3.182 785

3.214 081
3.214 081

3.301 959 3.301 961 3.301 962
3.702 910 3.702 919 3.702 994
3.749 870 3.749 879 3.753 896
3.749 870 3.749 879 3.753 896
3.811 044 3.811 087 3.811 201
3.811 044 3.811 087 3.811 263

Fig. 15. An example of one of the modes presenting nonphysical charge on the coupling interface
computed using SSC.

Pillbox geometry. We then consider the pillbox geometry shown in Figure 5(b).
The interface \Gamma is a circle, and thus the closed form solutions for the waveguide modes
(see [22]) can be used to exactly evaluate the waveguide modes \bfitvarphi k. We use both the
TE and TM modes as the basis. One side is discretized with IGA using basis functions
of degree two and regularity r = 1 (N\mathrm{D}\mathrm{o}\mathrm{F} = 5440), while the other side is discretized
with FEM using low order N\'ed\'elec edge elements (N\mathrm{D}\mathrm{o}\mathrm{F} = 6322), and we set N\Gamma = 25.
The results for the computed eigenfrequencies are reported in Table 1 along with the
exact values. It is evident that some spurious modes appear in the spectrum as a
consequence of the coupling due to nonphysical charge appearing on the interface \Gamma .
This can be seen in Figure 15, where we plot the magnitude of one of the modes
associated to a spurious eigenvalue.

\bffive .\bftwo .\bfone . \bfS \bfi \bfm \bfu \bfl \bfa \bft \bfi \bfo \bfn \bfo \bff \bfa \bff \bfu \bfl \bfl \bfT \bfE \bfS \bfL \bfA \bfc \bfa \bfv \bfi \bft \bfy . As a final example of the applica-
bility of the two coupling methods to RF cavity simulation, we consider the TESLA
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(a) Patch subdivision (black lines) and mesh (blue lines) of the IGA section.

(b) Triangularization of the FEM sections, which include the HOMCs shown in Figure 2.

Fig. 16. IGA and FEM sections of the full TESLA cavity model.

cavity, including the two HOMCs at both ends (see Figure 2). We consider the cavity
as if composed by 11 blocks (7 of which are identical midcells whose matrices can be
assembled only once) separated by 10 circular interfaces [18]. Each cell is discretized
with IGA using quadratic basis functions and approximately 40000 degrees of freedom
per cell; the mesh of the cells is shown in Figure 16(a). The coupling between the
cells is performed using Mortar with q = 1. The two beampipes with the HOMC
are instead triangulated by tetrahedra and the discrete matrices are assembled using
lowest order N\'ed\'elec finite elements through an in-house code (approximately 75000
elements); see Figure 16(b). The coupling of the cavity with the beampipes is per-
formed using the SSC technique since, as showed before, it is easier to construct the
coupling matrices without the necessity of an intersection mesh. In Figure 17 the
enforced subdivision is highlighted.

As a proof of concept we apply Dirichlet or equivalently perfect electric conducting
boundary conditions at the couplers. An even more realistic simulation would impose
port boundary conditions. The results are reported in Table 2, where it is possible
to see the presence of nine spurious modes at the beginning of the spectrum when
comparing with a finite element reference computation.

D
ow

nl
oa

de
d 

05
/0

1/
20

 to
 9

3.
35

.1
0.

14
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B102 BUFFA ET AL.

Fig. 17. Substructuring with IGA-FEM for full cavity simulation. Each cell is discretized
independently with IGA (orange color), the two end couplers with FEM (in blue). All the IGA
pieces are coupled together through the mortar method, while the IGA and FEM pieces are coupled
together through the SSC method.

Table 2
First 40 computed eigenfrequencies of the TESLA cavity including the HOMC in GHz. The

simulation of fDDM is performed with the same substructuring as in Figure 17 while fFEM is deter-
mined by a finite element reference computation using CST Microwave Studio (second order basis
functions, default settings) [16]. Some spurious modes appear at the beginning of the spectrum.

fFEM fDDM

0.049 932
0.269 500
0.274 693
0.296 580
0.301 146
0.464 058
0.494 598
0.509 495
0.529 445

1.276 281 1.277 173
1.278 328 1.279 250
1.281 485 1.282 478
1.285 378 1.286 496
1.289 557 1.290 818
1.293 506 1.294 900
1.296 745 1.298 226
1.298 891 1.300 387
1.299 585 1.301 132
1.622 902 1.622 122
1.623 323 1.622 139

fFEM fDDM

1.630 347 1.629 433
1.630 735 1.629 452
1.642 956 1.641 527
1.643 286 1.641 594
1.660 529 1.658 129
1.660 681 1.658 379
1.682 429 1.678 763
1.682 568 1.679 235
1.707 649 1.702 588
1.707 769 1.703 258
1.734 849 1.728 442
1.734 901 1.729 246
1.762 429 1.754 965
1.762 557 1.755 841
1.789 472 1.781 015
1.789 628 1.782 023
1.800 177 1.800 734
1.800 241 1.800 779
1.837 903 1.823 147
1.838 053 1.824 116

\bfsix . \bfC \bfo \bfn \bfc \bfl \bfu \bfs \bfi \bfo \bfn \bfs . This paper discussed two substructuring approaches that allow
the convenient coupling of subdomains discretized by IGA with any other method,
in particular FEM. It was shown by numerical examples that a modal basis for the
Lagrange multiplier space allows for an easy implementation but is not stable and
may cause spurious modes. On the other hand, the isogeometric mortaring is proven
to be spectral correct if the degree q on the interface is properly chosen, i.e., q = p - 1,
where p is the spline degree of the slave domain. Numerical examples underline those
findings.
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