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Abstract—We present hierarchical change-detection tests
(HCDTs), as effective online algorithms for detecting changes
in datastreams. HCDTs are characterized by a hierarchical
architecture composed of a detection and a validation layer. The
detection layer steadily analyzes the input datastream by means
of an online, sequential, change-detection test (CDT), which op-
erates as a low-complexity trigger that promptly detects possible
changes in the process generating the data. The validation layer is
activated when the detection one reveals a change, and performs
an offline, more sophisticated, analysis on recently acquired data
to reduce false alarms.

Our experiments show that, when the process generating
the datastream is unknown, as it is mostly the case in the
real world, HCDTs achieve a far more advantageous trade-off
between false-positive rate and detection delay than their single-
layered, more traditional, counterpart. Moreover, the successful
interplay between the two layers permits HCDTs to automatically
reconfigure after having detected and validated a change. Thus,
HCDTs are able to reveal further departures from the new, post-
change, state of the data-generating process.

Index Terms—Change-Detection Tests, Stream Data Analytics,
Hierarchical Architectures, Cognition-Inspired Systems, Cogni-
tive Fault Detection, Big Data Analytics.

I. INTRODUCTION

One of the most important challenges in datastream analysis
is the online detection of changes affecting the data-generating
process. Changes might reveal critical situations, such as a
fault affecting a sensing apparatus, an anomalous event, or
an unforeseen evolution of the surrounding environment, to
name a few examples. As such, a prompt detection of these
situations is essential for undertaking suitable countermeasures
like repairing/replacing a sensor, raising an alarm, or activating
adaptation mechanisms [1].

Datastreams can be conveniently monitored by online and
sequential techniques characterized by a low computational-
burden; this is particularly true in big data scenarios, where
massive amounts of data steadily arrive over time. Methods
designed to detect changes in datastreams are typically referred
to as change-detection tests (CDTs) [2]; in the classification
literature [1] changes in the data-generating process are re-
ferred to as concept drift [3].

Due to their statistical nature, CDTs intrinsically introduce
false-positives, which might prompt costly and unnecessary
reactions to the detected -not existing- change. For instance, in
contaminant-detection systems [4], alarms activate emergency
procedures or disruptive interventions, and frequent false
alarms induce cry-wolf effect. Even in less critical scenarios,
where false alarms are harmless, they might unnecessarily
activate adaptation procedures or request human intervention.
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Therefore, CDTs need to be suitably configured to operate
at low false-positive rate (FPR). Unfortunately, a reduction of
the FPR comes at the expenses of an increased detection delay
(DD), since each CDT is characterized by an intrinsic FPR vs
DD trade-off controlled by its own parameters.

To achieve more advantageous FPR vs DD trade-offs it
is necessary to design a new change-detection algorithm.
To this purpose, we propose hierarchical change-detection
tests (HCDTs), powerful algorithms that combine different
techniques to detect and validate changes. More specifically,
each HCDT features a two-layered architecture consisting in
a detection layer and validation layer, and implements an
automatic reconfiguration mechanism. The detection layer is
designed to steadily analyze the datastream at a low com-
putational cost, by means of an online and sequential CDT.
Once the detection layer reveals a change, it activates the
validation layer that performs an offline analysis based on
an hypothesis test (HT) to determine whether the detection
corresponds to an actual change in the data-generating process
or not (false-positive detection). When the change is actu-
ally confirmed, the validation layer automatically identifies
a sequence of data generated in the post-change conditions
to be used to reconfigure the HCDT. Differently, when the
change is not confirmed, the HCDT restarts in its initial
conditions. This self-reconfiguration phase makes HCDTs able
to autonomously track data-generating processes that evolve
through stationary states. In turn, HCDTs reconfiguration can
be also used to pilot other adaptation mechanisms like those
governing adaptive classifiers [1], [5]–[7].

Here we show that the change-detection performance can
be often improved by introducing a validation layer. In fact,
our experiments reveal that HCDTs often achieve a far more
convenient FPR vs DD trade-off than their single-layered coun-
terpart, namely the solely CDT operating at the detection layer.
In particular, HCDTs outperform traditional (single-layered)
CDTs in monitoring scenarios where the pre/post change states
of the data-generating process are unknown, as it is the case
in most of real-world applications. Thus, provided a suitable
configuration of the detection layer, HCDTs achieve substan-
tially lower FPR than their single-layered counterparts, while
preserving similar DD values. Such performance improvement
comes at a marginal computational overhead. In fact, when the
HCDT is properly configured, the validation layer is rarely
activated and its computational load is largely due to the
detection layer, thus HCDTs represent viable solutions for
online monitoring datastreams.

A. Related Works

Hierarchies of mechanisms/algorithms have been considered
in many research fields, where hierarchical architectures are
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often presented as solutions to trade-off effectiveness and
efficacy. Without intending to be exhaustive, we recall the hier-
archy of memories in computer architectures [8], hierarchical
algorithms in computer vision (e.g., [9], [10]) and hierarchical
routing algorithms in wireless sensor networks (e.g., [11]).

Recent studies [12], [13] have shown that also some mech-
anisms in the human brain can be modeled as a hierarchy of
sub-systems, characterized by different activation times and
response accuracies [14]. Sub-systems in lower levels (e.g.,
the amygdala) are characterized by automatic processes that
continuously monitor the external stimuli and promptly trigger
potential threats to activate quick reactions (e.g., increase the
heartbeat or the respiration rates or the release of stress-
hormones). Differently, sub-systems in upper levels (e.g.,
the prefrontal cortex) are generally activated in response to
detections raised by lower levels and are characterized by more
complex conscious processes, aiming at improving, integrating
or even correcting the actions/decisions made by the lower
levels. A detailed description of automatic and conscious
mechanisms for emotional processes can be found in [13].

Interestingly, hierarchical approaches received a very lit-
tle attention in the change-detection literature. In fact, even
though the idea of combining online and offline change-
detection techniques to increase the reliability of the decisions
was originally discussed in [2], to the best of our knowledge, a
general hierarchical-architecture for change-detection purposes
has never been investigated.

It is worth mentioning the CDT presented in [5], which
implements a two-thresholds mechanism to analyze the aver-
age error of a classifier to detect concept drift. As soon as
the error exceeds the lower threshold, a warning-level alert is
raised; when the alert state persists and the error exceeds the
higher threshold, a drift-level detection is triggered. Drift-level
detections force the classifier to update, whereas warning-level
alerts that do not trigger a drift-level detection are considered
to be false alarms. In [15] a similar mechanism is used to
detect concept drift by analyzing the average distance between
misclassified data. While these algorithms are able to perform
automatic reconfiguration, they do not feature a hierarchical
architecture. A two-layered CDT was presented in [16], where
a validation procedure was employed to reduce the FPR. This
CDT has been also used for contaminant-detection purposes
in smart-building scenarios [4].

Our work extends [16] and provides the following original
contributions. At first, we present HCDTs from an high-level
perspective, detailing a general methodology for designing
HCDTs based on different change-detection and validation
techniques; second, we develop the automatic reconfiguration
(Algorithm 2) of HCDTs; third, we perform a larger experi-
mental analysis to investigate the improvements that HCDTs
provide in terms of FPR vs DD trade-off. To this purpose,
we designed and assessed the performance of three different
HCDTs, while [16] presented a single HCDT implementing
the ICI-based CDT [7].

B. Paper Structure
The rest of the paper is organized as follows. Section II

formalizes the change-detection problem, while Section III

describes the general methodology for designing HCDTs. Sec-
tion IV overviews suitable techniques for designing specific
HCDTs, and meaningful examples of HCDTs are provided in
Section V. Experiments are presented and discussed in Section
VI, while Section VII provides concluding remarks.

II. PROBLEM STATEMENT

Denote by {s(t), t = 1, . . . } the datastream to be inspected
for changes, s(t) ∈ Rp being the data acquired at time instant
t. We assume that, provided some suitable preprocessing func-
tion P (e.g., those mentioned in Section IV-A), it is possible to
extract a stream X = {x(t), t = 1, . . . }, x(t) ∈ Rd, of change
indicators that, in stationary conditions, are independent and
identically distributed (i.i.d.) realizations of a random variable
X having probability density function (pdf) φ0. In the sequel,
we address the problem of monitoring the stream X to identify
changes in stationarity of X which, in turn, indicate a change
in the process generating the datastream {s(t), t = 1, . . . , }.

A common model for changes in stationarity of X is

x(t) ∼

{
φ0 t < T ∗

φ1 t ≥ T ∗
, (1)

where T ∗ is the unknown change point (or change-time
instant) and φ1 6= φ0 is the pdf characterizing the postchange
distribution of the data. Model (1) corresponds to an abrupt
and permanent change affecting φ0.

Define the detection time T̂ as the earliest time instant when
the CDT claims that the sequence XT̂ = {x(t), t = 1, . . . , T̂}
contains a change point. Following (1), the CDT promptness
can be computed by the detection delay:

DD = E
X

[T̂ − T ∗|T̂ ≥ T ∗, φ1], (2)

namely, the expectation of the detection latency T̂ − T ∗

conditioned by the fact that the change was successfully
detected, (i.e., T̂ ≥ T ∗). Expectation in (2) is computed over
realizations of sequences X generated by model (1). When
the sequence XT̂ contains i.i.d. data (thus no change-point),
the CDT had a false-positive detection at T̂ . As mentioned in
Section I, the FPR, namely, the probability of a CDT to yield
a false-positive detection on a given i.i.d. sequence, has to be
also considered when assessing the CDT effectiveness1.

III. HIERARCHICAL CHANGE-DETECTION TESTS

Figure 1 illustrates the architecture of HCDTs, indicating
the interplay between the detection and the validation layers.
The general formulation of HCDTs is detailed in Algorithm 1,
while the reference methodology for deriving specific HCDTs
is presented in the sequel.

1In the sequential monitoring literature, CDT performance is also assessed
as the expected time between false positives, namely, the average run length
ARL0 = E

X
[T̂ |φ0], and the mean delay ARL1 = E

X
[T̂ |φ1].
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Fig. 1. A scheme illustrating the HCDT architecture. When the datastream {s(t), t = 1, . . . , } can not be modeled as a sequence of i.i.d. random values,
it is necessary to perform a preliminary processing P yielding the stream of i.i.d. change indicators X = {x(t), t = 1, . . . , }, otherwise s(t) = x(t).
The detection layer runs a CDT on the input stream X , and activates the validation layer as soon as it detects a change at time T̂ . Then, the validation
layer identifies a suitable validation sequence V ⊂ X

T̂
and runs an HT to assess whether V contains a change point or not. When the change point T̂ ∗ is

found, the detection is confirmed, and a subsequence of the datastream R = {s(t), t = T̂ ∗, . . . , T̂} is identified to reconfigure the HCDT and possibly the
preprocessing. Differently, when the change is not validated, R remains the original training sequence and the HCDT is restarted in its previous conditions.
This automatic reconfiguration makes the HCDT able to continue the monitoring activity after each detected change, thus being able to detect any further
departure from the post-change conditions.

A. Preprocessing

When the datastream follows trends or, more generally,
exhibits specific structures or dynamics (as it often happens in
the real world), the HCDT can not be directly applied, since
the datastream {s(t), t = 1, . . . } violates the i.i.d. assumption.
Thus, suitable preprocessing-techniques, like those mentioned
in Section IV-A, are typically envisioned to compute a stream
of change indicators X that follows (1). In these cases, pre-
processing P is the first operation to be performed (Algorithm
1, line 3) and the stream of change indicators X becomes
the input of the HCDT. The preprocessing phase has to
be designed so that changes in the datastream modify the
distribution of change indicators; examples of preprocessing
techniques are given in Section IV-A. When preprocessing is
not needed, x(t) = s(t), and P in Algorithm 1 becomes the
identity function.

B. Detection Layer

The detection layer steadily analyzes the input stream X
to detect changes that might occur at anytime. In particular,
the detection layer answers, at each new input arrival, the
following question: “are all data received so far generated by
a stationary process?”. As far as the answer to this question
is positive, no detection/alarm is raised, and the monitoring
activity continues. In contrast, a negative answer implies the
detection of a change in the data-generating process.

ALGORITHM 1: General formulation of the HCDT.
input: R, the training sequence from the datastream

1. Configure the HCDT on R (Algorithm 2)
2. while (s(t) is available) do
3. Apply preprocessing P yielding x(t)
4. Run the CDT at the detection layer
5. if (CDT detects a change at time t) then
6. Set T̂ = t
7. Activate the validation layer
8. Identify the validation sequence V ⊂ XT̂
9. Run the HT to find a change point in V

10. if (a change-point is found) then
11. Confirm the detection T̂ and change point T̂ ∗

12. Define R = {s(t), t = T̂ ∗, . . . , T̂}
13. Reconfigure the HCDT on R (Algorithm 2)

else
14. Restart the HCDT as configured over R

end
end

end

Streaming data have to be monitored in an online and
sequential manner, by means of suitable techniques that poten-
tially consider the whole sequence XT = {x(t), t = 1, . . . , T}
before claiming a change at time T . The best candidates
for addressing change detection on streaming data are the
online and sequential CDTs, namely statistical techniques
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Fig. 2. a) The validation sequence V ⊂ X
T̂

is defined as V =
P(R) t P(W ), being P(R), the sequence of change indicators that was
used to configure the CDT at the detection layer and P(W ) the output of the
preprocessing over the window W = {s(t), t = T̂ − δ, . . . , T̂} that contains
the most recent data. b) R = {s(t), t = T̂ ∗, . . . , T̂} is a subsequence of
the datastream that is used to reconfigure the whole HCDT after the change,
according to Algorithm 2.

able to detect changes in data sequences characterized by an
increasing length. Sequential CDTs can detect subtle changes
more effectively than one shot techniques applied to the last
recent data.

In HCDTs, the CDT at the detection layer monitors each
incoming x(t) (Algorithm 1, line 4). At time T̂ , when the
detection layer reveals a change in X (line 5), the validation
layer is activated (line 7).

Given its online processing modality, the CDT must be
characterized by a low DD and a low computational burden.
Having low DD is fundamental because any delay at the
detection layer reflects on the overall latency and reaction time
of the HCDT. The CDT at the detection layer has to be compu-
tationally light since it is executed at each new sample arrival
and, to support online operations in big data scenarios, the
inner statistics of the CDT have to be computed incrementally
over-time. Examples of CDTs that can be employed at the
detection layer are given in Section IV-B.

C. Validation Layer

The validation layer gets activated every time the CDT
at the first layer detects a change, to assess whether X
has actually changed or the CDT provided a false-positive
detection. To this purpose, a suitable validation sequence is
extracted from XT̂ and a statistical test is formulated to answer
the following question: “does the validation sequence contain
a change-point?”. Therefore, change validation consists in a
retrospective and offline analysis over a given sequence having
a fixed length and, to this purpose, the validation layer makes
use of HTs.

Identification of the Validation Sequence: the validation se-
quence V ⊂ XT̂ is isolated from X after each detected change
(Algorithm 1, line 8). To properly perform change validation,
V has to include –when X actually underwent a change– both
data generated before and after the unknown change-point.
Therefore, we select a window containing the last δ > 0
arrivals of the datastream, i.e. W = {s(t), t = T̂ − δ, . . . , T̂},
which is expected to refer to the post-change conditions, and

the training sequence of the HCDT, which certainly refers to
the initial stationary conditions. As shown in Figure 2.a, V is
defined as V = P(R)tP(W ), where P(R) is the sequence of
change indicators that was used as a training set for the CDT at
the detection layer, P(W ) is the sequence of change indicators
extracted from W , and t denotes the juxtaposition operator.
This option enables change validation without having to store
all the input data, which is often unfeasible in datastream
analysis.

Change Validation via Hypothesis Testing: two strategies
can be pursued to determine whether V contains a change-
point or not. The first one consists in analyzing V to compute
T̂ ∗, a refined estimate2 of the change point T ∗, and then
defining

V0 = {x(t) ∈ V, t < T̂ ∗} (3)

V1 = {x(t) ∈ V, t ≥ T̂ ∗} .

These sequences yield a partition of V (i.e., V = V0tV1) that,
when the change has actually occurred at T̂ ∗, is expected to
provide the largest evidence for claiming V contains a change
point. The detection can then be validated by formulating an
hypothesis test like the following:

H0 : “data in V0 and V1 are identically distributed” (4)
H1 : “data in V0 and V1 are from two different pdfs” .

When the test statistic provides enough statistical evidence
to conclude that V contains a change point, the detection at
T̂ is confirmed together with its estimated change-point T̂ ∗

(Algorithm 1, line 11). Conversely, when there is not enough
statistical evidence, the detection raised by the CDT is dis-
carded and considered to be a false-positive detection. Several
test statistics could be employed to design such hypothesis test,
the most relevant ones are reviewed in Section IV-C, together
with techniques to estimate T̂ ∗.

The second strategy consists in change-point methods
(CPM) [17], namely HTs that simultaneously validate the
change and estimate T̂ ∗. In particular, each point in V is
tested to be a change point, thus the HT in (4) is executed
for all the possible partitions of V , to determine whether any
of these yields enough statistical evidence for rejecting the null
hypothesis. Once the change has been validated, the partition
yielding the largest evidence of the change identifies T̂ ∗.

Detection and validation layers are characterized by differ-
ent requirements. Since the validation layer is only sporadi-
cally activated, its computational load is not a critical issue
as for the detection layer. Differently, the HT employed at
the validation layer has to be powerful (in statistical terms),
namely should reject with high probability the stationary
hypothesis when a change has actually occurred in X . In
particular, the validation layer has to be able to confirm the
decisions of the detection layer even when V contains few
data after the change.

2CDTs are typically characterized by an intrinsic delay since they require
enough certainty before claim the presence of a change in the input stream,
thus T̂ ∗ 6= T̂ .
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ALGORITHM 2: Reconfiguration of the HCDT.
input: training sequence R

1. if (P has to be configured from training data) then
2. Split R = R0 tR1

3. Configure P on R0

4. Compute RX = P(R1)
else

5. Compute RX = P(R)
end

6. if (not enough samples in RX for reconfiguring HCDTs) then
7. Gather more recent data S from the datastream
8. Set RX = RX t P(S)
9. Run the validation layer on RX

if a change point is found in RX then
10. Set R = {x(t) ∈ S, t > T̂ ∗}
11. Restart from line 1

end
end

12. Configure the CDT at the detection layer from RX

D. HCDT Reconfiguration

At each confirmed change, the validation layer provides a
new sequence R = {s(t), t = T̂ ∗, . . . , T̂} that is supposed
to contain data generated after X has changed (see Figure
2.b, and Algorithm 1 line 12). This sequence can be used
to automatically reconfigure the HCDT to the post-change
conditions. Such automatic reconfiguration can be performed
at each detection, making HCDTs able to autonomously track
data-generating processes evolving through a sequence of
stationary states.

HCDT reconfiguration involves the CDT at the detection
layer and possibly the preprocessing phase P , but not the
validation layer. Both the initial configuration (Algorithm 1
line 1), and the post-detection reconfiguration (Algorithm 1
line 13) of the HCDT can be performed by the general
procedure reported in Algorithm 2 and described in what
follows.

First of all, the training sequence R is conveniently split
into two parts (Algorithm 2 line 2), the former (R0) is used
for reconfiguring the preprocessing (line 3), the latter for
computing the change indicators RX = P(R1) (line 4) that
are used for configuring/reconfiguring the CDT at the detection
layer. This step is necessary to prevent overfitting [18] when
the preprocessing is configured from training data – e.g. when
P involves an approximation model that is fitted to the training
data. In fact, change indicators computed from the same data
used for configuring P might be poorly representative of the
change indicators computed during operational life, thus they
should not be used for CDT configuration. When P does not
need to be configured, P can be directly applied to the whole
training sequence RX = P(R) (line 5); similarly, when no
preprocessing phase is needed, P becomes the identity and
RX = R.

When RX does not contain enough training samples to
allow the reconfiguration of the CDT, the activation of the
HCDT is postponed to gather additional training data (line 7).
However, data received after T̂ have not been tested by the
HCDT and, hence, we cannot guarantee they are stationary.

Therefore, after having computed the change indicators by
means of P (line 8), it is safer to perform an additional
validation step to make sure that the new training sequence
is stationary (line 9). To this purpose, RX is further tested
by the validation layer, and used for reconfiguring the CDT
when no change points are found (line 12). Otherwise, R
is defined as the part of the datastream generated after the
change, and the whole reconfiguration is repeated (lines 10
and 11). This additional validation is meant to prevent the
HCDT reconfiguration on nonstationary data, e.g., sequences
containing gradual drifts or an abrupt change.

It is important to remark that, when the validation layer
does not confirm the detection at T̂ , the CDT is reset to its
original conditions. In the practice, all data acquired before the
false-positive detection are ignored and the CDT is restarted
to detect any departure from RX after T̂ (Algorithm 1 line
14).

E. Pairing the Detection and Validation Layers

To guarantee the successful interplay of the detection and
validation layers, the CDT and HT that constitute a HCDT
should be selected with special care. This is particularly
important in nonparametric monitoring, where, as we will
show in Section IV, both the CDTs and HTs typically rely on
test statistics that are meant to detect/validate specific types of
changes (e.g., changes in the mean or in the variance). Then,
for the HCDT to be successful, the HT at the validation layer
should be able to validate each type of change that the CDT
at the detection layer is able to detect. The three HCDTs in
Section V have been designed with this constraint in mind.

Another important remark is that the detection and valida-
tion layers have clearly different roles, and that the validation
layer cannot be used to online monitor the datastream (even
though this leverages a powerful HT). In fact, activating the
validation layer at each new input x(t) might yield, beside
computational issues (as we show the validation layer is often
much more computationally demanding than the detection
one), unacceptable FPR [19] since HTs are typically one-shot
techniques.

IV. TECHNIQUES FOR IMPLEMENTING HCDTS

Here, we provide an overview of some consolidated tech-
niques that can be used to design specific HCDTs.

A. Preprocessing Techniques

The literature presents several data-processing solutions to
compute change indicators that are distributed as in (1). Most
often, preprocessing is performed by computing the resid-
uals with respect to approximation/predictive models [20]–
[22] or decorrelating/detrending the datastream [23], [24].
Feature extraction is another viable option to compute change-
indicators: examples are the sample moments of the datastream
(computed over non-overlapping windows to guarantee the
temporal independence of the change indicators over time), a
measure of datastream self-similarity [25], and the Hellinger
distance of the empirical distributions [26] computed with
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respect to a reference training sequence. In the classification
literature, concept drift is typically detected by monitoring the
classification error on supervised samples [1], [3], [5], [15],
[27], thus φ0 and φ1 are two Bernoulli distributions whose
parameters are the average classification error before and after
the change, respectively.

B. Change-Detection Tests

CDTs in the literature can be divided into parametric,
which assume that φ0 and φ1 are a priori known, and in
nonparametric which do not make such assumption. Among
parametric CDTs we mention the sequential probability ratio
test (SPRT) [2] and the cumulative sums (CUSUM) test [28],
while for a survey on recent developments in the quickest
change-detection literature, we invite the reader to refer to
[29].

We are mainly interested in nonparametric CDTs since, in
the real world, the post-change distribution φ1 is rarely known
because of the change unpredictability or lack of training
data. Only few nonparametric CDTs have been proposed in
the literature, like the NP-CUSUM test [30], which is a
nonparametric extension of the CUSUM designed to detect
shifts in the expectation of an unknown random variable.
The CI-CUSUM test [31] aims at detecting more general
distribution changes by extracting features like the sample
moments, projections over the principal components and the
Mann-Kendall statistics from a sliding window. Thus, the
problem of detecting arbitrary distribution changes of X is
transformed into the problem of detecting changes in the
magnitude of the feature vector components (by means of
a cumulative-sum mechanism), which are also very likely to
change when X changes. This idea is further developed in
the ICI-based CDTs [7], where features are carefully designed
to follow a Gaussian distribution. CDTs of this family lever-
age the Intersection of Confidence Intervals (ICI) rule [32],
[33], a statistical technique to define adaptive supports for
polynomial regression, to detect changes in the monitored
features. The CDT in [34] detects distribution changes by
directly estimating the likelihood ratio between φ0 and φ1,
without explicitly estimating the two distributions. Differently
from the other CDTs discussed here, this latter CDT does not
refer to a unique (initial) stationary state, and detects changes
by comparing data over two different sliding windows. A
batch-wise nonparametric CDT that monitors the Hellinger
distance between the empirical distributions computed from
the current batch and the training set is presented in [26].
Simple thresholding-based CDTs as well as other change-
detection solutions designed for fixed-length sequences have
not been considered here.

C. Validation Techniques

In what follows we describe the main techniques for per-
forming change validation on a given sequence V (defined as
in Section III-C), namely the techniques to estimate T̂ ∗ and
the HTs.

Estimating T̂ ∗: To formulate the hypothesis testing problem
(4) the validation layer has first to compute T̂ ∗ from V . In the
parametric scenario (where both φ0 and φ1 are known), T̂ ∗ is
obtained as in [2] by maximizing the likelihood of the change
hypothesis over V , i.e.,

T̂ ∗ = argmax
t∈[T̂−δ,T̂ ]

log

 ∏
x(i)∈V,i<t

φ0
(
x(i)

) ∏
x(i)∈V,i≥t

φ1
(
x(i)

) .

(5)
In contrast, in the nonparametric case, T̂ ∗ has to be estimated
through heuristic approaches, such as running the CDT at the
detection layer over V , after having adjusted its parameter
to provide prompter detections. Then, T̂ ∗ is defined as the
detection time from this latter execution over V . ICI-based
CDTs [7] naturally increase their detection promptness when
operating on shorter data sequences: this has motivated the
design of the refinement procedure (see [7], Algorithm 3),
which can be directly used on V to estimate T̂ ∗.

Change Validation via Hypothesis Testing: Both the HTs
(4) and CPMs can use nonparametric statistics such as the
Kolmogorov Smirnov [35] or the Cramer-Von Mises [36] ones,
which compare the empirical cumulative density functions of
V0 and V1. Since it is very likely that a change in X would
also affect its moments, it is often more convenient to look
for changes in the sample moments of X or other meaningful
statistics. In fact, tests based on statistics that detect changes
in the distribution are typically less powerful [37] than tests
based on statistics meant to assess specific sort of changes
(e.g., changes in the sample moments). Examples of statistics
typically employed in HTs like (4) are the Hotelling T-square
[38], which detects changes in the mean, the Bartlett [39],
which detects changes in the variance, the Mann Withney [40],
which detects changes in the location of the distribution (thus
also in the mean), the Mood [41], which detects changes in
the scale of the distribution (thus also in the variance) or the
Lepage [42], which detects changes in both the location and
scale. In [43], change points are located by estimating the
density ratio before and after the change.

The change-point formulation has been recently extended
to perform online and sequential-change detection, by iterating
the CPM at each new data arrival. Thus, at each new input, the
test statistics have to be computed for all the possible partitions
of X like (3). The computational load of these algorithms
depends on the length of Xt, thus increases over time. This
issue becomes a serious problem when the test statistics cannot
be computed incrementally. Approximated expressions of the
test statistics have been recently proposed in [23], [44], to
bound the computational and memory requirements. However,
these algorithms are far more computationally demanding than
the CDTs in Section IV-B, since the test statistics have still
to be computed on all possible partitions of a sliding window
opened over the datastream. This is the main motivation why
not havnig online CPMs at the detection layer.

V. EXAMPLES OF HCDTS

To substantiate the general methodology described in Sec-
tion III we present three examples of HCDTs. For each HCDT,
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we compare the computational load of the detection and
validation layers.

The fist algorithm we report is a parametric HCDT built
over the CUSUM test, the second one is a feature-based (non-
parametric) HCDT that implements the ICI-based CDT, while
the third one is another example of nonparametric HCDTs
that is based on the NP-CUSUM test. The corresponding
validation layers have been selected according to the criteria in
Section III-E, while the reconfiguration is performed following
Algorithm 2. We have made available for download MATLAB
implementations of these HCDTs3.

A. Hierarchical CUSUM Test

Detection Layer: The CUSUM test [28] is a parametric
CDT that monitors the behavior of the log-likelihood ratio

s(t) = log

(
φ1(x(t))

φ0(x(t))

)
. (6)

When x(·) ∼ φ0, (6) is expected to be negative, thus its
cumulative sum

S(t) =
t∑
i=1

s(i), (7)

follows a decreasing trend. The stopping time of the CUSUM
test is defined as

T̂ = min
{
t : ( S(t))

+
> κ

}
, (8)

where (·)+ = max{0, ·} and κ is the CUSUM threshold
parameter that has to be properly tuned.

Validation Layer: After each detection, T̂ ∗ is estimated by
maximizing the posterior probability of the change hypothesis
[2] over V as in (5). Given T̂ ∗, V is partitioned as in (3) to
perform change validation by means of a suitable parametric
HT (4), since both φ0 and φ1 are known. For instance, in case
of Gaussian distributions, changes in the mean can be validated
with a one-sided z-test, while changes in the variance with the
chi-square test. Since the CUSUM test does not require any
training sequence, the hierarchical CUSUM uses RX only to
build the validation sequence V .

The computational load of the Hierarchical CUSUM test is
mainly determined by the cost in computing the likelihood
with respect to φ0 (i.e., assessing φ0(x(i))) and φ1. The
CUSUM at the detection layer requires only 2 likelihood
computations at each sample arrival. Differently, an activation
of the validation layer involves (5), which requires approx-
imatively (δ + 1)n/2 likelihood computations, where n is
the cardinality of the validation sequence (n = #V ). Thus,
the validation layer is substantially more computationally
demanding than the detection layer.

B. Hierarchical ICI-based CDT

Detection Layer: The ICI-based CDT presented in [45]
monitors two features computed over non-overlapping win-
dows of ν > 0 change indicators. In what follows, we use j

3http://home.deib.polimi.it/boracchi/Projects/

to index sequence of feature values. The first feature is the
sample mean:

M(j) =
1

ν

(j+1)ν−1∑
t=jν

x(t), (9)

while the second one is a power-law transform of the sample
variance

V(j) =

(j+1)ν−1∑
t=jν

(
x(t)− M(j)

)2
ν − 1

h0

, (10)

which approximately follows a Gaussian distribution [46]. The
exponent h0 is computed as described in [46].

During operational life, both features are independently
monitored by the ICI rule [32], which determines when the
sequence of feature M or V cannot be suitably fit by a zero-
order polynomial. In particular, let µj be the polynomial fit of
{ M(1), . . . , M(j)} (the same applies to { V(1), . . . , V(j)}), and
let σj be the standard deviation of the corresponding estimator,
such that the confidence interval around the j-th estimate is

Ij = [µj − Γσj ;µj + Γσj ] , (11)

where Γ > 0 is a tuning parameter that in practice rules the
FPR vs DD trade-off in the the CDT. Then, the CDT detects
change within the j-th window as soon as Ij does not intersect
all the previous confidence intervals, i.e., when

⋂
k=1,...,j

Ik = ∅.

The intersection of confidence intervals (and often also µj) can
be incrementally computed, while σj is given by analytical
expressions.

Validation Layer: We present two different validation layers
that are able to assess changes both in the mean and in the
variance of X , since these are the changes that the above ICI-
based CDT is designed to detect. The first option consists in
estimating T̂ ∗ inside V by means of the refinement procedure
[7] of the ICI-based CDT applied over the feature detecting
the change, and then running an Hotelling T-square test [38]
on two-dimensional vectors [ M(·), V(·)] – which are treated as
realizations from a multivariate Gaussian random variable4.
The second option consists in running a CPM based on the
Lepage statistic L = U +M [42], which is the sum of the
Mann-Whitney statistic U [40] and Mood statisticM [41]. As
mentioned in Section IV-C, L is a nonparametric statistic able
to assess both changes in the location (thus, also the mean)
and/or the scale (thus, also the variance) of X . The training
sequence RX is used to configure the ICI-based CDT and
build the validation sequence V .

The ICI-based CDT is computationally light, since it re-
quires around 4ν operations every ν data arrived. The valida-
tion layer that estimates T̂ ∗ at first and then runs the HT based
on Hotelling T-square statistic (4) is also computationally light,
since the refinement procedure requires few iterations of the
ICI-based CDT over V , and the HT involves few operations
on the feature vectors in V (that are n/ν and that have
been previously computed). Differently, the validation layer

4Alternatively, changes can be validated on the sole feature detecting the
change by means of a t-test.

http://home.deib.polimi.it/boracchi/Projects/


8

implementing the Lepage CPM on V is computationally more
bulky, since the statistics M and U require to sort V0 and
V1, thus O (n log (n)) operations, and have to be computed
(n − 1)-times (namely, for all the possible partitions of V ).
The CPM is more computationally demanding than the CDT
also because typically n >> n/ν.

C. Hierarchical NP-CUSUM Test

Detection Layer: The NP-CUSUM test was introduced in
[30] to detect shifts in the mean of a datastream drawn from an
unknown distribution. This CDT monitors the score function

Su(t) =
(
Su(t− 1) + x(t)− µ0 + c

)+
, t > 1, (12)

where µ0 is defined as the mean over RX , c > 0 is a tuning
parameter, and Su(0) = 0. The score function Su detects
positive shifts in the mean of the stream; to detect shifts in
both directions, a second score function Sd(t) =

(
Sd(t −

1)−x(t)+µ0 + c
)+

has to be simultaneously monitored. The
stopping time of the NP-CUSUM test is defined as

T̂ = min {t : Su(t) > κ or Sd(t) > κ} , (13)

being κ another tuning parameter.

Validation Layer: The validation layer implements a CPM
based on the Mann-Whitney statistics U to assess location
changes in the distribution of data inside V , thus also those
changes in the mean that the NP-CUSUM is designed to
detect. Here, the training sequence RX is used to compute
µ0 and build V .

The computational burden of the detection layer is rather
negligible, as it requires only 8 operations per input data. The
bulky component of this HCDT is the CPM at the detection
layer, which has to compute (n−1)-times the statistic U that,
as previously discussed, requires sorting values in V0 and V1.

VI. EXPERIMENTS

To quantitatively assess the advantages of HCDTs over their
single-layered counterparts (in what follows simply referred
to as CDTs), we designed two experiments5. The first one
is meant to illustrate the superior performance of HCDTs
when detecting a subtle abrupt change in a dataset of syn-
thetically generated sequences. The second one refers to a
dataset acquired from an industrial monitoring application,
where each sequence exhibits six consecutive abrupt changes
that has been prepared to investigate the effectiveness of
HCDTs reconfiguration. Experiments are performed by using
the HCDTs presented in Section V.

A. Test on Synthetically Generated DataSet

This dataset contains 10000 sequences defined as

x(t) ∼

{
N (1, 1) t ≤ 30000

N (1.5, 1) 30000 < t ≤ 60000
, (14)

to test the detection of a subtle change in the mean of φ0
(namely 0.5 times the standard deviation of φ0). We generate

5The comparison among different HCDTs is not in the scope of this paper.

sequences that are long-enough after T ∗ to make sure that
the change is –in practice– always detected. All the HCDTs
in Section V have been configured on a training sequence
containing the first 400 samples, and are able to detect changes
in the expectation of a random variable. Since the stationary
data are i.i.d. as in (1), there is no need of preprocessing.

The figures of merit to assess detection performance are the
FPR and DD, defined in Section II. When comparing HCDTs
and CDTs it has to be considered that the performance of both
algorithms depend on specific tuning parameters regulating
the FPR vs DD trade-off (namely, κ for the CUSUM and
NP-CUSUM tests, Γ for the ICI-based CDT). Therefore, the
performance of HCDTs and CDTs are assessed by comparing
the FPR vs DD curves obtained by considering a suitable
range of values for the tuning-parameters. In particular, we
tested the CUSUM using κ ∈ {7, . . . , 13}, the ICI-based
CDT using Γ ∈ {1.5, 1.75, . . . , 3} and the NP-CUSUM using
κ ∈ {50, 100, 150, 250, 350, 450, 550, 750, 950}, since these
values covered a suitable region of the (FPR, DD) plot. We
manually tuned c in the NP-CUSUM test and set c = 0.1
to guarantee suitable detection performance for the range of
change magnitudes considered in [16]. All the hypothesis
tests (i.e, the z-test, the Hotelling T-square, the Lepage CPM
and the Mann-Withney CPM) were configured by setting the
confidence α = 0.05, namely the probability of type I errors
in hypothesis testing. To enable a fair comparison, the DD of
HCDTs is computed only in those sequences where the CDT
had no false positives.

To illustrate the advantages of using HCDTs, we report the
number of false-positive detections discarded by the validation
layer. In particular we compute, for each value of CDT
parameter, the average number of validation-layer activations
by false-positive detections (averages are computed over 1000
samples). Even though this value heavily depends on the FPR
of the detection layer (the larger the number of detections,
the larger the number of validation-layer activations), this
figure of merit provides: i) a qualitative assessment of how
often false-positive detections are discarded when monitoring
long sequences, and ii) an indication of the computational
overhead introduced by the HCDTs. These values, together
with comments reported in Section V about the computational
load of the considered HCDTs, should be taken into account
when configuring the HCDTs.

Figure 3 indicates that the curve of hierarchical CUSUM
coincides with that of the CUSUM test at the detection layer,
and that the validation layer is never activated for discarding
a detection raised by the CUSUM test. This is because the
likelihood ratio (6) at the detection layer is a very powerful
statistics, which makes the validation introduced by the z-test
useless6.

In contrast, introducing a separate validation layer is clearly
beneficial in nonparametric scenarios, as demonstrated by the
distance between the FPR vs DD curves in Figures 4 and 5.
The curves of the 25th and 75th percentiles of the empirical
distribution of T̂ (for a given value of FPR) indicate that the

6The effectiveness of the CUSUM can be also appreciated by comparing the
DD of this parametric solution against the nonparametric HCDTs in Figures
4 and 5.
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Fig. 3. The FPR vs DD curve computed for the CUSUM test and the hierarchical CUSUM test when κ ∈ {7, . . . , 13} (left); the average number of
activations of the validation layer over 1000 samples (right). The overlap between the FPR vs DD curves and the lack of validation layer activations before
detection indicate that, in this parametric scenario, introducing a separate validation layer yields no improvements: the z-test always confirm the detection
raised by the CUSUM test at the detection layer, because the likelihood ratio (6) is a more powerful statistic.
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Fig. 4. The FPR vs DD curve computed for the ICI-based CDT and the hierarchical ICI-based CDT when Γ ∈ {1.5, 1.75, . . . , 3} (left); the average number
of activations of the validation layer over 1000 samples (right). In this nonparametric scenario, the HCDT provides a marked improvement over its single-layer
counterpart. We report the performance of both solutions using the HT based on the Hotelling T-square statistic and the Lepage CPM at the validation layer.

performance gap between the two solutions is substantial, and
cannot be simply achieved by adjusting the tuning parameters
of the CDT at the detection layer. In these cases, the validation
layer is often activated to discard false-positive detections:
this is particularly evident at low values of Γ or κ, where
the CDT at the detection layer operates at large FPR values.
Figure 4 reports both the HCDTs based on the Lepage CPM
and the Hotelling T-square test at the validation layer. The
FPR vs DD curves of the two HCDTs are very similar,

with a lower number of validation layer activations required
by the Lepage CPM, which is probably more powerful for
validating changes in V . However, as remarked in Section
V-B, the validation layer implementing the Lepage CPM is
far more computationally demanding than the validation layer
based on the HT based on the Hotelling T-square statistic.
The comparison between NP-CUSUM and hierarchical NP-
CUSUM tests in Figure 5 confirms the advantages provided
the additional validation layer when performing nonparametric
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Fig. 5. The FPR vs DD curve computed for the NP-CUSUM and the hierarchical NP-CUSUM tests when κ ∈ {50, 100, 150, 250, 350, 450, 550, 750, 950}
(left); the average number of activations of the validation layer over 1000 samples (right). As in Figure 4, the HCDT achieves a marked improvement over
its single-layer counterpart.

monitoring.

B. Test on an Industrial Dataset

This dataset contains 1000 sequences of photodiodes mea-
surements acquired by an X-ray machine for industrial mon-
itoring and safety inspection. Each sequence includes 21000
samples and has an abrupt change every 3000 samples. These
sequences were prepared to yield changes having similar
magnitude7. In these sequences, changes typically affect also
the shape of the data distribution (e.g., the skewness might
also change and some peaks appear in the pdf after the
change) as shown in the illustrative example in the first two
rows of Figure 6. Note that these histograms refer to the
sequence provided as example in the second row, and that
other sequences of the dataset are generated from different
distributions. No preprocessing on these sequences is needed
since, thanks to the specific acquisition process, data can be
properly described by (1).

In this experiment we considered, as a reference example,
the HCDT exploiting the ICI-based CDT and the Hotelling T-
square statistic (see Section V-B), where we set Γ = 2.5 and
α = 0.05. The initial training sequence contains 160 samples
and this is also the minimum number of samples required in
R to reconfigure the HCDT after each validated change.

The empirical distributions of T̂ and T̂ ∗ for the hierarchical
CDT are reported in the third and fourth rows of Figure 6, and
indicate that the reconfiguration phase of this HCDT was very
successful. In fact, the change-detection performance is stable
and does not degrade when several changes arrive, since the
distribution of detection times and of change-point estimates
are very similar for all changes. Table I confirms that the DD
and the FPR are in practice constant for all the six changes
for the HCDT.

7In particular, if we denote by µ0 and σ0 the mean and the standard
deviation of the empirical distributions before the change (and by µ1 and
σ1 for the post-change mean and standard deviation), we have selected only
changes that satisfy the following conditions: 2 <

(µ0−µ1)
2

σ2
0

< 4 and

2 <
σ2
0

σ2
1
< 4.

TABLE I
CHANGE-DETECTION PERFORMANCE ON THE INDUSTRIAL DATASET

HCDT HCDT
(reconfiguration only)

change nr DD FPR FNR DD FPR FNR
1 246.9 2.2% 0.2% 246.6 11.0% 0.2%
2 230.0 2.9% 0.3% 227.8 11.5% 0.1%
3 238.1 2.6% 0.3% 237.5 13.0% 0.2%
4 227.1 1.6% 0.4% 227.0 11.8% 0.4%
5 234.0 2.6% 0.1% 233.8 10.7% 0.1%
6 239.9 2.3% 0.3% 239.3 12.7% 0.3%

To remark the importance of performing change validation,
we report the performance of the same hierarchical CDT where
the validation layer always confirms a detection. In practice,
this HCDT leverages only the reconfiguration mechanism, and
for this reason we refer to HCDT reconfiguration only in
Figure 6 and Table I. The values of FPR reported Table I
shows that the validation layer at the HCDT has discarded
several several false-positive detections, and the same emerges
when comparing the empirical distribution of HCDT and
HCDT reconfiguration only (third and fifth rows of Figure
6, respectively).

C. Remarks

It is worth mentioning that, given a specific configuration
for a CDT, any HCDT implementing the same CDT at the
detection layer cannot achieve lower DD than its single-
layered counterpart. This clearly emerges in Table I, where
the DD of the HCDT are larger HCDT reconfiguration only,
which does not perform change validation. In fact, introducing
the validation layer might eventually increase (while surely
not decrease) the DD, due to false negatives of the HT or
the request of additional samples in V (see Algorithm 2).
False negatives of the HT might increase the false negative
rate (FNR) of the HCDT that is also possibly larger than its
single-layered counterpart (and in general larger than solutions
not performing change-validation, as shown in Table I8).

8In the industrial dataset sequences are not long enough to avoid false-
negative detections and FNR is sometimes different from zero.
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Fig. 6. First row: empirical distributions of the data-generating process in a sequence from the industrial monitoring dataset (reported in the second row).
Third row: the empirical distribution of the detections T̂ of the hierarchical ICI-based CDT using the HT based on the Hotelling T-square statistic, and the
estimated change-points T̂ ∗ (fourth row). Both these histograms show that the reconfiguration of the HCDT is always successful, since all the changes are
detected with similar performance (check also Table I). The fifth row refers to the same HCDT where the detection layer always confirm the detections raised
by the CDT at the first layer (HCDT, reconfiguration only). In this case, the peaks of the histograms are lower and detections are more spread in stationary
regions, indicating a large number of false-positive detections (as shown in the FPR columns in Table I).

This increase in DD (and FNR) is not in contrast with the
results shown in Figures 3 - 5, because the dramatic reduction
of FPR provided by the validation layer makes it possible
to configure the CDT at the detection layer to yield very
prompt detections, while still guaranteeing acceptable values
of the overall FPR of the HCDT. This clearly emerges in the
comparison of the FPR vs DD curves in Figures 3 - 5.

Another important remark is that, although HTs operate at a
predefined percentage α of false positives (type I errors), their
use at the validation layer typically results in a percentage
of false positives larger than α. This is due to the fact that,
in HCDTs, the hypothesis test is activated on sequences V
that have been previously selected by the detection layer, thus

cannot be considered as drawn from the distribution generating
i.i.d. sequences of i.i.d. samples (where the control over type I
errors applies). Nevertheless, even though α does not exactly
correspond to the probability of type I errors, it still can be
used to tune the HT.

VII. CONCLUSIONS

We have presented a general methodology for designing
hierarchical change-detection tests, powerful change-detection
algorithms characterized by a two-layered architecture that en-
ables the validation of each detected change. Our experiments
demonstrate that introducing such validation phase is often
beneficial and that HCDTs achieve a marked improvement



12

over traditional, nonparametric, CDTs. Furthermore, HCDTs
can track evolving processes since they are naturally able to
reconfigure after each change to detect further departures from
the new, post-change conditions. In a broad sense, HCDTs pro-
vide an abstract processing level to make intelligent systems
adaptive in dynamic and evolving environments.

The combination of a prompt and computationally-light
CDT at the detection layer with a more sophisticated HT
at the validation layer makes HCDTs suitable for operating
on datastreams, addressing the emerging big data scenarios.
Remarkably, the peculiar architecture of HCDTs recalls the
emotional processes in the human brain, where different
regions of the brain, characterized by different activation times
and response accuracies, interact.
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[15] M. Baena-Garcı́a, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldá,
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