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Abstract. We study several aspects concerning slice regular functions mapping the
quaternionic open unit ball B into itself. We characterize these functions in terms
of their Taylor coefficients at the origin and identify them as contractive multipliers
of the Hardy space H2(B). In addition, we formulate and solve the Nevanlinna-Pick
interpolation problem in the class of such functions presenting necessary and sufficient
conditions for the existence and for the uniqueness of a solution. Finally, we describe
all solutions to the problem in the indeterminate case.
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1. Introduction

Let H be the algebra of real quaternions p = x0+ ix1+jx2+kx3 where xℓ ∈ R and i,
j, k are imaginary units such that ij = k, ki = j, jk = i and i2 = j2 = k2 = −1. The
conjugate, the absolute value, the real part and the imaginary part of a quaternion
p are defined as p̄ = x0 − ix1 − jx2 − kx3, |p| =

√
x2
0 + x2

1 + x2
2 + x2

3, Re p = x0 and
Im p = ix1+jx2+kx3, respectively By S we denote the unit sphere of purely imaginary
quaternions. Any I ∈ S is such that I2 = −1 so that the set CI = {x+ Iy : x, y ∈ R}
can be identified with the complex plane. We say that two quaternions p and q are
equivalent if p = h−1qh for some nonzero h ∈ H. Two quaternions p and q are equivalent
if and only if Re p = Re q and |Im p| = |Im q| so the set of all quaternions equivalent to
a given p ∈ H form a 2-sphere which will be denoted by [p].

Since the algebra H is not commutative, function theory over H is quite different
from that over the complex field. There are several notions of regularity for H-valued
functions. The most notable are due to Moisil [19], Fueter [12, 13], and Brackx, De-
langhe, Sommen [8]. More recently, upon refining and developing Cullen’s approach
[11], Gentili and Struppa introduced in [15] the notion of slice regularity which com-
prises quaternionic polynomials and power series with quaternionic coefficients on one
side. We recall it now.

Definition 1.1. Given an open set Ω ⊂ H, a real differentiable function f : Ω → H is
called left slice regular (or just slice regular, in what follows) on Ω if for every I ∈ S,

∂

∂x
fI(x+ Iy) + I

∂

∂y
fI(x+ Iy) ≡ 0, (1.1)

where fI stands for the restriction of f to Ω ∩ CI .

We will denote by R(Ω, Ω̃) the set of all functions f : Ω 7→ Ω̃ ⊂ H which are (left)
slice regular on Ω and we will write R(Ω) in case Ω̃ = H. It is clear that R(Ω) is 
a right quaternionic vector space. As was shown in [15], the identity (3.1) holds for
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a fixed I ∈ S if and only if for all J ∈ S orthogonal to I, there exist complex-valued
holomorphic functions F,G : Ω ∩ CI → CI such that fI(z) = F (z) + G(z)J for all
z = x+ yI ∈ Ω ∩ CI .

The latter result called ”the Splitting Lemma” clarifies the relation between the
restriction of slice regular functions to a complex plane and complex holomorphy. It
allows to get some of the analogs of basic principles of classical complex analysis (e.g.
the uniqueness theorem, the maximum-minimum modulus principle), in the quater-
nionic setting. The theory of slice regular functions is a very active and fast developing
area of analysis; we refer to recent books [10, 14] and references therein.

The parallels with the classical complex analysis become even stronger if one focuses
on functions defined and slice regular on the unit ball B = {p ∈ H : |p| < 1}. Similarly
to the complex case, the functions f ∈ R(B) admit power series expansion

f(p) =

∞∑

k=0

pkfk (fk ∈ H) (1.2)

where the series on the right converges to f uniformly on compact subsets of B; on the
other hand, if lim supk |fk|

1

k ≤ 1, the power series as in (1.2) converges absolutely on B

and represents a slice regular function. We thus may identify the function from R(B)
with power series of the form (1.2) with radius of convergence at least one.

The prominent role played in the classical complex analysis by analytic self-mappings
of the open unit disk is well known. It is thus not surprising that the class R(B,B)
of slice regular self-mappings of the quaternionic unit ball B have already attracted
much attention. A number of results in this direction (e.g., Möbius transformations,
Schwarz Lemma, Bohr’s inequality) are presented in [14, Chapter 9]. Among other
results, we mention realizations for slice regular functions [1], Schwarz-Pick Lemma [6]
and Blaschke products [2].

The present paper initiates the systematic study of interpolation theory in the class
R(B,B). In this context, it is convenient to extend the class R(B,B) by unimodular
constant functions. By the maximum modulus principle, this extended class equals
R(B,B), i.e., it consists of functions f ∈ R(B) such that |f(p)| ≤ 1 for all p ∈ B.
Although the unimodular constant case can be easily singled out, the results for the
extended class R(B,B) look more uniform as we will see below. Our first result (the
analog of the celebrated result of I. Schur [24]) characterizes functions from R(B,B) in
terms of their Taylor coefficients at the origin.

Theorem 1.2. Let S be slice regular on B and let Sn be the lower triangular Toeplitz
matrix given by

Sn =




S0 0 . . . 0

S1 S0
. . .

...
...

. . .
. . . 0

Sn . . . S1 S0


 , where S(p) =

∞∑

k=0

pkSk. (1.3)

The function S belongs to R(B,B) if and only if the matrix In − SnS
∗
n is positive

semidefinite for all integers n ≥ 0.



Here and in what follows, the symbol In denotes the n × n identity matrix. The
notions of adjoint matrices, of Hermitian matrices, of positive semidefinite and positive
definite matrices over H are similar to those over C.

The Hardy space H2(B) of slice regular square summable power series has been re-
cently introduced in [2]. Our second objective is to identify the class R(B,B) with
the unit ball of the multiplier algebra of H2(B). This in turn will enable us to apply
operator-theoretic tools to solve the quaternionic version of the Nevanlinna-Pick in-
terpolation problem (we refer to [21, 20] for the classical origins) which is the main
objective of the present paper and which is formulated as follows.

NP: Given n distinct points p1, . . . , pn ∈ B and given n target values s1, . . . , sn ∈ H,
find a function S ∈ R(B,B) such that

S(pi) = si for i = 1, . . . , n. (1.4)

The interpolation problem is called determinate if it has a unique solution. By the
convexity of the solution set, the indeterminate problem always has infinitely many
solutions. The standard questions arising in any interpolation context are:

(1) Find necessary and sufficient conditions for the problem to have a solution (the
solvability criterion).

(2) Find necessary and sufficient conditions for the problem to have a unique solu-
tion (the determinacy criterion).

(3) Describe all solutions in the indeterminate case.

As in the classical case the answers for these questions can be given in terms of the
Pick matrix P of the problem which we define from the interpolation data as follows:

P =

[
∞∑

k=0

pki (1− sis̄j)p̄
k
j

]n

i,j=1

. (1.5)

We remark that infinite series in (1.5) converge absolutely since |pi| < 1 for all i =
1, . . . , n and that the diagonal entries of P are equal to

Pii =
1− |si|

2

1− |pi|2
for i = 1, . . . , n. (1.6)

Our next result is the following analog of the classical Nevanlinna-Pick theorem.

Theorem 1.3. The problem NP has a solution if and only if the Pick matrix P is
positive semidefinite.

Remark 1.4. It is known that the restriction of any slice regular function S to any
2-sphere is completely determined by the values of S at any two points of this sphere.
Thus, if three interpolation nodes (say, p1, p2, p3) are equivalent, then the value of
s3 must be uniquely specified by s1 and s2 in order the problem to have a solution.
Theorem 1.3 asserts that condition P ≥ 0 specifies s3 in this unique way.

Therefore, once we know that the problem NP is solvable, there is no need to keep
more than two interpolation conditions on the same 2-sphere. For each set of more
than two conditions on the same 2-sphere, we keep any two of them and remove the
others. In this way we reduce the original problem to the one for which

(A) : None three of the interpolation nodes belong to the same 2-sphere.



By Remark 1.4 the reduced problem will have the same solution set as the original one.
Thus it is sufficient to get the uniqueness criterion and the description of the solution
set for the reduced problem which is characterized by the property (A).

Theorem 1.5. Under assumption (A), the problem NP is determinate if and only if
the Pick matrix P of the problem is positive semidefinite and singular.

A fairly explicit formula for this unique solution will be given in Lemma 4.6 below.

The outline of the paper is as follows. In Section 2 we recall some needed background
on slice regular functions and positive kernels. In Section 3 we characterize functions
f ∈ R(B,B) as contractive multipliers of the Hardy space H2(B) of the unit ball and
prove Theorem 1.2. In Section 4 we characterize solutions to the problem NP in
terms of positive kernels of certain structure. Using this characterization, in Section
5 we give a linear fractional parametrization of all solutions to the problem NP in
the indeterminate case and recover the Schwarz-Pick lemma as a consequence of this
description. Finally the determinate case of the problem NP is handled in Section 6.

2. Slice hyperholomorphic functions and kernels

In this section we collect a number of basic facts needed in the sequel. Interpreting
the set R(B) as the right quaternionic vector space of power series (3.4) converging in
B, one can introduce the ring structure on R(B) using the convolution multiplication

g ⋆ f(p) =

∞∑

k=0

pk ·

(
k∑

r=0

grfk−r

)
if f(p) =

∞∑

k=0

pkfk, g(p) =

∞∑

k=0

pkgk (2.1)

which is called (left) slice regular multiplication in the present context. As a convolution
multiplication of the power series over the noncommutative ring, the ⋆-multiplication
is associative and noncommutative. Since the series in (2.1) converge absolutely in B,
we can rearrange the terms getting

g ⋆ f(p) =
∞∑

k=0

pk

(
∞∑

r=0

prgr

)
fk =

∞∑

k=0

pkg(p)fk (2.2)

which can also be written as

g ⋆ f(p) = g(p)

∞∑

k=0

(g(p)−1pg(p))kfk = g(p)f(g(p)−1pg(p)) (g(p) 6= 0), (2.3)

with the understanding that g ⋆ f(p) = 0 whenever g(p) = 0. Observe that the point-
wise formula (2.3) makes sense even if the functions f and g are not in R(B) whereas
formula (2.2) makes sense only for f ∈ R(B). We also observe that g ⋆f(x) = g(x)f(x)
for every x ∈ R.

If the function f ∈ R(B) is as in (2.1), then we can construct its slice regular inverse
f−⋆ as f−⋆(p) = (f c ⋆ f)−1f c(p) where the slice regular conjugate f c of f is defined by

f c(p) =
∞∑

k=0

pkfk if f(p) =
∞∑

k=0

pkfk (2.4)



and f−⋆ is defined in B outside the zeros of f c ⋆ f . If f satisfies f(0) = f0 6= 0, one can
define its ⋆-inverse f−⋆ using the power series

f−⋆(p) =
∑

k=0

pkak, where a0 = f−1
0 and ak = −f−1

0

k∑

j=1

fjak−j (k ≥ 1)

with the coefficients ak defined recursively. If f(p) 6= 0 for all p ∈ B, the latter power
series converges on B. Equalities f−⋆ ⋆ f = f ⋆ f−⋆ ≡ 1 and (g ⋆ f)−⋆ = f−⋆ ⋆ g−⋆ are
immediate. An application of (2.3) shows that

f−⋆(p) = f(p̃)−1, where p̃ = f c(p)−1pf c(p), f(p) =

∞∑

k=0

pkfk. (2.5)

2.1. Right slice regular functions. A real differentiable function f : Ω → H is
called right slice regular on Ω (in notation, f ∈ Rr(Ω)) if for every I ∈ S its restriction
fI to Ω ∩ CI is subject to

∂

∂x
fI(x+ Iy) +

∂

∂y
fI(x+ Iy)I ≡ 0.

The results for right slice regular functions are completely parallel to those for (left)
regular ones. The functions in f ∈ Rr(B) can be identified with power series f(p) =∑∞

k=0 fkp
k converging on B. The set Rr(B) itself is a left quaternionic vector space

and it becomes a ring once we introduce the right slice multiplication

g ⋆r f(p) =

∞∑

k=0

(
k∑

r=0

grfk−r

)
pk if f(p) =

∞∑

k=0

fkp
k, g(p) =

∞∑

k=0

gkp
k

which can be written alternatively (analogously to formulas (2.2) and (2.3)) as

g ⋆r f(p) =

∞∑

k=0

gkf(p)p
k =

{
g(f(p)pg(p)−1)f(p) if f(p) = 0,

0 if f(p) 6= 0.
(2.6)

2.2. Positive kernels. A matrix-valued function K(p, q) : Ω × Ω → Hm×m is called
a positive kernel (in notation, K � 0) if the block matrix [K(qi, qj)]

r

i,j=1 is positive
semidefinite for any choice of finitely many points q1, . . . , qr. Equivalently,

r∑

i,j=1

c∗iK(qi, qj)cj ≥ 0 for all r ∈ N, c1, . . . , cr ∈ H
m, q1, . . . , qr ∈ Ω.

Definition 2.1. We say that the kernel K(p, q) : Ω×Ω → Hm×m is slice sesquiregular
on an open set Ω ⊂ H if it is (left) slice regular in p and right slice regular in q̄.

Several simple statements on positive kernels are collected in the next proposition.

Proposition 2.2. Let Ω ⊂ H and let K : Ω× Ω → Hm×m be a positive kernel. Then

(1) For every A : Ω → Hk×m, the kernel A(p)K(p, q)A(q)∗ is positive on Ω× Ω.
(2) For every positive definite matrix P ∈ Hk×k and any function B : Ω → Hm×k,

the kernel
[

P B(q)∗

B(p) K(p,q)

]
is positive if and only if the Schur complement of P

defined below is positive semidefinite:

K(p, q)− B(p)P−1B(q)∗ � 0.



(3) If in addition, m = 1, Ω is open and contains the origin, and K : Ω × Ω → H

is slice sesquiregular, then for every (left) slice regular function A : Ω → H, the
kernel (A ⋆ K ⋆r A)(p, q) is positive and slice sesquiregular.

Proof. Statement (1) follows by the definition of the positive kernel and the corre-
sponding property of positive semidefinite matrices. Due to factorization

[
P B(q)∗

B(p) K(p, q)

]
= A(p)

[
P 0
0 K(p, q)−B(p)P−1B(q)∗

]
A(q)∗,

where A(p) =
[

Ik 0
B(p)P−1

Im

]
, part (2) follows from part (1) and the fact that the matrix

A(p) is invertible for every p ∈ Ω. For part (3), see [3, Proposition 5.3].

3. The space H2(B) and its contractive multipliers

In this section we show that the class R(B,B) can be identified with the class of
contractive multipliers of the quaternionic Hardy space H2 of the unit ball B. This
space is defined as the space of square summable (left) slice regular power series:

H2 =

{
f(p) =

∞∑

k=0

pkfk : ‖f‖
2
H2 :=

∞∑

k=0

|fk|
2 < ∞

}
. (3.1)

The space H2 is a right quaternionic Hilbert space with inner product

〈f, g〉 =
∞∑

k=0

ḡkfk if f(p) =
∞∑

k=0

pkfk, g(p) =
∞∑

k=0

pkgk. (3.2)

A power-series computation followed by integration of (uniformly converging on com-
pact sets) power series shows that for f as in (3.2) and for a fixed I ∈ S,

∫ 2π

0

|f(reIθ)|2dθ =

∫ 2π

0

(
∞∑

j,k=0

rk+jfke
I(j−k)θfj

)
dθ

=
∞∑

j,k=0

rk+jfk

(∫ 2π

0

eI(j−k)θθ

)
fj = 2π ·

∞∑

n=0

r2n|fn|
2.

The latter formula implies that the norm in H2 can be equivalently defined as

‖f‖2H2 = sup
0≤r<1

1

2π

∫ 2π

0

|f(reIθ)|2dθ (3.3)

where the value of the integral on the right is the same for each I ∈ S. Observe that
the supremum in the last formula can be replaced by the limit as r tends to one.

The space H2 can be alternatively characterized as the reproducing kernel Hilbert
space with reproducing kernel

kH2(p, q) =
∞∑

n=0

pnqn. (3.4)



The latter means that the function kH2(·, q) belongs to H2 for every q ∈ B and for any
function f ∈ H2 as in (3.2),

〈f, kH2(·, q)〉H2 =
∞∑

k=0

qkfk = f(q). (3.5)

Proposition 3.1. The finite collection of functions {kH2(·, qi)} based on distinct points
q1, . . . , qk ∈ B is (right) linearly independent in H2 if and only if none three of these
points belong to the same 2-sphere.

Proof. Let us assume that
∑k

i=1 kH2(p, qi)αi ≡ 0. Substituting the power series expan-
sions (3.4) for k2

H(·, qi) into this identity and equating the corresponding coefficients we

conclude that the columns of the Vandermonde matrix V =
[
q
j−1
i

]k
i,j=1

are linearly de-

pendent which is the case if and only if there are three equivalent points in {q1, . . . , qk};
we refer to [18] for more details. �

Remark 3.2. The linear dependence of three functions kH2(·, pi) based on equivalent
points implies that the restriction of any function f ∈ H2 to any 2-sphere is completely
determined by the values of f at any two points of this sphere. Indeed, if

pi = x+ yIi, (x, y ∈ R, Ii ∈ S, i = 1, 2, 3),

then it is readily checked that

pn3 = pn1 (I1 − I2)
−1(I3 − I2) + pn2 (I1 − I2)

−1(I1 − I3) for all n ≥ 0

which implies the identity

kH2(p, p3) ≡ kH2(p, p1)(I1 − I2)
−1(I3 − I2) + kH2(p, p2)(I1 − I2)

−1(I1 − I3). (3.6)

Combining the latter identity with (3.5) leads us to

f(p3) = 〈f, kH2(·, p3)〉H2 =
〈
f, kH2(·, p1)(I1 − I2)

−1(I3 − I2)
〉
H2

+
〈
f, kH2(·, p2)(I1 − I2)

−1(I1 − I3)
〉
H2

=(I1 − I2)
−1(I3 − I2)f(p1) + (I1 − I2)

−1(I1 − I3)f(p2)

=(I2 − I1)
−1 {(I2 − I3)f(p1) + (I3 − I1)f(p2)} . (3.7)

The latter representation was established in [9] for general slice regular functions on
axially symmetric s-domains. We now pass to the main result of this section.

Theorem 3.3. Let S : B → H. The following are equivalent:

(1) S is slice regular on B and |S(p)| ≤ 1 for all p ∈ B.
(2) The operator MS of left ⋆–multiplication by S

MS : f 7→ S ⋆ f (3.8)

is a contraction on H2, that is, ‖S ⋆ f‖H2 ≤ ‖f‖H2 for all f ∈ H2.
(3) The kernel

KS(p, q) =

∞∑

k=0

pk(1− S(p)S(q))q̄k (3.9)

is positive on B× B.



(4) S ∈ R(B) and In − SnS
∗
n ≥ 0 for all n ≥ 0 where Sn is the matrix given in

(1.3).

Proof. We first remark that the operator MS can be defined via formula (2.2) which
does not assume any regularity of S. However, if MS maps H2 into itself, then the
function S = MS1 belongs to H2 and hence is slice regular.

Proof of (2) =⇒ (3): Let us assume that MS : H2 → H2 is a contraction. Combining
formulas (2.2) and (3.4) gives

MSkH2(·, q) =

∞∑

j=0

pkS(p)q̄k

which together with reproducing kernel property (3.5) implies

(M∗
SkH2(·, q)) (p) = 〈M∗

SkH2(·, q), kH2(·, p)〉H2

= 〈kH2(·, q), S ⋆ kH2(·, p)〉H2 =

∞∑

k=0

pkS(q)q̄k, (3.10)

and subsequently,

〈(I −MSM
∗
S)kH2(·, q), kH2(·, p)〉H2 =

∞∑

k=0

pk(1− S(p)S(q))q̄k.

Therefore, for any function f ∈ H2 of the form

f =

r∑

i=1

kH2(·, pi)αi, r ∈ N, pi ∈ B, αi ∈ H, (3.11)

we have

〈(I −MSM
∗
S)f, f〉H2 = 〈f, f〉H2 − 〈M∗

Sf, M
∗
Sf〉H2

=

r∑

i,j=1

αikH2(pi, pj)αj −

r∑

i,j=1

∞∑

k=0

αip
k
i S(pi)S(pj)p

k
i αj

=
r∑

i,j=1

αiKS(pi, pj)αj. (3.12)

Since MS : H2 → H2 is a contraction, the inner product on the left hand side of (3.12)
is nonnegative. Consequently, the quadratic form on the right hand side of (3.12) is
nonnegative so that KS is a positive kernel.

Proof of (3) =⇒ (2): Let us assume that the kernel (3.9) is positive on B × B.
Observing that the function on the right side of (3.10) belongs to H2 (for each fixed

q ∈ B) with H2-norm equal |S(q)|2

1−|q|2
, we define the operator T : H2 → H2 by letting

T : kH2(·, q) 7→

∞∑

k=0

pkS(q)q̄k (that is, using the formula (3.8) obtained earlier for M∗
S)

with subsequent extention by linearity to functions f of the form (3.11) and then, since
such functions are dense in H2, extending by continuity to all of H2. Due to this density,
the calculation (3.12) (with T instead of M∗

S) shows that T is a contraction on H2. We



then calculate its adjoint getting T ∗f = S ⋆ f = MSf . Since T is a contraction on H2,
its adjoint MS is a contraction as well.

Proof of (3) =⇒ (1): If the kernel KS is positive on B× B, we have, in particular,

0 ≤ KS(q, q) =
∞∑

k=0

qk(1− |S(q)|2)q̄k =
1− |S(q)|2

1− |q|2

and therefore, |S(q)| ≤ 1 for every q ∈ B. On the other hand, by implication (3) =⇒
(2), the operator MS maps H2 into itself and thus S = MS1 belongs to H2 ⊂ R(B).

Proof of (1) =⇒ (2): We now assume that S is in R(B,B), i.e., S is slice regular and
with |S(p)| ≤ 1 for all p ∈ B. By formulas (3.3) and (2.3), we have for every f ∈ H2

and every I ∈ S,

‖f ⋆ S‖2H2 = sup
0≤r<1

1

2π

∫ 2π

0

|f ⋆ S(reIθ)|2dθ

= sup
0≤r<1

1

2π

∫ 2π

0

|f(reIθ)S(f(reIθ)−1reIθf(reIθ)|2dθ

≤ sup
0≤r<1

1

2π

∫ 2π

0

|f(reIθ)|2dθ = ‖f‖2H2. (3.13)

Let Sc and f c be the slice conjugates of S and f defined via formula (2.4). Due to
obvious relations (f c)c = f, ‖f‖H2 = ‖f c‖H2, (f ⋆ g)c = gc ⋆ f c holding for all
f, g ∈ H2, we have from (3.13)

‖Sc ⋆ f c‖H2 = ‖(f ⋆ S)c‖H2 = ‖f ⋆ S‖H2 ≤ ‖f‖H2 = ‖f c‖H2 . (3.14)

Therefore the operator MSc : f 7→ Sc ⋆ f is a contraction on H2. By implications
(2) =⇒ (3) =⇒ (1) which have been already proved, we conclude that Sc ∈ R(B,B).
We then apply (3.14) to Sc rather than to S concluding that the operator M(Sc)c = MS

is a contraction on H2.

Proof of (2) =⇒ (4): The proof is similar to that of (2) ⇐⇒ (4) with the only differ-
ence that instead of functions of the form (3.11) we will use slice regular polynomials,
namely the polynomials with coefficients written on the right. We first assume (2).
The calculation analogous to that in (3.10) shows that for S with the Taylor series as
in (1.3),

M∗
S : pk 7→

k∑

j=0

pjSk−j for all k ≥ 0

which extends by linearity to

M∗
S : f(p) =

n∑

k=0

pkfk 7→

n∑

k=0

pk

(
n∑

j=k

Sj−kfj

)
.

Letting f :=
[
f0 f1 . . . fn

]⊤
we get the following analog of (3.12) in terms of the

matrix Sn from (1.3):

‖f‖2H2 − ‖M∗
Sf‖

2
H2 =

n∑

k=0

|fk|
2 −

n∑

k=0

∣∣∣∣∣

n∑

j=k

Sj−kfj

∣∣∣∣∣

2

= f∗ (In − SnS
∗
n) f . (3.15)



If MS is a contraction on H2, the latter expression is nonnegative for every vector
f ∈ Hn+1 and therefore the matrix In − SnS

∗
n is positive semidefinite. Conversely, if

this matrix is positive semidefinite for each n ≥ 1, then equality (3.15) shows that M∗
S

acts contractively (in H2-metric) on any polynomial. Since the polynomials are dense
in H2, the operators M∗

S and MS are contractions on the whole H2. �

We point out several consequences of the last theorem.

Corollary 3.4. Let S : V → H be such that the kernel (3.9) is positive on V × V ,
where V is an open subset of B. Then S extends to a function from R(B,B).

Proof. The proof is the same as that of implication (3) =⇒ (2) in Theorem 3.3 once
we observe that the functions of the form (3.11) with pi ∈ V (rather than in B) are
still dense in H2. �

In analogy to the classical case we may introduce the Hardy space H∞(B) of bounded
slice regular functions on B with norm ‖S‖∞ = supp∈B |S(p)| < ∞ and the spaceM(H2)
of bounded multipliers, that is, the functions S : B → H such that the operator MS

of left ⋆–multiplication (3.8) is bounded on H2. By the very definition, R(B,B) is the
closed unit ball of H∞(B). The following conclusion is a consequence of Theorem 3.3.

Corollary 3.5. H∞(B) = M(H2) and ‖S‖∞ = ‖MS‖ for every S ∈ H∞(B).

Proof. If S ∈ H∞(B) with ‖S‖∞ = r > 0, then the scaled function 1
r
S belongs to

R(B,B) and by Theorem 3.3, the operator M 1

r
S : H2 → H2 is a contraction. Since

M 1

r
S = 1

r
MS, we conclude that ‖MS‖ = ‖rM 1

r
S‖ ≤ r and thus, S ∈ M(H2) with

‖MS‖ ≤ ‖S‖∞. In particular, H∞(B) ⊂ M(H2). The reverse inclusion and the reverse
norm inequality is established in much the same way. �

As another consequence of Theorem 3.3, we get the necessity part in Theorem 1.3.

Corollary 3.6. If the problem NP has a solution, then the Pick matrix P is positive
semidefinite.

Proof. Let S be a solution to the problem NP. Since S ∈ R(B,B), the kernel KS is
positive on B × B. Then the matrix [KS(pi, pj)]

n

i,j=1 is positive semidefinite. Since S

satisfies the interpolation conditions (1.4),

KS(pi, pj) =

∞∑

k=0

pki (1− S(pi)S(pj))p
k
j =

∞∑

k=0

pki (1− sisj)p
k
j . (3.16)

Comparing (3.16) with (1.5) we see that the matrix [KS(pi, pj)]
n

i,j=1 is equal to the Pick
matrix P which is therefore positive semidefinite.

4. Characterization of solutions to the problem NP in terms of
positive kernels

The classical complex-valued Nevanlinna-Pick problem has been studied using dif-
ferent approaches, including in particular, the iterative Schur algorithm [20], the Com-
mutatnt Lifting approach [23], the Grassmanian approach [5], Potapov’s method of
fundamental matrix inequalities [22] and its far-reaching extension the Abstract Inter-
polation Problem approach [16, 17]. Each method has its strengths and weaknesses; so



it would be interesting to clarify how each of them extends to the quaternionic setting.
The method we chose for the present paper has its origins in [22]. The first step is
carried out in the next theorem which characterizes solutions of the problem NP in
terms of positive kernels of special structure.

Theorem 4.1. A function S : B → H is a solution to the problem NP if and only if
the following kernel is positive on B× B:

K̂S(p, q) :=

[
P BS(q)∗

BS(p) KS(p, q)

]
� 0, (4.1)

where P is given in (1.5) and where

BS(p) =
[
BS

1 (p) BS
2 (p) . . . BS

n (p)
]

(4.2)

=
∞∑

k=0

pk
[
(1− S(p)s̄1)p̄

k
1 (1− S(p)s̄2)p̄

k
2 . . . (1− S(p)s̄n)p̄

k
n

]
.

Proof. For the necessity part we modify the argument used in the previous section. If
S is a solution to the problem NP, it belongs to R(B,B) and therefore, the kernel KS

is positive on B×B. Let us pick finitely many points q1, . . . , qr ∈ B and let us consider

the (positive semidefinite) matrix R = [KS(ζi, ζj)]
(n+1)r
i,j=1 based on the (n + 1)r points

ζj chosen as follows:

ζj =

{
pi if j = imod(n+ 1),
qℓ if j = (n+ 1)ℓ.

Since S satisfies interpolation conditions (1.4), the entries KS(pi, pj) in R are given as
in (3.16). On the other hand, in view of (4.2),

KS(qi, pj) =

∞∑

k=0

qki (1− S(qi)S(pj))p
k
j =

∞∑

k=0

qki (1− Sisj)p
k
j = BS

j (qi). (4.3)

A careful but straightforward verification based on (3.16) and (4.3) confirms that the

matrix R = [KS(ζi, ζj)]
(n+1)r
i,j=1 can be written in the block-matrix form as

R =
[
K̂S(qi, qj)

]r
i,j=1

where K̂ is the kernel defined in (4.1). Since R is positive semidefinite and the points
q1, . . . , r were chosen arbitrarily in B, the kernel (4.1) is positive on B× B.

The proof of the sufficiency part is based on the operator-theoretic argument involv-
ing Schur complements and multiplication operators which is adapted from [4, 7]. Let
us assume that the kernel (4.1) is positive on B×B. Then in particular, the kernel KS

is positive on B × B and therefore, S ∈ R(B,B). Furthermore, it follows from (4.1)
that the following 2× 2 matrix valued kernel is positive

Ki(p, q) =

[
Pii BS

i (q)
∗

BS
i (p) KS(p, q)

]
� 0 (4.4)



for each i = 1, . . . , n. The positivity condition (4.4) is equivalent to the positivity of
the operator

Pi =

[
Pii M∗

BS
i

MBS
i

I −MSM
∗
S

]
:

[
H

H2

]
→

[
H

H2

]
(4.5)

due to the identity
〈
Pi

[
α

kH2(·, q)β

]
,

[
α′

kH2(·, p)β ′

]〉

H⊕H2

=

〈
Ki(p, q)

[
α

β

]
,

[
α′

β ′

]〉

H2

holding for all α, α′, β, β ′ ∈ H and all p, q ∈ B, and since linear combinations of vectors
of the form α⊕ kH2(·, q)β (α, β ∈ H, q ∈ B) are dense in H⊕ H2.

We next fix i ∈ {1, . . . , n} and introduce two operators T1, T2 : H → H2 as follows:

T1α = kH2(·, pi)α and T2α =:

{
kH2(·, s−1

i pisi)s̄iα, if si 6= 0,

0, if si = 0.
(4.6)

Since kH2 is the reproducing kernel for H2 we have

T ∗
1 T1 − T ∗

2 T2 =

{
kH2(pi, pi)− sikH2(s−1

i pisi, s
−1
i pisi)s̄i =

1−|si|
2

1−|pi|2
if si 6= 0,

kH2(pi, pi) =
1

1−|pi|2
if si = 0,

which being compared with (1.6) gives

T ∗
1 T1 − T ∗

2 T2 = Pii.

We also observe from (4.2) that the function BS
i can be written as

BS
i = kH2(·, pi)− S ⋆ kH2(·, s−1

i pisi)s̄i,

so that MBS
i
= T1 −MST2. Therefore, we can rewrite (4.5) as

Pi =

[
T ∗
1 T1 − T ∗

2 T2 T ∗
1 − T ∗

2MS

T1 −MST2 I −MSM
∗
S

]
.

The operator Pi equals the Schur complement of the left top block in the extended
operator

P̂i =




I T2 M∗
S

T ∗
2 T ∗

1 T1 T ∗
1

MS T1 I


 :



H2

H

H2


→



H2

H

H2


 ,

and therefore, Pi ≥ 0 if and only if P̂i ≥ 0. But then the Schur complement of the

right bottom block in P̂i is also positive semidefinite:
[
I −M∗

SMS T2 −M∗
ST1

T ∗
2 − T ∗

1MS T ∗
1 T1 − T ∗

1 T1

]
=

[
I −M∗

SMS T2 −M∗
ST1

T ∗
2 − T ∗

1MS 0

]
≥ 0

from which we conclude T2 − M∗
ST1 = 0. We next use (3.10) and definitions (4.6) to

rewrite the last equality as

0 ≡ T2 −M∗
ST1 = kH2(p, s−1

i pisi)s̄i −

∞∑

k=0

pkS(pi)p̄
k
i

and finally, letting p = 0 we get s̄i = S(pi) which is equivalent to (1.4). Thus, S solves
the problem NP. �



Remark 4.2. The positivity condition (4.1) implies P ≥ 0; thus Theorem 4.1 contains
the necessity part of Theorem 1.3.

Remark 4.3. The Pick matrix P of the problem NP satisfies the Stein equality

P − TPT ∗ = EE∗ −NN∗ (4.7)

where

T =




p1 0
. . .

0 pn


 , E =




1
...
1


 , N =




s1
...
sn


 . (4.8)

The entry-wise verification of (4.7) is immediate. In fact, if T is any square matrix
with right spectrum contained in B, then the Stein equation P − TPT ∗ = D has
a unique solution given by converging series P =

∑
k≥0 T

kDT ∗k. In particular, if
D = EE∗ −NN∗, this series produces P as in (1.5).

Remark 4.4. Let us note that the function (4.2) can be written in terms of (4.8) as

BS(p) =
∞∑

k=0

pk (E∗ − S(p)N∗) T ∗k =
[
1 −S(p)

]
⋆

(
∞∑

k=0

pk
[
E∗

N∗

]
T ∗k

)
(4.9)

Therefore, all the entries in the kernel inequality (4.1) are defined in terms of given E,
N , T and an unknown function S. The description of all functions S satisfying the
latter inequality does not rely on the specific formulas (1.5), (4.8); it will be established
under the assumptions that (1) the right spectrum of T is contained in B and (2) the
unique solution P of the Stein equation (4.7) is positive semidefinite.

We conclude this section with two results which substantially simplify the subsequent
analysis. The first one is about the ”consistency” of interpolation data set.

Lemma 4.5. Let us assume that the Pick matrix P (1.5) is positive semidefinite and
that three interpolation nodes, say p1, p2 and p3 belong to the same 2-sphere:

pi = x+ yIi, (x, y ∈ R, Ii ∈ S, i = 1, 2, 3). (4.10)

Then the three top rows in P are left linearly dependent and the target values s1, s2
and s3 are related by

s3 = (I2 − I1)
−1 {(I2 − I3)s1 + (I3 − I1)s2} . (4.11)

Proof. Let us define two positive semidefinite matrices

P1 =
∞∑

k=0

T kEE∗T ∗k and P2 =
∞∑

k=0

T kNN∗T ∗k

and observe that

P1 = TP1T
∗ + EE∗, P2 = TP2T

∗ +NN∗ and P = P1 − P2. (4.12)

The matrix P1 can be written more explicitly as

P1 = [kH2(pi, pj)]
n

i,j=1 = [〈kH2(·, pj), kH2(·, pi)〉]
n

i,j=1



and is, therefore, the gram matrix of the set {kH2(·, pi)}
n
i=1. Due to identity (3.6), the

three top rows in P are left linearly dependent and moreover,

xP1 = 0, where x =
[
(I1 − I2)

−1(I2 − I3) (I1 − I2)
−1(I3 − I1) 1 0 . . . 0

]
.

Since P = P1 − P2 ≥ 0, it also follows that xP2 = 0 and therefore, by the second
relation in (4.12), xN = 0. Substituting explicit formulas for x and N into the latter
equality gives (4.11). �

Comparing (4.11) and (3.7) shows that condition P ≥ 0 indeed guarantees that the
target value s3 at p2 for the unknown slice regular interpolant is consistent with its
values at p1 and p2. This advances us toward establishing the ”if” part in Theorem
1.3: now it suffices to prove Theorem 1.3 under the assumption (A).

Lemma 4.6. Let us assume that (A) holds and the Pick matrix P ≥ 0 is singular.
Then the problem NP has at most one solution which, if exists, is given by the formula

S(p) = R ⋆ Q(p)−⋆, (4.13)

where

R =
n∑

i=1

kH2(·, pi)αi, Q =
∑

i:si 6=0

kH2(·, s−1
i pisi)siαi (4.14)

and where y =

[ α1

...
αn

]
∈ Hn is any nonzero vector such that Py = 0.

Proof. Let us assume that S is a solution to the problem NP. Then the matrix
[

P BS(p)∗

BS(p) 1−|S(p)|2

1−|p|2

]
≥ 0 for all p ∈ B,

is positive semidefinite for every p ∈ B. From this positivity and from the equality
Py = 0 we conclude that BS(p)y ≡ 0. Making use of the formula (4.2) for BS, we
write the latter identity more explicitly as

0 ≡

n∑

i=1

∞∑

k=0

pk (1− S(p)si) p
k
iαi =

n∑

i=0

kH2(p, pi)αi −
∑

si 6=0

∞∑

k=0

pkS(p)
(
s−1
i pisi

)k
siαi

= R(p)− S ⋆ Q(p)

where the last step follows by formulas (4.14) and the definition of the ⋆-product. Thus
any solution S to the problem NP must satisfy

S ⋆ Q(p) = R(p) for all p ∈ B. (4.15)

By Proposition 3.1 and due to assumption (A), the function R is not vanishing identi-
cally. Then it follows from (4.15) that Q is not vanishing identically as well. Therefore,
the formula (4.13) holds (first on an open subset of B and then by continuity on the
whole B, since S is assumed to be in R(B,B)). So the solution (if exists) is unique, and
this uniqueness implies in particular, that the representation (4.13) does not depend
on the particular choice of y ∈ KerP . �

It seems tempting to verify directly that the function S defined in (4.13) belongs
to R(B,B) and satisfies interpolation conditions (1.4). The first part can be achieved
easily using the extension arguments (similar to those used in the proof of Theorem 5.2



below). Verification of interpolation equalities is much harder, so the existence part
will be proven in Section 6 using the reduction method.

5. The indeterminate case

In this section we handle the case where the Pick matrix P of the problem NP is
positive definite. By Lemma 4.5 this may occur only if none three of the interpolation
nodes belong to the same 2-sphere. On the other hand, Lemma 4.6 tells us that this
is the only option for the indeterminacy. We will show that in this case the problem
NP indeed has infinitely many solutions and we will describe all solutions in terms of
a linear fractional formula. Thus, assuming that P is positive definite and making use
of notation (4.8), we introduce the 2× 2 matrix-valued function

Θ(p) = I2 + (p− 1)

∞∑

k=0

pk
[
E∗

N∗

]
T ∗kP−1(In − T )−1

[
E −N

]
(5.1)

which is clearly slice regular in B.

Proposition 5.1. Under assumptions (4.7) and (4.8) in Remark 4.3, let Θ be defined
by formula (5.1) and let

Θ(z) =

[
Θ11(p) Θ12(p)
Θ21(p) Θ22(p)

]
and J =

[
1 0
0 −1

]
. (5.2)

Then the kernel

KΘ,J(p, q) =
∞∑

k=0

pk (J −Θ(p)JΘ(q)∗) q̄k (5.3)

is positive on B×B. Furthermore, |Θ22(p)| > 1 for every p ∈ B and the functions Θ−⋆
22

and Θ−⋆
22 ⋆Θ21 are both in R(B,B).

Proof. A straightforward computation relying solely on the identity (4.8) shows that

KΘ,J(p, q) =

(
∞∑

k=0

pk
[
E∗

N∗

]
T ∗k

)
P−1

(
∞∑

k=0

T k
[
E N

]
q̄k

)
(5.4)

from which the positivity of KΘ,J follows. The bottom diagonal entry K22
Θ,J of this

kernel equals (as is easily seen from (5.2) and (5.3))

K22
Θ,J(p, q) =

∞∑

k=0

pk
(
−1−Θ21(p)Θ21(q) + Θ22(p)Θ22(q)

)
q̄k (5.5)

and is also positive. Therefore,

K22
Θ,J(p, p) =

∞∑

k=0

pk
(
−1 − |Θ21(p)|

2 + |Θ22(p)|
2
)
p̄k

=
−1− |Θ21(p)|

2 + |Θ22(p)|
2

1− |p|2
≥ 0

and in particular, |Θ22(p)| > 1 for all p ∈ B. Therefore, its slice regular inverse
f = Θ−⋆

22 is defined on B as well as the function g = f ⋆ Θ21 = Θ−⋆
22 ⋆ Θ21. Using for



now this compact notation, observe that the kernel f ⋆ K22
Θ,J ⋆r f is positive on B × B

by Proposition 2.2 (part (3)). According to (5.5), this kernel equals

f(p) ⋆

(
∞∑

k=0

pk
(
−1 −Θ21(p)Θ21(q) + Θ22(p)Θ22(q)

)
q̄k

)
⋆r f(q)

=
∞∑

k=0

pkf(p)
(
−1−Θ21(p)Θ21(q) + Θ22(p)Θ22(q)

)
f(q)q̄k

=
∞∑

k=0

pk
(
1− f(p)f(q)− g(p)g(q)

)
q̄k � 0,

and thus, both f and g are in R(B, B). 

Theorem 5.2. Let us assume that P > 0 and let Θ =
[
Θ11 Θ12

Θ21 Θ22

]
be defined as in (5.1).

Then all solutions S to the problem NP are given by the formula

S = (Θ11 ⋆ E +Θ12) ⋆ (Θ21 ⋆ E +Θ22)
−⋆ (5.6)

with the free parameter E running through the class R(B,B).

Proof. By Proposition 5.1, the function Θ22 is left ⋆–invertible and Θ−⋆
22 ⋆Θ21 ∈ R(B,B).

It is seen from formula (5.1) that Θ is continuous on the closed unit ball B and that
Θ(1) = I2. Therefore Θ21(1) = 0, Θ22(1) = 1 and therefore Θ−⋆

22 ⋆ Θ21 is not a
unimodular constant. Hence, |Θ−⋆

22 ⋆ Θ21(p)| < 1 by the maximum modulus principle.
Therefore, |Θ−⋆

22 ⋆Θ21 ⋆ E(p)| < 1 for all p ∈ B and for any E ∈ R(B,B). Consequently,
the function

Θ21 ⋆ E +Θ22 = Θ22 ⋆
(
Θ−⋆

22 ⋆Θ21 ⋆ E + 1
)

is ⋆–invertible and the formula (5.6) makes sense for every E ∈ R(B,B).

By Theorem 4.1, a function S : B → H solves the problem NP if and only if the
kernel (4.1) is positive, which in turn is equivalent (by part (3) in Proposition 2.2) to

K̃S(p, q) := KS(p, q)−BS(p)P−1BS(q)∗ � 0 (p, q ∈ B). (5.7)

Multiplying both parts in (5.4) by
[
1 −S

]
on the left and by its adjoint on the right

and taking into account (4.9) we get

[
1 −S(p)

]
⋆ KΘ,J(p, q) ⋆r

[
1

−S(q)

]
= BS(p)P−1BS(q)∗.

On the other hand, the kernel KS in (3.9) can be written as

KS(p, q) =
[
1 −S(p)

]
⋆

(
∞∑

k=0

pkJq̄k

)
⋆r

[
1

−S(q)

]
.



Substituting the two latter representations into the right side of (5.7) and taking into
account the formula (5.4) for KΘ,J gives

K̃S(p, q) =
[
1 −S(p)

]
⋆

(
∞∑

k=0

pkΘ(p)JΘ(q)∗q̄k

)
⋆r

[
1

−S(q)

]

=
∞∑

k=0

pk
[
1 −S(p)

]
⋆Θ(p)JΘ(q)∗ ⋆r

[
1

−S(q)

]
q̄k � 0. (5.8)

It remains to show that S satisfies inequality (5.8) if and only if it is of the form (5.4)
for some E ∈ R(B,B). For the ”only if” direction, let us assume that (5.8) holds and
let us introduce the functions

u = Θ11 − S ⋆Θ21 and v = Θ12 − S ⋆Θ22 (5.9)

so that
[
u v

]
=
[
1 −S

]
⋆ Θ. Substituting the latter equality into (5.8) and making

use of the formula for J in (5.2) we get

K̃S(p, q) :=

∞∑

k=0

pk(u(p)u(q)− v(p)v(q))q̄k � 0 (p, q ∈ B). (5.10)

Since Θ11(1) = 1, Θ21(1) = 0 (by formula (5.1)) and since |S(p)| ≤ 1 for all p ∈ B, it
follows that

lim sup
r→1−

|u(r)| ≥ lim sup
r→1−

(|Θ11(r)| − |S(r)| · |Θ21(r)|) = 1.

By continuity, u is not vanishing in a real interval [r1, r2] near 1 and therefore, by com-
pactness, on an open set V ⊂ B containing this interval. Therefore we may introduce
the function E := u−⋆ ⋆ v and rewrite (5.10) (at least for p, q ∈ V ) in terms of this
function as

u(p) ⋆

(
∞∑

k=0

pk
(
1− E(p)E(q)

)
q̄k

)
⋆r u(q) � 0 (p, q ∈ V ).

The inverses u−⋆ and u−⋆r exist on V and we conclude by part (3) in Proposition 2.2
that

∞∑

k=0

pk(1− E(p)E(q))q̄k � 0 (p, q ∈ V ).

By Remark 3.4 E can be extended to a function from R(B,B), which we still denote
by E . By the uniqueness theorem, the equality

v = u ⋆ E (5.11)

holds on the whole B. Substituting equalities (5.9) into (5.11) gives

Θ12 − S ⋆Θ22 = (Θ11 − S ⋆Θ21) ⋆ E

which can be written as

S ⋆ (Θ21 ⋆ E +Θ22) = Θ11 ⋆ E +Θ12. (5.12)

Since the function Θ21 ⋆ E + Θ22 is slice invertible for any E ∈ S, the latter equality
implies (5.6).



Conversely, if S is of the form (5.6) for some parameter E ∈ R(B,B), then equiva-
lently, S and E are related as in (5.12). This means that u and v defined as in (5.9)

satisfy equality (5.11). Then the formula (5.10) for K̃S takes the form

K̃S(p, q) =

∞∑

k=0

pku(p) (1− E(p)E(q)∗)u(q)q̄k = u(p) ⋆ KE(p, q) ⋆r u(q)

and is positive by Proposition 2.2 (part (3)), since E belongs to R(B,B) so that
KE(p, q) � 0. Thus, inequality (5.8) holds which completes the proof. �

5.1. Schwarz-Pick inequalities. The goal of this subsection is to demonstrate that
even the single-point version of Theorem 2.6 provides some non-trivial information.

Let us observe that in case n = 1, the formulas (1.5) and (4.8) amount to P = 1−|s1|2

1−|p1|2
,

T = p1, E = 1, N = s1 so that the formula (5.1) simplifies to

Θ(p) = I2 + (p− 1)
∞∑

k=0

pk
[
1
s1

]
pk1

1− |p1|
2

1− |s1|2
(1− p1)

−1
[
1 −s1

]
. (5.13)

Upon specifying Theorem 2.6 to the single-point case and we conclude: Given p1, s1 ∈
B, all functions S ∈ R(B,B) mapping p1 to s1 are given by the formula (5.6) where E
is the parameter from R(B,B) and where Θ is given as in (5.13).

We next observe that for any S of the form (5.6) with Θ given by (5.13),

(S(p)− s1) ⋆ (1− s1 ⋆ S(p))
−⋆ =(p− p1) ⋆ (1− pp1)

−⋆γ

⋆ (E(p)− s1) ⋆ (1− s1 ⋆ E(p))
−⋆ (5.14)

where we have set for short γ = (1 − p1)(1 − p1)
−1. Indeed, upon substituting the

linear fractional formula (5.6) for S into the left hand side of (5.14) and canceling out
the factors (Θ21 ⋆ E +Θ22)

−⋆ we get

(S − s1) ⋆ (1− s1 ⋆ S)
−⋆ =(Θ11 ⋆ E +Θ12 − s1 ⋆ (Θ21 ⋆ E +Θ22))

⋆ (Θ21 ⋆ E +Θ22 − s1 ⋆ (Θ11 ⋆ E +Θ12))
−⋆

=
[
1 −s1

]
⋆Θ ⋆

[
E
1

]
⋆

([
−s1 1

]
⋆Θ ⋆

[
E
1

])−⋆

. (5.15)

Furthermore, it follows from (5.13) by direct verifications that

[
1 −s1

]
⋆Θ ⋆

[
E
1

]
(p) = (p− p1) ⋆ (1− pp1)

−⋆γ ⋆ (E(p)− s1),

[
−s1 1

]
⋆Θ ⋆

[
E
1

]
(p) = 1− s1 ⋆ E(p),

and substituting the two last equalities into (5.15) gives (5.14). The Schwarz-Pick
lemma for slice regular functions established recently in [6] is an immediate consequence
of (5.14).

Lemma 5.3. For any S ∈ R(B,B) and p1 ∈ B,

|(S(p)− S(p1)) ⋆ (1− S(p1) ⋆ S(p))
−⋆| ≤ |(p− p1) ⋆ (1− pp1)

−⋆| (5.16)

with equality holding if and only if S is an automorphism of B.



Proof. The function S solves the interpolation problem with the single interpolation
node p1 and the target value s1 := S(p1). Therefore, S is of the form (5.6) for some
E ∈ R(B,B), and identity (5.14) holds with S(p1) instead of s1. Since E ∈ R(B,B),
we have

|(E(p)− s1) ⋆ (1− s1 ⋆ E(p))
−⋆| ≤ 1

with equality if and only if |E(p)| = 1; see [2]. Since |γ| = |(1 − p1)(1 − p)−1)| = 1,
we conclude from (5.14) that inequality (5.16) holds with equality if and only if (by
the maximum modulus principle) E is a unimodular constant function. The latter is
equivalent (as it is easily seen again from (5.14)) to S be an automorphism of the unit
ball. �

Remark 5.4. Letting s1 = 0 in formula (5.14) we get Schwarz lemma: If S ∈ R(B,B)
vanishes at p0 ∈ B, then S is equal to the Blaschke factor multiplied by some function
E ∈ R(B,B).

6. The determinate case

Still assuming that none three of interpolation nodes belong to the same 2-sphere,
we will assume in addition that the Pick matrix P of the problem has rank d < n.
In fact, it can be shown that any d × d principal submatrix of P is positive definite.
Instead of proving this result which is beyond the scope of this paper, we will permute
indices (if necessary) and assume without loss of generality that the leading principal
d× d submatrix of P is invertible. In order to keep notation from the previous section

we proceed slightly differently. We extend the problem NP to the problem ÑP by k

additional conditions

S(pn+i) = sn+i (i = 1, . . . , d) (6.1)

still assuming that no three interpolation nodes from the extended set {p1, . . . , pn+d}

belong to the same 2-sphere, that the Pick matrix of the extended problem ÑP (with
interpolation conditions (1.4) and (6.1)) is positive semidefinite

P =

[
P P ∗

1

P1 P2

]
=

[
∞∑

k=0

pki (1− sis̄j)p̄
k
j

]n+d

i,j=1

≥ 0, (6.2)

and that

rankP = rankP = n. (6.3)

Theorem 6.1. Under assumptions (6.2) and (6.3), the problem ÑP has a unique
solution.

Proof. Let Θ be defined as in (5.1); the formula makes sense since P is invertible. Any

solution S to the extended problem ÑP (if exists) is also a solution to the problem
NP, so that it is necessarily of the form (5.6) for some parameter E ∈ R(B,B). The
functions S and E are related as in (5.12) or (which is the same) as in (5.11), where
u and v are defined as in (5.9). Evaluating (5.11) at p = pn+i implies that S of
the form (5.6) satisfies the additional interpolation conditions (6.1) if and only if the
corresponding parameter E satisfies conditions

v(pn+i) = u ⋆ E(pn+i) = u(pn+i)E(u(pn+i)
−1pn+iu(pn+i)) (6.4)



for i = 1, . . . , d, where according to (5.9) and (6.1),

un+i := u(pn+i) = Θ11(pn+i)− sn+iΘ21(s
−1
n+ipn+isn+i), (6.5)

vn+i := v(pn+i) = Θ12(pn+i)− sn+iΘ22(s
−1
n+ipn+isn+i). (6.6)

Let us assume for a moment that the numbers defined in (6.5), (6.6) are subject to
relations

|un+i| = |un+i| 6= 0, u−1
n+ivn+i = u−1

n+jvn+j = γ ∈ ∂B (6.7)

for all i, j = 1, . . . , k. We then conclude from (6.4) that in order for S to be a solution

to the extended problem ÑP, it is necessary and sufficient that S is of the form (5.6)
for some E ∈ R(B,B) such that

E(u−1
n+ipn+iun+i) = γ for i = 1, . . . , d.

Since |γ| = 1, it then follows by the maximum modulus principle that a unique E ∈
R(B,B) satisfying the latter conditions is the constant function E ≡ γ.

We now verify (6.7). Let, in analogy to (4.8),

T̃ =




pn+1 0
. . .

0 pn+d


 , Ẽ =




1
...
1


 , Ñ =




sn+1
...

sn+d


 (6.8)

so that the block entries P1 and P2 in (6.2) can be alternatively defined as unique
solutions to the Stein equations

P1 − T̃P1T
∗ = ẼE∗ − ÑN∗, P2 − T̃P2T̃

∗ = ẼẼ∗ − ÑÑ∗. (6.9)

Equating the i-th rows in the first of the two last equalities we conclude that the i-th
row P1i of P1 satisfies

P1i − pn+iP1iT
∗ = E∗ − sn+iN

∗ (6.10)

and is recovered from this equality by the formula

P1i =

∞∑

k=0

pkn+i(E
∗ − sn+iN

∗)T ∗k (6.11)

Similarly, one can see from the second equality in (6.9) that the ij-entry of P2 satisfies
the linear equation

P2,ij − pn+iP2,ijpn+j = 1− sn+isn+j. (6.12)

We now plug in formula (5.1) into (6.5) and (6.6) and then make use of (6.11) to get

un+i = 1 + (pn+i − 1) ·

∞∑

k=0

pkn+i (E
∗ − sn+iN

∗) T ∗kP−1(I − T )−1E

= 1 + (pn+i − 1) · P1iP
−1(I − T )−1E, (6.13)

vn+i = −sn+i − (pn+i − 1) ·

∞∑

k=0

pkn+i (E
∗ − sn+iN

∗)T ∗kP−1(I − T )−1N

= −sn+i − (pn+i − 1) · P1iP
−1(I − T )−1N, (6.14)

so that
[
un+i vn+i

]
=
[
1 −sn+i

]
+ (pn+i − 1) · P1iP

−1(I − T )−1
[
E N

]



We next use the two latter formulas and the formula (5.2) for J to compute

un+iun+j − vn+ivn+j =
[
un+i vn+i

]
J

[
un+j

vn+j

]

= 1− sn+isn+j + (pn+i − 1) · P1iP
−1(I − T )−1(E −Nsn+j)

+ (E∗ − sn+iN
∗)(I − T ∗)−1P−1P ∗

1,j(pn+j − 1)

+ (pn+i − 1) · P1iP
−1(I − T )−1 (EE∗ −NN∗)

× (I − T ∗)−1P−1P ∗
1j(pn+j − 1).

The latter expression can be further simplified due to (6.10) and the equality

P−1(I − T )−1 (EE∗ −NN∗) (I − T ∗)−1P−1 = (I − T ∗)−1(P−1 − T ∗P−1T )(I − T )−1

which is a fairly straightforward consequence of the Stein identity (4.7), as follows:

un+iun+j − vn+ivn+j

= 1− sn+isn+j + (pn+i − 1) · P1iP
−1(I − T )−1(P ∗

ij − TP ∗
1jpn+j)

+ (P1i − pn+iP1iT
∗)(I − T ∗)−1P−1P ∗

1,j(pn+j − 1)

+ (pn+i − 1) · P1i(I − T ∗)−1(P−1 − T ∗P−1T )(I − T )−1P ∗
1j(pn+j − 1).

Further simplification follows thanks to (6.12) and the equality

(P1i − pn+iP1iT
∗)(I − T ∗)−1 = pn+iP1i − (pn+i − 1)P1i(I − T ∗)−1.

We get

un+iun+j − vn+ivn+j =1− sn+isn+j + pn+iP1iP
−1P ∗

1j(pn+j − 1)

+ (pn+i − 1)P1iP
−1P ∗

1jpn+j

− (pn+i − 1)P1iP
−1P ∗

1j(pn+j − 1)

=P2,ij − pn+iP2,ijpn+j + pn+iP1iP
−1P ∗

1jpn+j − P1iP
−1P ∗

1j

=P2,ij − P1iP
−1P ∗

1j − pn+i(P2,ij − P1iP
−1P ∗

1j)pn+j. (6.15)

Due to factorization

P =

[
In 0

P1P
−1 Id

] [
P 0
0 P2 − P1P

−1P ∗
1

] [
In P−1P1

0 Id

]
,

the rank condition (6.3) implies P2 = P1P
−1P ∗

1 or entry-wise,

P2,ij = P1iP
−1P1j for i, j = 1, . . . , d

which together with (6.15) implies

un+iun+j = vn+ivn+j for i, j = 1, . . . , d. (6.16)

Letting i = j in the latter equalities gives |un+i| = |vn+i| for i = 1, . . . , d. To show that
un+i and vn+i are nonzero we will argue via contradiction. Assuming that

un+i = vn+i = 0. (6.17)



for some i ∈ {1, . . . , d} we then get

0 =un+iE
∗ + vn+iN

∗

=E∗ − sn+iN
∗ + (pn+i − 1) · P1iP

−1(I − T )−1(EE∗ −NN∗)

=P1i − pn+iP1iT
∗ + (pn+i − 1) · P1iP

−1(I − T )−1(P − TPT ∗)

=
(
pn+iP1iP

−1 − P1iP
−1T

)
(I − T )−1P (I − T ∗). (6.18)

We remark that the second equality in the latter computation follows from formulas
(6.13), (6.14), the third equality is a consequence of relations (4.7) and (6.10) while the
last equality is easily verified directly. Since the matrices P and I − T are invertible
(recall that P is Hermitian and T is diagonal), it follows from (6.18) that

pn+iP1iP
−1 = P1iP

−1T. (6.19)

Substituting the latter equality into (6.13), (6.14) results in

un+i1 = 1 + P1iP
−1T (I − T )−1E − P1iP

−1(I − T )−1E = 1− P1iP
−1E

which being combined with the assumption (6.17), leads us to

P1iP
−1E = 1. (6.20)

Let ej denote the i-th column in the identity matrix In. Multiplying both sides in
(6.18) by ej on the right and making use of the diagonal structure (4.8) of T we get

pn+iP1iP
−1ej = P1iP

−1ejpj for j = 1, . . . , n. (6.21)

Therefore,

P1iP
−1ej = 0, whenever pj 6∈ [pn+i]. (6.22)

Due to the assumption that no three points from the set {p1, . . . , pn+d} belong to the
same 2-sphere, the intersection of the set {p1, . . . , pn} with the 2-sphere [pn+i] is either
empty or a singleton. We will show that either case leads to a contradiction.

Case 1. If pj 6∈ [pn+i] for all j = 1, . . . , n, then it follows from (6.22) that P1iP
−1 = 0

which contradicts to (6.20).

Case 2. Without loss of generality we assume that p1 ∈ [pn+i] and pj 6∈ [pn+i] for
j = 2, . . . , n. Therefore, equalities (6.22) hold for all j = 2, . . . , n and then we conclude
from (6.20)

1 = P1iP
−1E = P1iP

−1(e1 + e2 + . . .+ en) = P1iP
−1e1.

Due to this latter relation, the equality (6.21) for j = 1 simplifies to pn+i = p1 which
contradicts to the assumption that all interpolation nodes are distinct.

The derived contradictions show that equalities (6.17) cannot be in force which
completes the proof of the first part in (6.7). Once we know that un+1 6= 0, the second
part in (6.7) follows from (6.16). �
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