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Abstract. The S-functional calculus is a functional calculus for (n + 1)-tuples of
non necessarily commuting operators that can be considered a higher dimensional
version of the classical Riesz-Dunford functional calculus for a single operator. In this
last calculus, the resolvent equation plays an important role in the proof of several
results. Associated with the S-functional calculus there are two resolvent operators:
the left S−1

L
(s, T ) and the right one S−1

R
(s, T ), where s = (s0, s1, . . . , sn) ∈ Rn+1

and T = (T0, T1, . . . , Tn) is an (n+ 1)-tuple of non commuting operators. These two
S-resolvent operators satisfy the S-resolvent equations S−1

L
(s, T )s− TS−1

L
(s, T ) = I,

and sS−1

R
(s, T )−S−1

R
(s, T )T = I, respectively, where I denotes the identity operator.

These equations allows to prove some properties of the S-functional calculus. In this
paper we prove a new resolvent equation for the S-functional calculus which is the 
analogue of the classical resolvent equation. It is interesting to note that the equation 
involves both the left and the right S-resolvent operators simultaneously.

1. Introduction

The S-resolvent operators are a key tool in the definition of the higher dimensional 
version of the Riesz-Dunford functional calculus called S-functional calculus. This
calculus works for (n+1)-tuples (T0, T1, . . . , Tn) of non necessarily commuting operators 
and is based on the so-called S-spectrum, see [14, 17]. In the case of a single operator 
the S-functional calculus reduces to the Riesz-Dunford functional calculus (see [21, 32]).
When the operators (T0, T1, . . . , Tn) commute among themselves, this calculus admits a 
commutative version called SC-functional calculus. In this case the S-resolvent operator 
and the S-spectrum have a simpler expression, see [15].
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The class of functions on which this calculus is based is the so called set of slice
hyperholomorphic (or slice monogenic) functions which are defined on subsets of the
Euclidean space Rn+1 and have values in the Clifford algebra Rn.
For more details on the S-functional calculus and the function theory on which it is
based see the the monograph [19].
As it happens for the classical theory of monogenic functions (see [10, 18, 20, 25]),
also in the class of slice hyperholomorphic functions there is the notion of left as well
as of right hyperholomorphicity. But despite what happens in the monogenic case,
for slice hyperholomorphic functions the Cauchy formulas for left and for right slice
hyperholomorphic functions have two different kernels; moreover each of these kernels
can be written in two different ways.
The calculus admits a quaternionic version, which works for quaternionic linear op-
erators and is based on slice hyperholomorphic (or slice regular) functions defined on
subsets of the real algebra of quaternions H with values in the quaternions, see [11, 13].
To explain our new result and its consequences, let us focus, at the moment, on the
quaternionic setting which is simpler to illustrate.
Let us denote by V a two sided quaternionic Banach space and let T : V → V be a
bounded right (or left) linear operator. We recall that the S-spectrum is defined as

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not invertible},

where s = s0+ s1i+ s2j+ s3k is a quaternion, Re(s) = s0, |s|2 = s20+ s21+ s22+ s23. The
left and the right S-resolvent operators are defined as

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), s ∈ H \ σS(T ) (1.1)

and

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1, s ∈ H \ σS(T ), (1.2)

respectively. The left S-resolvent operator satisfies the equation

S−1
L (s, T )s− TS−1

L (s, T ) = I, s ∈ H \ σS(T ), (1.3)

and the right S-resolvent operator satisfies

sS−1
R (s, T )− S−1

R (s, T )T = I, s ∈ H \ σS(T ). (1.4)

Consider the complex plane CI := R + IR, for I ∈ S, where S is the unit sphere of
purely imaginary quaternions. Observe that CI can be identified with a complex plane
since I2 = −1 for every I ∈ S. Let U ⊂ H be a suitable domain that contains the
S-spectrum of T . We define for left slice hyperholomorphic functions f : U → H (see
the precise definition in the sequel) the quaternionic functional calculus as

f(T ) =
1

2π

∫

∂(U∩CI )

S−1
L (s, T ) dsI f(s), (1.5)

where dsI = −dsI, and for right slice hyperholomorphic functions f : U → H, we
define

f(T ) =
1

2π

∫

∂(U∩CI)

f(s) dsI S−1
R (s, T ). (1.6)

These definitions are well posed since the integrals do not depend neither on the open
set U and nor on the complex plane CI and can be extended to the case of (n+1)-tuples
of operators, using slice hyperholomorphic functions with values in a Clifford algebra.



Using a similar notion of hyperholomorphicity and the S-spectrum in [23] the authors
introduce the continuous functional calculus in a quaternionic Hilbert space.
The S-resolvent equations (1.3), (1.4) are useful to prove several properties of the S-
functional calculus. However it is natural to ask if it is possible to obtain an analog of
the classical resolvent equation

(λI −G)−1(µI −G)−1 =
(λI −G)−1 − (µI −G)−1

µ− λ
, λ, µ ∈ C \ σ(G), (1.7)

where G is a complex operator on a Banach space, which might be useful to prove
other properties of the calculus. The main goal of this paper it to show that (1.7) can
be generalized in this non commutative setting, but it involves both the left and the
right S-resolvent operators. Precisely, we will show that

S−1
R (s, T )S−1

L (p, T ) = [[S−1
R (s, T )− S−1

L (p, T )]p

− s[S−1
R (s, T )− S−1

L (p, T )]](p2 − 2s0p+ |s|2)−1,

for s, p ∈ H \ σS(T ).
It is also worthwhile to mention that the S-resolvent operator plays an important role in
the definition of the quaternionic version of the counterpart of the operator (I− zA)−1

in the realization s(z) = D+ zC(I − zA)−1B for Schur multipliers, see [2]. The reader
is referred to [2, 3, 4] for Schur analysis in the slice hyperholomorphic setting and to
[1] and [7] for an overview of Schur analysis in the complex setting.

It is interesting to note that in literature there are other cases in which the authors
consider two resolvent operators. We mention in particular the case of Schur analysis
in the setting of upper triangular operators and in the setting of compact Riemann sur-
faces. In the first case, the role of complex numbers is played by diagonal operators and
there are two “point evaluations” of an operator at a diagonal, one left and one right,
each corresponding to an associated resolvent operator; see [8, (2.4)-(2.6), p. 256], but
the resolvent equation is related just with one resolvent at a time; see [8, Corollary
2.9, p 266]. In the setting of compact Riemann surfaces (see [35, 29] for the general
setting) there is a resolvent operator associated to every meromorphic function on the
given Riemann surface X (see [9, (4.1), p. 307], and one needs two such operators,
associated to a pair of functions which generate the field of meromorphic functions on
X , to study underlying spaces; see [9, §5]. The same resolvent equation is satisfied by
all the resolvent operators; see [9, Theorem 4.2, p. 309].

In this setting both S-resolvent operators enter the resolvent equation.
The plan of the paper is as follows.
In Section 2 we recall some preliminary results on slice hyperholomorphic functions.
In Section 3 we state and prove the new resolvent equation and we show that there are
two possible versions which are equivalent. We prove our results for the S-functional
calculus for (n+1)-tuples of non commuting operators and we show some applications
of the resolvent equation.
In Section 4 we consider the commutative version of the S-functional calculus, the so
called SC-functional calculus and we reformulate our main results for the quaternionic
functional calculus. Since the proofs follow the lines of the ones for the case of (n+1)-
tuples of non commuting operators we will omit them in both cases.



2. Preliminary results

In this section we recall the notion of slice hyperholomorphic functions and their Cauchy
formulas, see [19].
Let Rn be the real Clifford algebra over n imaginary units e1, . . . , en satisfying the
relations eiej + ejei = 0, i 6= j, e2i = −1. An element in the Clifford algebra will
be denoted by

∑

A eAxA where A = {i1 . . . ir} ∈ P{1, 2, . . . , n}, i1 < . . . < ir is a
multi-index and eA = ei1ei2 . . . eir , e∅ = 1. An element (x0, x1, . . . , xn) ∈ Rn+1 will be
identified with the element x = x0 + x = x0 +

∑n

j=1 xjej ∈ Rn called paravector and

the real part x0 of x will also be denoted by Re(x). The norm of x ∈ Rn+1 is defined as
|x|2 = x2

0+x2
1+ . . .+x2

n. The conjugate of x is defined by x̄ = x0−x = x0−
∑n

j=1 xjej.
Let

S = {x = e1x1 + . . .+ enxn | x2
1 + . . .+ x2

n = 1};

for I ∈ S we obviously have I2 = −1. Given an element x = x0 + x ∈ Rn+1 let us set
Ix = x/|x| if x 6= 0, and given an element x ∈ Rn+1, the set

[x] := {y ∈ R
n+1 : y = x0 + I|x|, I ∈ S}

is an (n − 1)-dimensional sphere in Rn+1. The vector space R + IR passing through
1 and I ∈ S will be denoted by CI and an element belonging to CI will be indicated
by u + Iv, for u, v ∈ R. With an abuse of notation we will write x ∈ Rn+1. Thus,
if U ⊆ Rn+1 is an open set, a function f : U ⊆ Rn+1 → Rn can be interpreted as a
function of the paravector x.

Definition 2.1 (Slice hyperholomorphic functions). Let U ⊆ Rn+1 be an open set and
let f : U → Rn be a real differentiable function. Let I ∈ S and let fI be the restriction
of f to the complex plane CI .
The function f is said to be left slice hyperholomorphic (or slice monogenic) if, for
every I ∈ S, on U ∩ CI it satisfies

1

2

(

∂

∂u
fI(u+ Iv) + I

∂

∂v
fI(u+ Iv)

)

= 0.

We will denote by SM(U) the set of left slice hyperholomorhic functions on the open
set U or by SML(U) when confusion may arise.
The function f is said to be right slice hyperholomorphic (or right slice monogenic) if,
for every I ∈ S, on U ∩ CI , it satisfies

1

2

(

∂

∂u
fI(u+ Iv) +

∂

∂v
fI(u+ Iv)I

)

= 0.

We will denote by SMR(U) the set of right slice hyperholomorphic functions on the
open set U .

Slice hyperholomorphic functions possess good properties when they are defined on
suitable domains which are introduced in the following definition.

Definition 2.2 (Axially symmetric slice domain). Let U be a domain in Rn+1. We
say that U is a slice domain (s-domain for short) if U ∩R is non empty and if U ∩CI

is a domain in CI for all I ∈ S. We say that U is axially symmetric if, for all x ∈ U ,
the (n− 1)-sphere [x] is contained in U .



Definition 2.3 (Cauchy kernel for left slice hyperholomorphic functions). Let x, s ∈
Rn+1 be such that x 6∈ [s]. Let S−1

L (s, x) be the function defined by

S−1
L (s, x) := −(x2 − 2xRe[s] + |s|2)−1(x− s). (2.8)

We say that S−1
L (s, x) is the Cauchy kernel (for left slice hyperholomorphic functions)

written in form I.

Proposition 2.4. Suppose that x and s ∈ Rn+1 are such that x 6∈ [s]. The following
identity holds:

− (x− s̄)(x2 − 2Re(s)x+ |s|2)−1 = (s2 − 2Re(x)s+ |x|2)−1(s− x̄). (2.9)

Remark 2.5. By Proposition 2.4 S−1
L (s, x) can also be written as

S−1
L (s, x) := (s− x̄)(s2 − 2Re(x)s+ |x|2)−1. (2.10)

In this case, we will say S−1
L (s, x) is written in form II.

Proposition 2.6. The function S−1
L (s, x) is left slice hyperholomorphic in the variable

x and right slice hyperholomorphic in the variable s for x 6∈ [s].

The case of the Cauchy kernel for right slice hyperholomorphic functions is similar.

Definition 2.7 (Cauchy kernel for right slice hyperholomorphic functions). Let x, s ∈
Rn+1 be such that x 6∈ [s]. The Cauchy kernel S−1

R (s, x) for right slice hyperholomorphic
functions is defined by

S−1
R (s, x) := −(x− s̄)(x2 − 2Re(s)x+ |s|2)−1. (2.11)

We say that S−1
R (s, x) is written in form I.

Remark 2.8. An analog of Proposition 2.4 holds in fact:

− (x− s̄)(x2 − 2Re(s)x+ |s|2)−1 = (s2 − 2Re(x)s+ |x|2)−1(s− x̄), (2.12)

for x, s ∈ Rn+1 such that x 6∈ [s].
Thus S−1

R (s, x) can be written as

S−1
R (s, x) = (s2 − 2Re(x)s + |x|2)−1(s− x̄),

and in this case we say that S−1
R (s, x) is written in form II.

Theorem 2.9 (The Cauchy formula with slice hyperholomorphic kernel). Let U ⊂
Rn+1 be an axially symmetric s-domain. Suppose that ∂(U ∩ CI) is a finite union of
continuously differentiable Jordan curves for every I ∈ S. Set dsI = −dsI for I ∈ S.

• If f is a (left) slice hyperholomorphic function on a set that contains U then

f(x) =
1

2π

∫

∂(U∩CI )

S−1
L (s, x)dsIf(s) (2.13)

and the integral does not depend on U and on the imaginary unit I ∈ S.
• If f is a right slice hyperholomorphic function on a set that contains U , then

f(x) =
1

2π

∫

∂(U∩CI )

f(s)dsIS
−1
R (s, x) (2.14)

and the integral does not depend on U and on the imaginary unit I ∈ S.



The above Cauchy formulas are the starting point to define the S-functional calculus.
A crucial fact of slice hyperholomorphic functions in the representation formula (also
called structure formula). This formula will be used in the sequel to give applications
of the new resolvent equation.

Theorem 2.10 (Representation Formula). Let U be an axially symmetric s-domain
U ⊆ H.

• Let f be a (left) slice hyperholomorphic function on U . Choose any J ∈ S.
Then the following equality holds for all x = u+ Iv ∈ U :

f(u+ Iv) =
1

2

[

f(u+ Jv) + f(u− Jv)
]

+ I
1

2

[

J [f(u− Jv)− f(u+ Jv)]
]

. (2.15)

Moreover, for all u, v ∈ R such that u+vS ⊆ U , there exist Rn-valued functions
α, β depending on u, v only such that for all K ∈ S

1

2

[

f(u+Kv) + f(u−Kv)
]

= α(u, v) and
1

2

[

K[f(u−Kv)− f(u+Kv)]
]

= β(u, v).

(2.16)
• Let f be a right slice hyperholomorphic function on U . Choose any J ∈ S. Then
the following equality holds for all x = u+ Iv ∈ U :

f(u+ Iv) =
1

2

[

f(u+ Jv) + f(u− Jv)
]

+
1

2

[

[f(u− Jv)− f(u+ Jv)]J
]

I. (2.17)

Moreover, for all u, v ∈ R such that u+vS ⊆ U , there exist Rn-valued functions
α, β depending on u, v only such that for all K ∈ S

1

2

[

f(u+Kv) + f(u−Kv)
]

= α(u, v) and
1

2

[

[f(u−Kv)− f(u+Kv)]K
]

= β(u, v).

(2.18)

3. The case of several non commuting operators

In the sequel, we will consider a Banach space V over R with norm ‖·‖. It is possible to
endow V with an operation of multiplication by elements of Rn which gives a two-sided
module over Rn. A two-sided module V over Rn is called a Banach module over Rn,
if there exists a constant C ≥ 1 such that ‖va‖ ≤ C‖v‖|a| and ‖av‖ ≤ C|a|‖v‖ for all
v ∈ V and a ∈ Rn. By Vn we denote V ⊗ Rn over Rn; Vn turns out to be a two-sided
Banach module .
An element in Vn is of the type

∑

A vA ⊗ eA (where A = i1 . . . ir, iℓ ∈ {1, 2, . . . , n},
i1 < . . . < ir is a multi-index). The multiplications of an element v ∈ Vn with a scalar
a ∈ Rn are defined by va =

∑

A vA ⊗ (eAa) and av =
∑

A vA ⊗ (aeA). For simplicity,
we will write

∑

A vAeA instead of
∑

A vA ⊗ eA. Finally, we define ‖v‖2Vn
=

∑

A ‖vA‖2V .
We denote by B(V ) the space of bounded R-homomorphisms of the Banach space V
to itself endowed with the natural norm denoted by ‖ · ‖B(V ). Given TA ∈ B(V ), we
can introduce the operator T =

∑

A TAeA and its action on v =
∑

vBeB ∈ Vn as
T (v) =

∑

A,B TA(vB)eAeB. The operator T is a right-module homomorphism which is
a bounded linear map on Vn.
In the sequel, we will consider operators of the form T = T0 +

∑n

j=1 ejTj where Tj ∈
B(V ) for j = 0, 1, . . . , n. The subset of such operators in B(Vn) will be denoted by
B0,1(Vn). We define ‖T‖B0,1(Vn) =

∑

j ‖Tj‖B(V ). Note that, in the sequel, we will omit

the subscript B0,1(Vn) in the norm of an operator. Note also that ‖TS‖ ≤ ‖T‖‖S‖.



Definition 3.1. Let T ∈ B0,1(Vn). We define the left Cauchy kernel operator series or
S-resolvent operator series as

S−1
L (s, T ) =

∑

n≥0

T ns−1−n, (3.19)

and the right Cauchy kernel operator series as

S−1
R (s, T ) =

∑

n≥0

s−1−nT n, (3.20)

for ‖T‖ < |s|.

The Cauchy kernel operator series are the power series expansion of the S-resolvent
operators. Their sum is computed in the following result:

Theorem 3.2. Let T ∈ B0,1(Vn) and let s ∈ H. Then, for ‖T‖ < |s|, we have
∑

m≥0

Tms−1−m = −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), (3.21)

∑

m≥0

s−1−mTm = −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1. (3.22)

We observe that the sum of the above series are independent of the fact that the
components of the paravector operator T commute. Moreover the operators on right
hand sides of (3.21) and (3.22) are defined on a subset of Rn+1 that is larger then
{s ∈ Rn+1 : ‖T‖ < |s|}. This fact suggests the definition of S-spectrum, of S-resolvent
set and of S-resolvent operators.

Definition 3.3 (The S-spectrum and the S-resolvent set). Let T ∈ B0,1(Vn). We
define the S-spectrum σS(T ) of T as:

σS(T ) = {s ∈ R
n+1 : T 2 − 2 Re(s)T + |s|2I is not invertible}.

The S-resolvent set ρS(T ) is defined by

ρS(T ) = R
n+1 \ σS(T ).

Definition 3.4 (The S-resolvent operators). Let T ∈ B0,1(Vn) and s ∈ ρS(T ). We
define the left S-resolvent operator as

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI), (3.23)

and the right S-resolvent operator as

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re(s)T + |s|2I)−1. (3.24)

The operators S−1
L (s, T ) and S−1

R (s, T ) satisfy the equations below, see [19]:

Theorem 3.5. Let T ∈ B0,1(Vn) and let s ∈ ρS(T ). Then, the left S-resolvent operator
satisfies the equation

S−1
L (s, T )s− TS−1

L (s, T ) = I, (3.25)

and the right S-resolvent operator satisfies the equation

sS−1
R (s, T )− S−1

R (s, T )T = I. (3.26)



Our goal is to establish the analogue of the classical resolvent equation. To this end,
we need some preliminary results. A crucial fact is the following Theorem 3.6 that
will give us the hint to discover what is the structure of the resolvent equation in this
non commutative setting at least in the case the S-resolvent operators are expressed in
power series.

Theorem 3.6. Let A, B ∈ B(Vn) and let s, p ∈ Rn+1. Then, for |p| < |s|, we have
∑

m≥0

pmAs−1−m = −(p2 − 2Re(s)p+ |s|2)−1(pA−As), (3.27)

and
∑

m≥0

s−1−mBpm = −(Bp− sB)(p2 − 2Re(s)p+ |s|2)−1. (3.28)

Moreover, (3.28) can be written as
∑

m≥0

s−1−mBpm = (s2 − 2Re(p)s+ |p|2)−1(sB − Bp). (3.29)

Proof. To verify (3.27) define

X := (p2 − 2Re(s)p+ |s|2)
∑

m≥0

pmAs−1−m

and observe that

X =
∑

m≥0

(p2 − 2Re(s)p+ |s|2)pmAs−1−m

= p2As−1 − 2Re(s)pAs−1 + |s|2As−1

+ p3As−2 − 2Re(s)p2As−2 + |s|2pAs−2

+ p4As−3 − 2Re(s)p3As−3 + |s|2p2As−3 + . . .

= −(pA−As) +
∑

m≥2

pmA(s2 − 2Re(s)s+ |s|2)s−1−m.

(3.30)

Since any paravector s satisfies

s2 − 2Re(s)s+ |s|2 = 0

we deduce that

X = (p2 − 2Re(s)p+ |s|2)
∑

m≥0

pmAs−1−m = −(pA− As)

and the statement follows. The equality in (3.28) can be verified by setting

Y :=
∑

m≥0

s−1−mBpm(p2 − 2Re(s)p+ |s|2)

and observing that

Y = −(Bp− sB) +
∑

m≥0

s−1−mBpm(p2 − 2Re(p)p+ |p|2) = −(Bp− sB).

With similar computations one can verify equality (3.29).



Corollary 3.7. Let A, B ∈ B(Vn) and let s, p be paravectors. Then, for |p| < |s|, the
following equations hold

m
∑

j=0

pjAs−1−j = −(p2 − 2Re(s)p+ |s|2)−1(pA−As)

+ pm+1(p2 − 2Re(s)p+ |s|2)−1(pA− As)s−1−m,

(3.31)

and
m
∑

j=0

s−1−jBpj = −(Bp− sB)(p2 − 2Re(s)p+ |s|2)−1

+ s−1−m(Bp− sB)(p2 − 2Re(s)p+ |s|2)−1pm+1.

(3.32)

Moreover, (3.32) can also written as
m
∑

j=0

s−1−jBpj = (s2 − 2Re(p)s+ |p|2)−1(sB − Bp)

− s−1−m(s2 − 2Re(p)s+ |p|2)−1(sB −Bp)pm+1.

(3.33)

Proof. Identity (3.31) follows from
m
∑

j=0

pjAs−1−j =
∞
∑

j=0

pjAs−1−j −
∞
∑

j=m+1

pjAs−1−j ,

that can be written as
m
∑

j=0

pjAs−1−j =

∞
∑

j=0

pjAs−1−j − pm+1
(

∞
∑

j=0

pjAs−1−j
)

s−1−m,

but now we use (3.27) to get the result. Identity (3.32) and (3.33) follow with similar
computations. �

We now prove the new S-resolvent equation. In the proof we first consider the case in
which the S-resolvent operators admit the power series expansion

S−1
L (s, T ) =

∑

m≥0

Tms−1−m, S−1
R (s, T ) =

∑

m≥0

s−1−mTm,

that is for ‖T‖ < |s|. Then we verify that such equation holds in general.

Theorem 3.8. Let T ∈ B0,1(Vn) and let s and p ∈ ρS(T ). Then we have

S−1
R (s, T )S−1

L (p, T ) = ((S−1
R (s, T )−S−1

L (p, T ))p−s(S−1
R (s, T )−S−1

L (p, T )))(p2−2s0p+|s|2)−1.

(3.34)

Moreover, the resolvent equation can also be written as

S−1
R (s, T )S−1

L (p, T ) = (s2−2p0s+|p|2)−1(s(S−1
R (s, T )−S−1

L (p, T ))−(S−1
R (s, T )−S−1

L (p, T ))p).
(3.35)

Proof. We prove the theorem in two steps.
STEP I. First we assume that the S-resolvent operators are expressed in power series.
If ‖T‖ < |p| < |s| then the S-resolvent operators have power series expansion and so

S−1
R (s, T )S−1

L (p, T ) = (
∑

j≥0

s−1−jT j)(
∑

j≥0

T jp−1−j). (3.36)



By setting

Λm(s, p;T ) :=

m
∑

j=0

s−1−j(Tmp−1−m)pj

(3.36) can be written as

S−1
R (s, T )S−1

L (p, T ) =
∑

m≥0

Λm(s, p;T ).

Formula (3.32) with B = Tmp−1−m and some computations give

Λm(s, p;T ) = −((Tmp−1−m)p− s(Tmp−1−m))(p2 − 2Re(s)p+ |s|2)−1

+ s−1−m((Tmp−1−m)p− s(Tmp−1−m))(p2 − 2Re(s)p+ |s|2)−1pm+1

= −[(Tmp−1−m)p− s(Tmp−1−m)

+ (s−1−mTm)p− s(s−1−mTm)](p2 − 2Re(s)p+ |s|2)−1.

(3.37)

From the chain of equalities

S−1
R (s, T )S−1

L (p, T ) =
∑

m≥0

Λm(s, p;T )

= −[(
∑

m≥0

(Tmp−1−m)p− s
∑

m≥0

(Tmp−1−m))]

+ (
∑

m≥0

s−1−mTm)p− s
∑

m≥0

s−1−mTm)](p2 − 2Re(s)p+ |s|2)−1

(3.38)

(3.34) follows.
To prove that the resolvent equation can be written in the second form (3.35) observe
that Λm(s, p;T ) can also be written using (3.29) as

Λm(s, p;T ) = (s2 − 2Re(p)s+ |p|2)−1(s(Tmp−1−m)− (Tmp−1−m)p)

− s−1−m(s2 − 2Re(p)s+ |p|2)−1(s(Tmp−1−m)− (Tmp−1−m)p)pm+1.
(3.39)

so taking the sum
∑

m≥0 Λm(s, p;T ) we get the second version of the resolvent equation.

STEP II. We prove that, for s and p ∈ ρS(T ), (3.34) and (3.35) hold with S−1
R (s, T )

and S−1
L (p, T ) defined in (3.23) and (3.24), respectively.

Let us verify (3.34). Since s and p ∈ ρS(T ) the left and right S-resolvent operators
defined by (3.23) and (3.24) satisfy the left and the right resolvent equations (3.25)
and (3.26), respectively. To verify (3.34) we have to show that S−1

R (s, T )S−1
L (p, T )(p2−

2s0p+ |s|2) equals

(S−1
R (s, T )− S−1

L (p, T ))p− s(S−1
R (s, T )− S−1

L (p, T )).

To do this we use the left and the right S-resolvent equations (3.25), (3.26). Indeed,
using the left S-resolvent equation, written as

S−1
L (p, T )p = TS−1

L (p, T ) + I,



we have

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0p+ |s|2) = S−1
R (s, T )[S−1

L (p, T )p]p

− 2s0S
−1
R (s, T )S−1

L (p, T )p+ |s|2S−1
R (s, T )S−1

L (p, T )

= S−1
R (s, T )[TS−1

L (p, T ) + I]p− 2s0S
−1
R (s, T )[TS−1

L (p, T ) + I]

+ |s|2S−1
R (s, T )S−1

L (p, T )

(3.40)

and using again the left S-resolvent equation

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0p+ |s|2) = S−1
R (s, T )T [TS−1

L (p, T ) + I] + S−1
R (s, T )p

− 2s0S
−1
R (s, T )[TS−1

L (p, T ) + I] + |s|2S−1
R (s, T )S−1

L (p, T )
(3.41)

we obtain

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0p+ |s|2)

= [S−1
R (s, T )T ]TS−1

L (p, T ) + S−1
R (s, T )T ] + S−1

R (s, T )p

− 2s0[[S
−1
R (s, T )T ]S−1

L (p, T ) + S−1
R (s, T )]

+ |s|2S−1
R (s, T )S−1

L (p, T ).

(3.42)

Now we use the right S-resolvent equation

S−1
R (s, T )T = sS−1

R (s, T )− I

we obtain

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0p+ |s|2)

= [[sS−1
R (s, T )− I]T ]S−1

L (p, T ) + sS−1
R (s, T )− I] + S−1

R (s, T )p

− 2s0[[sS
−1
R (s, T )− I]S−1

L (p, T ) + S−1
R (s, T )]

+ |s|2S−1
R (s, T )S−1

L (p, T ).

(3.43)

Iterating the use of the above right S-resolvent equation we get

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0p+ |s|2)

= [s[sS−1
R (s, T )− I]− T ]S−1

L (p, T ) + sS−1
R (s, T )− I] + S−1

R (s, T )p

− 2s0[[sS
−1
R (s, T )S−1

L (p, T )− S−1
L (p, T )] + S−1

R (s, T )]

+ |s|2S−1
R (s, T )S−1

L (p, T ),

(3.44)

which leads to

S−1
R (s, T )S−1

L (p, T )(p2 − 2s0p+ |s|2)

= (s2 − 2s0s+ |s|2)S−1
R (s, T )S−1

L (p, T )

+ [S−1
R (s, T )− S−1

L (p, T )]p− s[S−1
R (s, T )− S−1

L (p, T )],

(3.45)

and since s2 − 2s0s + |s|2 = 0 we obtain (3.34). With similar computations we can
show that also (3.35) holds. �

We now observe that in the commutative case besides the resolvent equation, also the
following relation between the resolvent operators

(λI −G)−1(µI −G)−1 = (µI −G)−1(λI −G)−1, for λ, µ ∈ ρ(G)



holds. In the non commutative case we cannot aspect the validity of such a relation,
however we will show that an analogous equation holds for the so-called pseudo S-
resolvent operators defined below.

Definition 3.9. Let T ∈ B0,1(Vn). We define, for s ∈ ρS(T ), the pseudo S-resolvent
operator of T is defined as

Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1.

With the above definition the resolvents S−1
L (s, T ) and S−1

R (s, T ) become

S−1
L (s, T ) := −Qs(T )(T − sI), s ∈ ρS(T ), (3.46)

and
S−1
R (s, T ) := −(T − sI)Qs(T ), s ∈ ρS(T ). (3.47)

We now prove the following:

Theorem 3.10. Let T ∈ B0,1(Vn) and let s, p ∈ ρS(T ). Then we have

(T − sI)Qs(T )Qp(T )(T − pI) = (T − sI)Qp(T )Qs(T )(T − pI).

Proof. It follows from the fact that

(T 2 − 2Re(s)T + |s|2I)(T 2 − 2Re(p)T + |p|2I)

= (T 2 − 2Re(p)T + |p|2I)(T 2 − 2Re(s)T + |s|2I).
(3.48)

Since s, p ∈ ρS(T ) we can take the inverse and the statement follows.

Remark 3.11. Observe that the function FT (s, p) defined by

FT (s, p) := S−1
R (s, T )S−1

L (p, T )

is left slice hyperholomorphic in s and it is right slice hyperholomorphic in p with values
in B(Vn). The function

GT (s, p) := S−1
L (p, T )S−1

R (s, T )

is not slice hyperholomorphic neither in p nor in s.

Remark 3.12. Using the star products left and right in the variables s, p, which will
be denoted by ⋆s,left, ⋆p,right respectively, see [6], the resolvent equation (3.34) can be
written as

S−1
R (s, T )S−1

L (p, T ) = [S−1
R (s, T )− S−1

L (p, T )] ⋆s,left (p− s)(p2 − 2Re(s)p+ |s|2)−1I,

or

S−1
R (s, T )S−1

L (p, T ) = (s− p)(s2 − 2Re(p)s+ |p|2)−1I ⋆p,right [S
−1
R (s, T )− S−1

L (p, T )].

3.1. Some applications. Here we recall the formulations of the S-functional calculus
and the we use the resolvent equation to deduce some results.
We first recall two important properties of the S-spectrum.

Theorem 3.13 (Structure of the S-spectrum). Let T ∈ B0,1(Vn) and suppose that
p = p0 + p belongs σS(T ) with p 6= 0. Then all the elements of the (n − 1)-sphere [p]
belong to σS(T ).

This result implies that if p ∈ σS(T ) then either p is a real point or the whole (n− 1)-
sphere [p] belongs to σS(T ).



Theorem 3.14 (Compactness of S-spectrum). Let T ∈ B0,1(Vn). Then the S-spectrum
σS(T ) is a compact nonempty set. Moreover, σS(T ) is contained in {s ∈ Rn+1 : |s| ≤
‖T‖ }.

Definition 3.15. Let Vn be a two sided Banach module, T ∈ B0,1(Vn)and let U ⊂
R

n+1 be an axially symmetric s-domain that contains the S-spectrum σS(T ) such that
∂(U ∩ CI) is the union of a finite number of continuously differentiable Jordan curves
for every I ∈ S. In this case we say that U is a T -admissible open set.

We can now introduce the class of functions for which we can define the two versions
of the S-functional calculus.

Definition 3.16. Let Vn be a two sided Banach module, T ∈ B0,1(Vn) and let W be an
open set in Rn+1.

(i) A function f ∈ SML(W ) is said to be locally left hyperholomorphic on σS(T )
if there exists a T -admissible domain U ⊂ Rn+1 such that U ⊂ W , on which f
is left slice hyperholomorphic. We will denote by SML

σS(T ) the set of locally left

hyperholomorphic functions on σS(T ).
(ii) A function f ∈ SMR(W ) is said to be locally right regular on σS(T ) if there

exists a T -admissible domain U ⊂ Rn+1 such that U ⊂ W , on which f is right
slice hyperholomorphic. We will denote by SMR

σS(T ) the set of locally right slice

hyperholomorphic functions on σS(T ).

Definition 3.17 (The S-functional calculus). Let Vn be a two sided Banach module
and T ∈ B0,1(Vn). Let U ⊂ Rn+1 be a T -admissible domain and set dsI = −dsI. We
define

f(T ) =
1

2π

∫

∂(U∩CI )

S−1
L (s, T ) dsI f(s), for f ∈ SML

σS(T ), (3.49)

and

f(T ) =
1

2π

∫

∂(U∩CI)

f(s) dsI S−1
R (s, T ), for f ∈ SMR

σS(T ). (3.50)

We now define the Riesz projectors for the S-functional calculus. We begin with a
preliminary lemma.

Lemma 3.18. Let B ∈ B(Vn) and let G be an axially symmetric s-domain such that
p ∈ G. Then

(sB −Bp)(p2 − 2s0p+ |s|2)−1 = (s2 − 2p0s+ |p|2)−1(sB −Bp), p 6∈ [s], (3.51)

and

1

2π

∫

∂(G∩CI )

dsI(sB −Bp)(p2 − 2s0p+ |s|2)−1 = B. (3.52)



Proof. Formula (3.51) is obtained by direct computation. Let us prove (3.52), so we
write

1

2π

∫

∂(G∩CI )

dsI(sB −Bp)(p2 − 2s0p+ |s|2)−1

=
1

2π

∫

∂(G∩CI )

dsI(s
2 − 2p0s+ |p|2)−1(sB −Bp)

=
1

2π

∫

∂(G∩CI )

dsI(s
2 − 2p0s+ |p|2)−1(s− p)B

+
1

2π

∫

∂(G∩CI)

dsI(s
2 − 2p0s + |p|2)−1(pB −Bp)

but observe that

1

2π

∫

∂(G∩CI )

dsI(s
2 − 2p0s+ |p|2)−1(s− p)B =

1

2π

∫

∂(G∩CI )

dsIS
−1
R (s, p)B = B

and moreover by the residue theorem it is

1

2π

∫

∂(G∩CI )

dsI(s
2 − 2p0s+ |p|2)−1 = 0

so we get the statement.

Theorem 3.19. Let T ∈ B0,1(Vn) and let σS(T ) = σ1S(T ) ∪ σ2S(T ), with

dist (σ1S(T ), σ2S(T )) > 0.

Let U1 and U2 be two axially symmetric s-domains such that σ1S(T ) ⊂ U1 and σ2S(T ) ⊂
U2, with U 1 ∩ U 2 = ∅. Set

Pj :=
1

2π

∫

∂(Uj∩CI)

S−1
L (s, T ) dsI, j = 1, 2, (3.53)

Tj :=
1

2π

∫

∂(Uj∩CI )

S−1
L (s, T ) dsI s, j = 1, 2. (3.54)

Then Pj are projectors and TPj = PjT for j = 1, 2.

Proof. Let σjS(T ) ⊂ G1 and G2 be two T -admissible open sets such that G1∪∂G1 ⊂ G2

and G2 ∪ ∂G2 ⊂ Uj , for j = 1 or 2. Thanks to the structure of the S-spectrum we will
assume that G1 and G2 are axially symmetric and s-domains.
Take p ∈ ∂(G1 ∩ CI) and s ∈ ∂(G2 ∩ CI) and observe that, for I ∈ S, we have

Pj :=
1

2π

∫

∂(G2∩CI)

dsIS
−1
R (s, T )

but we can also write Pj as

Pj =
1

2π

∫

∂(G1∩CI)

S−1
L (p, T )dpI .

Now consider P 2
j written as

P 2
j =

1

(2π)2

∫

∂(G2∩CI)

dsI

∫

∂(G1∩CI)

S−1
R (s, T )S−1

L (p, T )dpI .



Using the resolvent equation we write:

P 2 =
1

(2π)2

∫

∂(G2∩CI )

dsI

∫

∂(G1∩CI )

[S−1
R (s, T )− S−1

L (p, T )]p(p2 − 2s0p+ |s|2)−1dpI

−
1

(2π)2

∫

∂(G2∩CI)

dsI

∫

∂(G1∩CI)

s[S−1
R (s, T )− S−1

L (p, T )](p2 − 2s0p+ |s|2)−1dpI .

Now observe that

1

(2π)2

∫

∂(G2∩CI)

dsIS
−1
R (s, T )

∫

∂(G1∩CI )

p(p2 − 2s0p+ |s|2)−1dpI = 0

and

−
1

(2π)2

∫

∂(G2∩CI )

dsIsS
−1
R (s, T )

∫

∂(G1∩CI)

(p2 − 2s0p+ |s|2)−1dpI = 0

since the functions

p 7→ p(p2 − 2s0p+ |s|2)−1, p 7→ (p2 − 2s0p+ |s|2)−1

are slice hyperholomorphic and do not have singularities inside ∂(G1 ∩CI). So P 2
j can

be written as

P 2
j =

1

(2π)2

∫

∂(G2∩CI)

dsI

∫

∂(G1∩CI)

−S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpI

−
1

(2π)2

∫

∂(G2∩CI)

dsI

∫

∂(G1∩CI)

−sS−1
L (p, T )(p2 − 2s0p+ |s|2)−1dpI ,

=
1

(2π)2

∫

∂(G2∩CI)

∫

∂(G1∩CI)

dsI(sS
−1
L (p, T )− S−1

L (p, T )p)(p2 − 2s0p+ |s|2)−1dpI .

Applying now Lemma 3.18 with B := S−1
L (p, T ) and observing that p ∈ G2, we finally

have

P 2
j =

1

2π

∫

∂(G1∩CI)

S−1
L (p, T )dpI = Pj .

Let us now prove that TPj = PjT . Observe that the functions f(s) = sm, for m ∈ N0

are both right and left slice hyperholomorphic. So the operator T can be written as

T =
1

2π

∫

∂(U∩CI )

S−1
L (s, T ) dsI s =

1

2π

∫

∂(U∩CI )

s dsI S−1
R (s, T );

analogously, as already observed, for the projectors Pj we have

Pj =
1

2π

∫

∂(Uj∩CI)

S−1
L (s, T ) dsI =

1

2π

∫

∂(Uj∩CI)

dsI S−1
R (s, T ).

From the identity

Tj =
1

2π

∫

∂(Uj∩CI)

S−1
L (s, T ) dsI s =

1

2π

∫

∂(Uj∩CI)

s dsI S−1
R (s, T )

we can compute TPj as:

TPj =
1

2π

∫

∂(Uj∩CI)

TS−1
L (s, T ) dsI



and using the resolvent equation (3.25) it follows

TPj =
1

2π

∫

∂(Uj∩CI)

[S−1
L (s, T ) s− I] dsI

=
1

2π

∫

∂(Uj∩CI)

S−1
L (s, T ) s dsI

=
1

2π

∫

∂(Uj∩CI)

S−1
L (s, T ) dsI s

= Tj.

(3.55)

Now consider

PjT =
1

2π

∫

∂(Uj∩CI)

dsI S−1
R (s, T )T

and using the resolvent equation (3.26) we obtain

PjT =
1

2π

∫

∂(Uj∩CI)

dsI [s S−1
R (s, T )− I]

=
1

2π

∫

∂(Uj∩CI)

dsI s S−1
R (s, T )

= Tj,

(3.56)

so the equality PjT = TPj holds.

Remark 3.20. The properties that the Riesz projectors commute with the operator
T has been proved for the quaternionic version of the S-functional calculus in [4], while
the property that P 2 = P given in [19] is obtained heuristically. This fact shows the
importance of this new resolvent equation.

As it is well known for hyperholomorphic functions the product of two hyperholomor-
phic functions is not in general hyperholomorphic. Here we recall a class of functions
for which the pointwise multiplication remains slice hyperholomorphic.

Definition 3.21. Let f : U → Rn be a slice hyperholomorphic function, where U is an
open set in Rn+1. We define

N (U) = {f ∈ SM(U) : f(U ∩ CI) ⊆ CI , ∀I ∈ S}.

Proposition 3.22. Let U be an open set in Rn+1. Let f ∈ N (U), g ∈ SM(U), then
fg ∈ SM(U).

First of all let us observe that functions in the subclass N (U) are both left and right
slice hyperholomorphic. When we take the power series expansion of this class of
functions at a point on the real line the coefficients of the expansion are real numbers.
Now observe that for functions in f ∈ N (U) we can define f(T ) using the left but also
the right S-functional calculus. It is

f(T ) =
1

2π

∫

∂(U∩CI)

S−1
L (s, T ) dsI f(s)

=
1

2π

∫

∂(U∩CI)

f(s) dsI S−1
R (s, T ).



Lemma 3.23. Let B ∈ B(Vn). Let G be an axially symmetric s-domain and assume
that f ∈ N (G). Then, for p ∈ G, we have

1

2π

∫

∂(G∩CI )

f(s)dsI(sB − Bp)(p2 − 2s0p+ |s|2)−1 = Bf(p).

Proof. Recalling formula (3.51) we write

1

2π

∫

∂(G∩CI )

f(s)dsI(sB − Bp)(p2 − 2s0p+ |s|2)−1

=
1

2π

∫

∂(G∩CI )

f(s)dsI(s
2 − 2p0s+ |p|2)−1(sB − Bp)

=
1

2π

∫

∂(G∩CI )

f(s)dsI(s
2 − 2p0s+ |p|2)−1(s− p)B

+
1

2π

∫

∂(G∩CI )

f(s)dsI(s
2 − 2p0s+ |p|2)−1(pB − Bp)

:= J1 + J2

but observe that

J1 =
1

2π

∫

∂(G∩CI )

f(s)dsI(s
2 − 2p0s+ |p|2)−1(s− p)B

=
1

2π

∫

∂(G∩CI )

f(s)dsIS
−1
R (s, p)B = f(p)B.

Consider now the second integral. Taking s = u+Iv then the solutions of the equation
s2 − 2p0s+ |p|2 = 0 are s1 = α and s2 = α where α = p0 + I|p|, so

J2 =
1

2π

∫

∂(G∩CI )

f(s)dsI(s
2 − 2p0s+ |p|2)−1(pB −Bp)

=
1

2π

∫

∂(G∩CI )

f(s)

(s− α)(s− α)
dsI(pB − Bp),

by the residues theorem we get

J2 =
1

2π

∫

∂(G∩CI )

f(s)dsI(s
2 − 2p0s+ |p|2)−1(pB −Bp)

=
I

2|p|
[f(p0 − I|p|)− f(p0 + I|p|)](pB −Bp).

Now we recall the structure formula that shows that a slice hyperholomorphic function
can be written as

f(p) = α(p0, |p|) + Ipβ(p0, |p|)

where

α(p0, |p|) =
1

2
[f(p0 − I|p|) + f(p0 + I|p|)],

β(p0, |p|) =
I

2
[f(p0 − I|p|)− f(p0 + I|p|)]



and in the case of functions f ∈ N the functions α and β are real valued. Observe that

J1 + J2 = f(p)B +
I

2|p|
[f(p0 − I|p|)− f(p0 + I|p|)](pB −Bp)

= α(p0, |p|)B + Ipβ(p0, |p|)B +
β(p0, |p|)

|p|
(pB − Bp)

= α(p0, |p|)B + Ipβ(p0, |p|)B +
β(p0, |p|)

|p|
((p0 − Ip|p|)B −B(p0 − Ip|p|))

= B(α(p0, |p|) + Ipβ(p0, |p|))

= Bf(p),

so we get the statement.

Remark 3.24. If we assume that f ∈ N (B(0, r)) where B(0, r) is the open ball in
Rn+1 centered at 0 and of radius r > 0 and s ∈ B(0, r), then the proof of the above
theorem follows in a shorter way. Indeed we have

(sB − Bp)(p2 − 2s0p+ |s|2)−1 =
∑

m≥0

s−1−mBpm, |p| < |s|.

So

1

2π

∫

∂(G∩CI )

f(s)dsI
∑

m≥0

s−1−mBpm, |p| < |s|,

but
∑

m≥0

1

2π

∫

∂(G∩CI )

f(s)dsIs
−1−mBpm =

∑

m≥0

1

m!
f (m)(0)Bpm

and for functions in N (B(0, r)) the derivatives f (m)(0) are real numbers and so they
commute with B. We get

∑

m≥0

1

m!
f (m)(0)Bpm = B

∑

m≥0

1

m!
f (m)(0)pm = Bf(p).

We now offer a different proof of the theorem that shows that (fg)(T ) = f(T )g(T ),
under suitable assumptions of f, g. Originally, see [19], the proof was based on the
Cauchy formula and the resolvent equations (3.25), (3.26).

Theorem 3.25. Let T ∈ B0,1(Vn) and assume f ∈ NσS(T ) and g ∈ SMσS(T ). Then we
have

(fg)(T ) = f(T )g(T ).

Proof. Let σS(T ) ⊂ G1 and G2 be two T -admissible open sets such that G1∪∂G1 ⊂ G2

and G2 ∪ ∂G2 ⊂ U . Take p ∈ ∂(G1 ∩ CI) and s ∈ ∂(G2 ∩ CI) and observe that, for
I ∈ S, we have



f(T )g(T ) =
1

(2π)2

∫

∂(G2∩CI)

f(s) dsI S−1
R (s, T )

∫

∂(G1∩CI)

S−1
L (p, T ) dpI g(p)

=
1

(2π)2

∫

∂(G2∩CI)

f(s) dsI

∫

∂(G1∩CI )

S−1
R (s, T )p(p2 − 2s0p+ |s|2)−1dpI g(p)

−
1

(2π)2

∫

∂(G2∩CI)

f(s) dsI

∫

∂(G1∩CI)

S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpI g(p)

−
1

(2π)2

∫

∂(G2∩CI)

f(s) dsI

∫

∂(G1∩CI)

sS−1
R (s, T )(p2 − 2s0p+ |s|2)−1dpI g(p)

+
1

(2π)2

∫

∂(G2∩CI)

f(s) dsI

∫

∂(G1∩CI )

sS−1
L (p, T )(p2 − 2s0p+ |s|2)−1dpI g(p)

where we have used the resolvent equation. But now observe that

1

(2π)2

∫

∂(G2∩CI )

f(s) dsI

∫

∂(G1∩CI)

S−1
R (s, T )p(p2 − 2s0p+ |s|2)−1dpI g(p) = 0

and

−
1

(2π)2

∫

∂(G2∩CI)

f(s) dsI

∫

∂(G1∩CI )

sS−1
R (s, T )(p2 − 2s0p+ |s|2)−1dpI g(p) = 0.

so it follows that

f(T )g(T ) = −
1

(2π)2

∫

∂(G2∩CI )

f(s) dsI

∫

∂(G1∩CI)

S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpI g(p)

+
1

(2π)2

∫

∂(G2∩CI)

f(s) dsI

∫

∂(G1∩CI)

sS−1
L (p, T )(p2 − 2s0p+ |s|2)−1dpI g(p)

which can be written as

f(T )g(T ) =
1

(2π)2

∫

∂(G2∩CI )

f(s) dsI

∫

∂(G1∩CI)

[sS−1
L (p, T )− S−1

L (p, T )p]×

× (p2 − 2s0p + |s|2)−1dpI g(p).

Using Lemma 3.23 we get

f(T )g(T ) =
1

2π

∫

∂(G1∩CI)

S−1
L (p, T )dpI f(p) g(p)

which gives the statement.

In the original proof of the above theorem we have used the fact that for functions
f ∈ NσS(T ) the left S-resolvent equation gives

f(T )Tm =
1

2π

∫

∂(U∩CI )

S−1
L (p, T )dpI f(p)pm

from which one obtains

f(T )Tmt−1−m =
1

2π

∫

∂(U∩CI)

S−1
L (p, T )dpI f(p)pmt−1−m.



By taking the sum and considering t ∈ ρS(T ), we have

f(T )S−1
L (t, T ) =

1

2π

∫

∂(U∩CI)

S−1
L (p, T )dpI f(p)S−1

L (t, p).

Using this equality and the Cauchy formula we obtain the statement.

4. The case of commuting operators and the quaternionic case

In this last section we state the resolvent equation in the case of commuting operators
and for the quaternionic functional calculus. We also take the occasion to make some
comments that show how the S-functional calculus turns out to be a natural extension
of the Riesz-Dunford functional calculus.

4.1. The case of several commuting operators. We denote by BC0,1(Vn) the subset
of B0,1(Vn) consisting of paravector operators with commuting components. Given an
operator in paravector form T = T0 + e1T1 + . . . + enTn, its so-called conjugate T is
defined by T = T0 − e1T1 − . . . − enTn. When T ∈ BC0,1(Vn) the operator TT is well
defined and TT = TT = T 2

0 + T 2
1 + . . .+ T 2

n and T + T = 2T0.

Theorem 4.1. Let T ∈ BC0,1(Vn) and s ∈ Rn+1 be such that |s| < ‖T‖. Then
∑

m≥0

Tms−1−m = (sI − T̄ )(s2I − s(T + T ) + TT )−1, (4.57)

∑

m≥0

s−1−mTm = (s2I − s(T + T ) + TT )−1(sI − T̄ ). (4.58)

The above theorem follows from the fact that the Cauchy kernels for slice hyperholo-
morphic functions can be written in two possible ways, see Section 2 and [15]. In the
case of commuting operators the two expressions are equivalent. The advantage of
this approach is that one can work with the so called F-spectrum which is easier to
compute than the S-spectrum. In fact it can be computed over a complex plane CI ,
taking s = u+ Iv, and then extended to Rn. This is a consequence of the fact that the
F-spectrum takes into account the commutativity of the operators Tj , j = 0, 1, ..., n.
The F-spectrum is suggested by Theorem 4.1 and it is described below.

Definition 4.2 (The F -spectrum and the F -resolvent sets). Let T ∈ BC0,1(Vn). We
define the F -spectrum of T as:

σF (T ) = {s ∈ R
n+1 : s2I − s(T + T ) + TT is not invertible }.

The F -resolvent set of T is defined by

ρF (T ) = R
n+1 \ σF (T ).

The main properties of the F -spectrum are similar to those of the S-spectrum as it is
proved in the next results:

Theorem 4.3 (Structure of the F -spectrum). Let T ∈ BC0,1(Vn) and let p = p0+p1I ∈
[p0+p1I] ⊂ Rn+1 \R, such that p ∈ σF (T ). Then all the elements of the (n−1)-sphere
[p0 + p1I] belong to σF (T ).

Theorem 4.4 (Compactness of F -spectrum). Let T ∈ BC0,1(Vn). Then the F -spectrum
σF (T ) is a compact nonempty set. Moreover σF (T ) is contained in {s ∈ Rn+1 : |s| ≤
‖T‖ }.



The relation between the S-spectrum and the F-spectrum is contained in the following
result:

Proposition 4.5. Let T ∈ BC0,1(Vn) . Then σF (T ) = σS(T ).

Definition 4.6. (The SC-resolvent operator) Let T ∈ BC0,1(V ) and s ∈ ρF (T ). We
define the SC-resolvent operator as

S−1
C,L(s, T ) := (sI − T )(s2I − s(T + T ) + TT )−1. (4.59)

S−1
C,R(s, T ) := (s2I − s(T + T ) + TT )−1(sI − T ). (4.60)

Theorem 4.7. Let T ∈ BC0,1(Vn) and s, p ∈ ρF (T ). Then S−1
C,L(s, T ) satisfies the left

S-resolvent equation
S−1
C,L(s, T )s− TS−1

C,L(s, T ) = I, (4.61)

and S−1
C,R(s, T ) satisfies the right S-resolvent equation

sS−1
C,R(s, T )− S−1

C,R(s, T )T = I.

Moreover, for p 6∈ [s], it satisfies the resolvent equation

S−1
C,R(s, T )S

−1
C,L(p, T ) = ((S−1

C,R(s, T )− S−1
C,L(p, T ))p

− s(S−1
C,R(s, T )− S−1

C,L(p, T )))(p
2 − 2s0p+ |s|2)−1.

which can be written as

S−1
C,R(s, T )S

−1
C,L(p, T ) = (s2 − 2p0s+ |p|2)−1(s(S−1

C,R(s, T )− S−1
C,L(p, T ))

− (S−1
C,R(s, T )− S−1

C,L(p, T ))p).
(4.62)

We conclude this subsection with a couple of considerations on the case of unbounded
operators.
(I) Suppose that T is a closed operator with domain D(T ). As one can clearly see, the
non commutative version of S−1

L (s, T ), that is

S−1
L (s, T ) := −(T 2 − 2Re(s)T + |s|2I)−1(T − sI),

is defined on the domain of T , and not on Vn as it is in the classical case. So we have
to consider the extension to Vn writing S−1

L (s, T ) as follows

Ŝ−1
L (s, T ) := −(T (T 2 − 2Re(s)T + |s|2I)−1 − (T 2 − 2Re(s)T + |s|2I)−1sI).

In this case Ŝ−1
L (s, T ) turns out to be defined on Vn. Observe now that if T is a closed

operator with domain D(T ) and with commuting components the left S-resolvent op-
erator S−1

C,L(s, T ) turns out to be already defined on Vn. For a more detailed discussion
see the original papers [13, 15]. In the case of the right S-resolvent we have the opposite
situation. With the above consideration the new resolvent equation remains the same
also for unbounded operators.
(II) The F-spectrum is also useful to defined the so called F-functional calculus, see
[5, 16]. This calculus is defined using the Fueter-Sce-Qian mapping theorem in integral
form, see [22, 31, 34]. It is a hyperholomorphic functional calculus in the spirit of A.
McIntosh, B. Jefferies and their coauthors (see [27, 28, 30, 33], the monograph [26]
and the references therein) who first used the theory of hyperholomorphic functions,
see [10, 18, 20, 25], to define a hyperholomorphic functional calculus for n-tuples of
operators.



4.2. The quaternionic setting. What we have previously proved in the paper can
be rephrased also for the quaternionic functional calculus. We simply point out that
in this case slice hyperholomorphic functions are defined on an open set U ⊆ H and
have values in the quaternions H. The resolvent operators are as in the introduction
of this paper. Here it is important to consider right linear operators as well as left
linear operators T . The possible formulations of the quaternionic functional calculus
has been carried out in [13]. The resolvent equations in Theorem 3.8 hold in this
setting where instead of the paravector operator T = T0 + T1e1 + . . .+ Tnen we replace
quaternionic operators. We finally mention for sake of completeness one more analogy
with the classical case. As it is well known the Laplace transform of a semigroup etG

where for simplicity we take a bounded operator G defined on a Banach space X is the
resolvent operator (λI − G)−1. In the quaternionic case we have the analogue result
for the two S-resolvent operators: Let T ∈ B(V ) and let s0 > ‖T‖. Then the left
S-resolvent operator S−1

L (s, T ) is given by

S−1
L (s, T ) =

∫ +∞

0

etT e−ts dt,

and S−1
R (s, T ) is given by

S−1
R (s, T ) =

∫ +∞

0

e−tset T dt.

We point out that the theory of the quaternionic evolution operators is developed in
[12] where it is also studied the case in which the generator is unbounded. Recently
the case of sectorial operators has been treated in [24].
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[4] D. Alpay, F. Colombo and I. Sabadini, Krein-Langer factorization and related topics in the slice

hyperholomorphic setting, J. of Geom. Anal., to appear.
[5] D. Alpay, F. Colombo and I. Sabadini, On some notions of convergence for n-tuples of operators,

Math. Meth. Appl. Sci. (2013/14), to appear.
[6] D. Alpay, F. Colombo, I. Lewkowicz, and I. Sabadini. Realizations of slice hyperholomorphic

generalized contractive and positive functions. arxiv:1310.1035.
[7] D. Alpay, A. Dijksma, J. Rovnyak, and H. de Snoo. Schur functions, operator colligations, and

reproducing kernel Pontryagin spaces, volume 96 of Operator theory: Advances and Applications.
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[25] K. Gürlebeck, K. Habetha, W. Sprössig, Holomorphic Functions in the Plane and n-dimensional
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