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We employ kinetic theory, extended to incorporate the influence of velocity correlations,
friction and particle stiffness, and a model for rate-independent, elastic components of
the stresses at volume fractions larger than a critical, in an attempt to reproduce the
results of discrete-element numerical simulations of steady, fully developed, dissipative,
collisional shearing flows over and within inclined, erodible, fragile beds. The flows take
place between vertical, frictional sidewalls at different separations with sufficient total
particle flux so that differently inclined, erodible beds result. Numerical solutions of
the span-wise averaged differential equations of the theory and the associated boundary
conditions are seen to be capable of reproducing profiles of stresses, solid volume fraction,
average velocity, and the strength of the particle velocity fluctuations, both in the rapid
collisional flow above the bed and in the slower creeping flow within the bed. The
indication is that Extended Kinetic Theory has the unique ability to faithfully describe
steady, inhomogeneous, granular shearing flows, ranging from dilute to extremely dense,
using balances of momentum and energy and employing boundary conditions that are
associated with the balances, with a small number of physically determined, microscopic
parameters.
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be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

Particle flows in nature, such as rock avalanches, occur at length scales that are so large
that continuum descriptions must be employed to predict their initiation, flow, and run
out. In the search for constitutive relations for the closure of such continuum models in the
last fifteen years, two approaches have emerged. One is based on kinetic theory of granular
gases (Haff 1983; Jenkins & Savage 1983; Jenkins & Richman 1985), extended to include
the role of significant contact inelasticity (Garzó & Dufty 1999), surface friction (Jenkins
& Zhang 2002; Larcher & Jenkins 2013; Berzi & Vescovi 2015), velocity correlations
(Jenkins 2006, 2007; Jenkins & Berzi 2010; Berzi 2014), and particle stiffness (Berzi &
Jenkins 2015); the other is based on a phenomenological relation, the inertial rheology,

† Email address for correspondence: diego.berzi@polimi.it



2 D. Berzi, J.T. Jenkins and P. Richard

between the particle shear stress and the shear rate, both made dimensionless using the
particle pressure, mass density and diameter (GdR-Midi 2004; Jop et al. 2005, 2006).

1.1. Extended Kinetic Theory and the Inertial Rheology

The two approaches offer advantages and disadvantages. Extended Kinetic Theory (EKT)
requires as inputs four microscopic, well-defined, parameters, at least in the case of linear
contacts, that are also the inputs of discrete element numerical simulations of compliant
spheres: the normal and tangential coefficients of restitution, the negative of the ratios
of post- to pre-collisional normal and tangential relative velocities between two colliding
spheres; the coefficient of sliding friction; and the particle stiffness. On the other hand,
EKT introduces a measure of the intensity of the particle velocity fluctuations, the
granular temperature T , that enters the constitutive relations for the stresses. This
additional hydrodynamic variable is governed by a partial differential equation, the
balance of fluctuation kinetic energy, that must be solved in addition to the classical
mass and momentum balances.

In its simplest incompressible form, the inertial rheology requires three model parame-
ters obtained as fits to experiments or numerical simulations. Two more model parameters
are needed if the incompressibility assumption is relaxed (da Cruz et al. 2005). The rather
large number of fitting parameters seems justified, given the simplicity of the approach
and its straightforward implementation in already existing mathematical models that
employ only mass and momentum balances. However, there are several nonlocal effects
that cannot be predicted by the inertial rheology, such as the influence of the boundaries
on steady, inclined flows over rigid, rough bases (Pouliquen 1999; Silbert et al. 2001)
and creep in regions where the stress ratio is less than yield (Koval et al. 2009). To deal
with this nonlocality, Kamrin & Koval (2012) recently suggested the introduction of an
additional hydrodynamic field, the granular fluidity, governed by a second-order partial
differential equation. This nonlocal model has been successfully employed in a number of
flow configurations (Henann & Kamrin 2013; Kamrin & Henann 2015), but at least one
additional fitting parameter is necessary. Also, distributions of solid volume fraction and
stresses cannot be predicted by the nonlocal model: they have to be known in advanced
and treated as inputs.

The relationship between EKT and Kamrin’s nonlocal model is evident –they both
introduce a partial differential equation governing an additional hydrodynamic field,
either the granular temperature or the granular fluidity, and this permits the prediction
of nonlocal effects. The link between the granular fluidity and the granular temperature
has been made even more explicit in a recent work (Zhang & Kamrin 2017), in which it is
indicated that the granular fluidity, scaled by the square root of the granular temperature,
is a unique function of the solid volume fraction. Berzi & Jenkins (2018) show that this
dependence for frictionless spheres is well predicted by a kinetic theory involving the
velocity correlations and the second moment of the velocity fluctuations .

It has been shown that the inertial rheology can be obtained as a special case of EKT,
when the fluctuation energy balance reduces to a local equilibrium between the energy
produced through the work of shear stress and that dissipated in collisions (Jenkins &
Berzi 2010; Berzi & Vescovi 2015). This implies that the fitting parameters of the inertial
rheology for rigid particles can be obtained from the coefficients of restitution and sliding
friction. The restriction to homogeneous flows explains the failure of the inertial rheology
in the presence of nonlocal effects. It remains to show that Kamrin’s nonlocal model is
also a special case of EKT, when the fluctuation energy balance is employed.
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1.2. Kinetic Theory for flows of inelastic, frictional, compliant sphere, with correlated
velocities

Although recognized as a useful paradigm to explore the fundamental physics governing
the interaction among grains (Goldhirsch 2003), the common perception of kinetic theory
was, and in many respects still is (Forterre & Pouliquen 2008; Jop 2015), that it can
successfully describe only dilute flows of not-very dissipative spheres in the absence
of frictional interactions and enduring contacts. This is not the case. In fact, the first
proposed kinetic theory for granular gases (Jenkins & Savage 1983) was for dense shearing
flows; but, it is true, limited to nearly elastic, identical, frictionless, rigid spheres, for
which collisions were assumed to be binary, instantaneous and uncorrelated. In dense
flows, the particles cannot be considered to be points and the probability of collisions both
increases, due to excluded volume effects, and decreases, due to shielding. From the time
of Enskog’s extension of Boltzmann’s approach to dense gases, this has been accounted
for by including the radial distribution function at contact, χ0, in expressions for the
collision frequency (Chapman et al. 1990). This function, which contains information
about the probability of having two particles at close contact, is a function of the solid
volume fraction, ν, and becomes infinite at a critical value, νc that is the maximum
volume fraction for a randomly collisional assembly of rigid particles at which the mean
inter-particle distance vanishes. For frictionless spheres, the critical volume fraction is
that at random close packing (Torquato 1995).

Kinetic theories for dissipative particles, for which the coefficient of normal restitution
measured in experiments (Foerster et al. 1994) is much less than unity have been derived
(Garzó & Dufty 1999). Despite that, and despite the use of χ0, measurements in event-
driven discrete element simulations of homogeneous shearing flows of rigid, frictionless
particles at large volume fractions showed departures from the predictions of such kinetic
theories (Mitarai & Nakanishi 2005, 2007). The reason for the lack of agreement for rigid
spheres was that velocity correlations develop at solid volume fractions greater than
the freezing point, 0.49, the lowest value of ν at which a three-dimensional assembly of
spheres can experience a first-order transition to an ordered collisional state (Torquato
1995). If the grains remain in a disordered configuration even when ν > 0.49, the
distribution of single-particle fluctuation velocities, whose intensity is measured by the
granular temperature, differs from the distribution of relative velocities between colliding
grains (Mitarai & Nakanishi 2007; Kumaran 2009). This is due to the inelasticity of the
collisions, and indicates that the assumption of molecular chaos no longer holds; and that
the granular temperature, which measures the intensity of the single-particle velocity
fluctuations, is no longer an appropriate measure of the intensity of collisions, because
the particles tend to fluctuate together.

Jenkins (Jenkins 2006, 2007) took this effect into account by phenomenologically
introducing a length scale L larger than one particle diameter in the denominator of the
expression for the collisional dissipation rate of fluctuation energy of the kinetic theory. Its
determination is the result of the competition between shearing and velocity fluctuations
in building and destroying correlation and depends only on the volume fraction and the
coefficient of restitution (Berzi 2014). The fact that only the rate of collisional dissipation
must be modified, while leaving unaltered the expression for the stresses, is because the
correlated collisions affect the temperature, and the rate of collisional dissipation has the
greatest influence on the temperature (Mitarai & Nakanishi 2007).

Friction introduces the possibility of transforming translational into rotational fluc-
tuation kinetic energy and dissipating fluctuation energy in frictional sliding. Although
kinetic theories that include balances of angular momentum and rotational fluctuation
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kinetic energy have been proposed (Lun et al. 1984; Lun 1991), it is much simpler to
consider frictional dissipation and the transformation of translational into rotational
fluctuation kinetic energy as mechanisms for the dissipation of translational fluctuation
energy. In steady, homogeneous flows, this results in an effective coefficient of restitution
ε, that depends on the coefficients of normal and tangential restitution, en and et, and
sliding friction, µ, in the expression for the collisional rate of energy dissipation (Jenkins
& Zhang 2002; Larcher & Jenkins 2013). The predictions of that model compare favorably
with results of numerical simulations by Lun & Bent (1994) for en = 0.93, et = 0.123 and
µ = 0.4 over a range of volume fractions; although Kremer et al. (2014) employ a simpler
description of frictional collisions in dilute flows and find that the transport coefficients
may also be influenced.

Another consequence of friction on shearing flows is that it affects their spatial
anisotropy, so that the mean interparticle distance, at least along the principal com-
pression axis, vanishes at a solid volume fraction lower than random close packing; that
is, the value νc at which χ0 is singular decreases with increasing friction. However,
the correlation length L remains finite at the critical volume fraction, allowing the
quantitative prediction of yielding in granular materials using kinetic theory (Berzi &
Vescovi 2015).

When particles are not perfectly rigid, the contact duration is not zero. As a con-
sequence, the frequency of collisions must decrease with decreasing particle stiffness.
It has been shown (Berzi & Jenkins 2015) that this can be quantitatively captured by
defining the frequency of collisions as inversely proportional to the sum of the time of free
flight between collisions and the contact duration. Random configurations of compliant
particles can then be sheared even at volume fractions larger than νc; in that case the
time of free flight is zero and the frequency of interactions is solely determined by the
contact duration.

The finite particle stiffness also allows the development of rate-independent, elastic
components of the stresses (Chialvo et al. 2012) associated with long-lasting compression
of the contact network. In steady, homogeneous flows, the minimum volume fraction at
which elastic stresses are present is exactly νc (Chialvo et al. 2012; Berzi & Vescovi 2015);
this occurs when the particles first touch along the principal compression axis. Also, in
steady, homogeneous flows, there is a one-to-one relation between νc and the critical
coordination number, Zc, at which the contact network is mechanically stable. The value
of Zc is four in three dimensions, when friction is infinite, and increases with decreasing
friction (Silbert 2010; Sun & Sundaresan 2011).

Finally, the probability of multiple, simultaneous contacts also increases with the
contact compliance. Although the influence of other than binary encounters has not
been accounted for in any kinetic theory, there are some indications from numerical
simulations (Bharathraj & Kumaran 2018) that this is only a minor effect.

Extended Kinetic Theory is able to reproduce the results of Discrete Element Method
(DEM) simulations of soft and hard spheres in steady, homogeneous shearing flows at
volume fractions both less than and greater than νc (Berzi 2014; Berzi & Vescovi 2015;
Berzi & Jenkins 2015). In steady, homogeneous shearing, the boundaries play no role.

A striking advantage of kinetic theory over any other proposed model of granular flows
is that it permits the derivation of boundary conditions at solid surfaces (Jenkins &
Richman 1986; Richman 1988; Jenkins 1992; Jenkins & Louge 1997) and phase interfaces
(Jenkins & Askari 1991; Jenkins & Hanes 1993; Pasini & Jenkins 2005), using arguments
of statistical mechanics in the energy and momentum balances. Such conditions are
required when numerically solving the system of partial differential equations that govern
granular flows in realistic geometries. The use of appropriate boundary conditions has
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permitted EKT to be successfully tested against discrete numerical simulations of steady,
inhomogeneous shearing flows of frictionless spheres between bumpy planes in the absence
of gravity (Vescovi et al. 2014); and inclined, gravity-driven, free surface flows of frictional
spheres over rigid, bumpy boundaries, with and without flat, frictional sidewalls (Gollin
et al. 2017). In those flows, the solid volume fraction was always less than νc.

1.3. Inclined flow over an erodible bed

The goal of the present paper is to apply Extended Kinetic Theory to steady, inhomoge-
neous shearing flows in which the solid volume fraction exceeds the critical value for the
development of rate-independent components of the stresses. The flow that we consider is
the steady, gravity-driven, free surface flow of frictional, soft spheres over a rigid, bumpy
base between flat, frictional sidewalls. When a sufficient number of particles is fed to
the system, the flow develops an erodible bed above the rigid base. Above the bed, the
spheres interact through collisions, with uncorrelated, binary collisions occurring near
the top of the flow and correlated collisions taking place nearer to the bed. Within the
bed, the particles creep (Komatsu et al. 2001; Taberlet et al. 2003, 2004; Crassous et al.
2008; Richard et al. 2008, 2019), collisions continue to occur, but ephemeral force chains
develop and transfer forces from the bed to the rigid base.

Inclined, collisional, shearing flows above an erodible bed differ from those that extend
to a rigid bumpy base in the nature of the profile of the granular temperature through
their depth. In flows that extent to a rigid bumpy base, the granular temperature is
greatest at the base and diminishes towards the top. That is, slip at the bumpy base drives
spheres of the flow into collisions with the base, creating fluctuations and fluctuation
energy there. In contrast, flows above an erodible bed have a very small velocity relative
to the bed and dissipation in collisions with spheres of the bed dominates the energy
exchange there. As a consequence, the granular temperature at the bed is smallest and
increases towards the top. This difference is important in flows that are a mixture of
spheres of two sizes made of the same material; steady concentration profiles of each
type of sphere depend on the sign of the mixture granular temperature gradient (Larcher
& Jenkins 2013). The larger spheres concentrate at lower temperatures –near the top, in
a collisional flow that extends to a rigid, bumpy base; near the bed, in a collisional flow
over an erodible bed.

Here, we use EKT for modelling the flow above the bed and propose a model for flow in
the bed that combines the rate-dependent mechanism of collisional momentum transfer
with the rate-independent elastic transfer of force through a continuous evolving network
of chains of particles. The surface of the bed is at the same critical volume fraction
at which rate-independent components of the stresses develop in steady, homogeneous
shearing flows. However, the force chains that begin at the surface the bed are much
weaker that those that span the homogeneous flows (Berzi et al. 2019).

They are similar to those observed in quasi-static, fragile, shearing deformations (Bi
et al. 2011) in that they are oriented in the direction of greatest compression and involve
a fraction of force-bearing grains less than in the isotropic, jammed state. We model
the combined influence of collisions and elasticity on the stress in a similar way to that
employed in describing homogeneous shearing (Berzi & Jenkins 2015), but with an elastic
stiffness that better represents the fragile state of the bed.

We introduce the flow configuration and the constitutive relations in section 2 and,
then, phrase the boundary-value problem in section 3. In doing this, we refer to recent
results of discrete numerical simulations (Richard et al. 2019) and show that EKT
satisfactorily reproduces the measurements, even inside the erodible bed. We provide
concluding remarks and suggestions for future developments in section 5.
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Figure 1: Flow configuration.

2. Flow regimes and constitutive relations

We consider an inclined flow of identical spheres of mass density ρp and diameter d in
the presence of gravity over a rigid, bumpy base between two vertical, flat, frictional
sidewalls, separated by a distance W . We take x and z to be the directions parallel and
perpendicular to the base, in the plane parallel to the sidewalls, with the x-axis inclined of
an angle θ with respect to the horizontal. The gravitational acceleration is g. We specify
the mass of particles per unit basal area, i.e., the mass hold-up, M, assume that the
flow is fully-developed and steady, and perform averaging along the span-wise direction.
This permits us to treat the flow as varying only in the z-direction. The only non-zero
component of the span-wise-averaged particle velocity is the x-component, u. The rigid
base is taken sufficiently bumpy to enforce a no-slip boundary condition for the velocity
there. We take M large enough to permit the presence of a region of creep, which we
call erodible bed, extending for a distance δ from the base.

Berzi et al. (2019) have recently shown that, in the erodible bed, the volume fraction
exceeds the critical, that is, ν > νc; so that spheres are in ephemeral contact or experience
repeating collisions along the axis of greatest compression of the flow. Above the bed
and up to z = h, the solid volume fraction is less than νc, so that the mean inter-
particle distance is larger than zero; grains interact through collisions, and experience
free flight in between consecutive encounters. This is the collisional flow region. For z > h,
particles follow ballistic trajectories and rarely interact with other particles (Haff 1983;
Richard et al. 2008). In this dilute, ballistic layer, the constitutive relations of kinetic
theory do not apply, because it is not possible to disregard the influence of gravity
between collisions. As in Pasini & Jenkins (2005), we identify h as the distance from the
base at which the length of the average ballistic trajectory equals the mean free path
of kinetic theory. The flow configuration is depicted in figure 1. In the following, we
make all quantities dimensionless using the particle mass density and diameter, and the
gravitational acceleration; for simplicity, we do not change the notation.

2.1. Collisional flow region

For δ < z 6 h, ν < νc, and, because the mean inter-particle distance is greater than zero,
stresses originate only from momentum exchange in collisions. Given that the particles
are soft, the contact duration is not zero, so that kinetic theory for rigid particles over-
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estimate the actual collision frequency. Consequently, we employ the constitutive relations
for the pressure p and the shear stress s in case of rigid particles (Garzó & Dufty 1999;
Vescovi et al. 2014) but multiply them by a correction factor equal to the ratio of the
time of free flight and the sum of time of free flight and contact duration (Berzi & Jenkins
2015):

p = f1T

(
1 +

12

5
G
T 1/2

k
1/2
n

)−1
(2.1)

and

s = f2T
1/2

(
1 +

12

5
G
T 1/2

k
1/2
n

)−1
u′. (2.2)

Here and in what follows, a prime indicates derivative with respect to z. The coefficients
f1 and f2 are given in table 1, where G = νχ0. The term between parentheses in (2.1) and
(2.2) is the correction due to the nonzero contact duration; it is valid when the contact
force can be modelled as a linear spring–dashpot system, in which kn is the dimensionless
spring stiffness in the normal direction.

For the radial distribution function at contact χ0, it is common to employ that of
Carnahan & Starling (1969) for ν < 0.49, the freezing volume fraction,

χ0 =
2− ν

2 (1− ν)
3 , (2.3)

and that of Torquato (1995) for 0.49 6 ν < νc:

χ0 =
2− 0.49

2 (1− 0.49)
3

νc − 0.49

νc − ν
. (2.4)

Here, for computational convenience, we employ the expression suggested by Vescovi
et al. (2014), that is, (2.3) for ν < 0.4, and

χ0 =

[
1−

(
ν − 0.4

νc − 0.4

)2
]

2− ν
2 (1− ν)

3 +

(
ν − 0.4

νc − 0.4

)2
2

νc − ν
(2.5)

for 0.4 6 ν < νc. The form (2.5) has the advantage of being continuously differentiable,
unlike that of (2.4). This facilitates convergence in the search for numerical solutions.

As ν approaches νc, χ0 and, consequently, G tend to infinity. In that limit, the
coefficients f1 and f2 are proportional to G and also tend to infinity. In the case of rigid
particles, the scaled stresses p/T and s/(T 1/2u′) are singular at ν = νc, and a random,
collisional assembly of rigid particles at volume fractions larger than the critical cannot
exist. If the particle stiffness is finite, however, the collision frequency is proportional to
the inverse of the contact duration at the critical volume fraction (Berzi & Jenkins 2015)
and the scaled stresses remain finite at ν = νc.

The balance of fluctuation energy governs the distribution of granular temperature. In
it, at steady conditions, the fluctuation energy produced through the work of the shear
stress is either dissipated in collisions or diffused via velocity fluctuations. The latter
term can be expressed as the divergence of the flux of fluctuation energy. Consequently,
constitutive relations for the rate of collisional dissipation, Γ , and the z-component of
the flux of fluctuation energy, Q, must be provided. By modifying the expressions valid
for rigid particles (Garzó & Dufty 1999; Vescovi et al. 2014) with the correction due to
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the finite duration of contacts (Berzi & Jenkins 2015), we obtain

Γ =
f3
L
T 3/2

(
1 +

12

5
G
T 1/2

k
1/2
n

)−1
(2.6)

and

Q = −f4T 1/2

(
1 +

12

5
G
T 1/2

k
1/2
n

)−1
T ′ − f5T 3/2

(
1 +

12

5
G
T 1/2

k
1/2
n

)−1
ν′, (2.7)

respectively, where f3, f4 and f5 are given in table 1.
The quantity ε in the coefficient f3 of the collisional dissipation rate (table 1) is an

effective coefficient of restitution that accounts for frictional dissipation. Given the values
of en, et and µ, ε can be calculated using the numerical procedure explained in the
Appendix of Larcher & Jenkins (2013).

In (2.6), L is the correlation length, which decreases the rate of collisional dissipation
due to correlated motion of particles that occurs at solid volume fractions exceeding
that of freezing (Mitarai & Nakanishi 2007; Jenkins 2007; Kumaran 2009). When the
assumption of molecular chaos is valid, L is equal to one diameter. Jenkins (2007), based
on heuristic arguments, suggested using

L = max

(
1, f0

|u′|
T 1/2

)
, (2.8)

where f0 is a function of solid volume fraction and, through ε, the coefficients of normal
and tangential restitution and surface friction (Berzi 2014; Berzi & Vescovi 2015):

f0 =

[
2J

15(1− ε2)

]1/2 [
1 +

26 (1− ε)
15

ν − 0.49

0.64− ν

]3/2
. (2.9)

2.2. Erodible bed

At volume fractions larger than the critical, there is always some contact between spheres.
This provides rate-independent components of the stresses that are associated with force
transmission through a contact network. However, collisions do persist and are responsible
for the rate-dependent components of the stresses.

We have recently shown (Berzi et al. 2019) that granular, erodible beds bounded by
collisional flows are fragile, in the sense that, there, the average number of contacts per
particle is less than the critical value required for mechanical stability (Silbert 2010; Sun
& Sundaresan 2011). As a consequence, the bulk stiffness of erodible beds (Berzi et al.
2019) is three orders of magnitude less than that measured in homogeneous shearing
flows at the same volume fraction (Chialvo et al. 2012; Berzi & Jenkins 2015).

As in the case of homogeneous shearing for ν larger than νc (Berzi & Jenkins 2015),
we take the pressure and the shear stress in the bed equal to

p =
5

6
(1 + en) νk1/2n T 1/2 + 0.0006 (ν − νc) kn, (2.10)

and
s

p
=

4J∞
5π1/2(1 + en)

u′

T 1/2
, (2.11)

where J∞ is given in table 1. In (2.10), the first term on the right hand side is the
rate-dependent component, in which the strength of collisions is influenced by the
elasticity of the contacts; the second term is the rate-independent component. In the
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f1 = ν [1 + 2G (1 + en)]

f2 =
8J

5π1/2
νG

f3 =
12

π1/2

(
1− ε2

)
νG

f4 =
4MνG

π1/2

f5 =
25π1/2N

128ν

J =
1 + en

2
+

π

32

[5 + 2(1 + en)(3en − 1)G] [5 + 4(1 + en)G][
24− 6 (1− en)2 − 5(1− e2n)

]
G2

J∞ =
1 + en

2
+
π

4

(1 + en)2(3en − 1)[
24− 6 (1− en)2 − 5(1− e2n)

]
M =

1 + en
2

+
9π

144 (1 + en)G2

[
5 + 3G (2en − 1) (1 + en)2

]
[5 + 6G (1 + en)]

16− 7 (1− en)

M∞ =
1 + en

2
+

9π

8 (1 + en)

(2en − 1) (1 + en)3

16− 7 (1− en)

N =
96ν (1− en)

25G (1 + en)

5 + 6G (1 + en)

16 + 3 (1− en)

{
20
[
5 + 3G (2en − 1) (1 + en)2

]
48− 21 (1− en)

ν

G

∂G

∂ν

−
(
en + e2n

)(
G+ ν

∂G

∂ν

)}

Table 1: List of auxiliary coefficients in the constitutive relations of EKT

latter, the coefficient of proportionality with the normal spring stiffness is three orders
of magnitude less than the value 0.6 appropriate for homogeneous shearing, in accord
with the observations of Berzi et al. (2019) on the fragility of the force chains in erodible
beds.

Given that collisions do persist in the erodible bed, we adopt the constitutive relations
for the collisional dissipation rate and the fluctuation energy flux suggested by Berzi
& Jenkins (2015) for dense, shearing flows of soft particles above the critical volume
fraction:

Γ =
5
(
1− ε2

)
ν

π1/2Lc
k1/2n T (2.12)

and

Q = −5M∞ν

3π1/2
k1/2n T ′, (2.13)

where M∞ is given in table 1. In writing (2.13), we have ignored the dependence of the
energy flux on ν′ while retaining the dependence on T ′. We have determined that its
inclusion, apart from complicating the mathematics, has no effect on the predictions of
the theory reported in the next sections. In (2.13), Lc is the correlation length when ν
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exceeds νc. Berzi & Jenkins (2015) showed that

Lc = 1 +
26 (1− ε)

15

νc − 0.49

0.64− νc
; (2.14)

that is, a constant, which contributes to the reproduction of the results in steady,
homogeneous shearing flows, also recently confirmed by direct measurements in numerical
simulations (Oyama et al. 2019).

3. Boundary-value problem

In order to obtain profiles of solid volume fraction, granular temperature, x-velocity, and
stresses and quantitatively compare predictions of EKT with DEM simulations of steady,
confined, incline flows over erodible beds, we have to employ balances of momentum
and fluctuation energy. These, together with the constitutive relations introduced in the
previous section, permit the formulation of a set of differential equations whose solution
requires boundary conditions. In doing this, we distinguish between the collisional flow,
where the pressure is larger than in the ballistic layer above it and the solid volume
fraction is less than the critical, and the erodible bed, where the solid volume fraction
exceeds νc.

3.1. Collisional flow region

In the collisional flow region, the span-wise averaged momentum balances along the z
and x-directions for steady and fully developed inclined flows in the presence of sidewalls
are (Jenkins & Berzi 2010; Gollin et al. 2017):

p′ = −ν cos θ, (3.1)

and

s′ = −ν sin θ + 2
µw
W

p, (3.2)

respectively, where µw is an effective wall friction coefficient, which accounts for the
average force exerted by the sidewalls on the flow (Taberlet et al. 2003). We take µw =
µ
[
1− exp

(
−0.14u/T 1/2

)]
. The reasoning for this is provided in Appendix A. Equations

(3.1) and (3.2) assume that the normal stresses are isotropic and equal to the pressure.
Departures from this assumption are discussed in Appendix B.

In steady, inhomogeneous flows, the balance of the fluctuation kinetic energy is

su′ = Q′ + Γ, (3.3)

where the term on the left hand side represents the energy produced through the work
of the shear stress, while Q′ is the energy diffusion due the velocity fluctuations of the
particles. We ignore the possible flux of energy to or from the walls due to the possible
imbalance between the working of the wall shear stress through the span-averaged flow
velocity and the rate of dissipation of energy in wall collisions (Jenkins 1992). We have
checked that its inclusion has negligible effects on the results.

For inhomogeneous flows in which the volume fraction is greater than 0.49, the balance
of energy corresponds to the non-local, linear equation introduced for the fluidity by
Kamrin and coworkers (Kamrin & Koval 2012; Kamrin & Henann 2015; Zhang & Kamrin
2017). In such flows, the energy balance can be written as a linear equation for T 1/2,
similar to that at lesser densities (e.g., Jenkins 1994), and Zhang & Kamrin (2017) have
recently shown that this measure of the strength of the velocity fluctuations and the
fluidity are equivalent.
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In (3.1), (3.2) and (3.3), we use the constitutive relations of EKT for random aggregates
of soft particles, i.e., (2.1), (2.2), (2.6) and (2.7). This permits us to use a value of the
solid volume fraction arbitrarily close to νc as a boundary condition at the interface with
the erodible bed.

We differentiate (2.1) with respect to z and use it in (3.1) and (2.7) to obtain
the differential equation governing the distribution of the solid volume fraction in the
collisional flow:

ν′ =

[
∂p

∂T

(
1 +

12

5
G

w

k
1/2
n

)
Q− f4wν cos θ

](
∂p

∂ν
f4w −

∂p

∂T
f5w

3

)−1
, (3.4)

where w = T 1/2,

∂p

∂T
= f1

(
1 +

12

5
G

w

k
1/2
n

)−1
− 1

2
f1

12

5
G

w

k
1/2
n

(
1 +

12

5
G

w

k
1/2
n

)−2
, (3.5)

and

∂p

∂ν
=
∂f1
∂ν

w2

(
1 +

12

5
G

w

k
1/2
n

)−1
− f1w2 12

5

∂G

∂ν

w

k
1/2
n

(
1 +

12

5
G

w

k
1/2
n

)−2
. (3.6)

The differential equation that governs the distribution of the shear stress (3.2) becomes,
with (2.1) and the expression for µw,

s′ = −ν sin θ + 2
µ

W

[
1− exp

(
−0.14

u

w

)]
f1w

2

(
1 +

12

5
G

w

k
1/2
n

)−1
. (3.7)

Equation (2.2) gives

u′ =
1

f2

s

w

(
1 +

12

5
G

w

k
1/2
n

)
. (3.8)

The differential equation for the z-component of the energy flux (3.3) becomes, with (2.6)
and (3.8),

Q′ =
1

f2

s2

w

(
1 +

12

5
G

w

k
1/2
n

)
− f3
L
w3

(
1 +

12

5
G

w

k
1/2
n

)−1
, (3.9)

where L is given in (2.8). The governing equation for the distribution of the square root
of the granular temperature is given by (2.7) and (3.4):

w′ = − Q

2f4w2

(
1 +

12

5
G

w

k
1/2
n

)
− f5

2f4
w

[
∂p

∂T

(
1 +

12

5
G

w

k
1/2
n

)
Q− f4wν cos θ

](
∂p

∂ν
f4w −

∂p

∂T
f5w

3

)−1
.(3.10)

Finally, as in Jenkins & Berzi (2010) and Gollin et al. (2017), we define the partial mass
hold-up, m =

∫ z
0
νdz. The differential equation for the partial mass hold-up is, then,

m′ = ν. (3.11)

We require boundary conditions at the top and bottom of the collisional flow. As
already mentioned, Pasini & Jenkins (2005) identified the interface with the ballistic
layer, that is z = h, as the position at which twice the height of a ballistic trajectory,
3T , is equal to the mean free path of kinetic theory,

√
2/(12ν) (Chapman et al. 1990).

With this and (2.1),

ph = 0.039, (3.12)
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where, here and in what follows, the subscript indicates the location at which that
quantity is evaluated. At z = h, the shear stress and the energy flux have been derived
by Jenkins & Hanes (1993) as

sh = ph tan θ (3.13)

and

Qh = −phwh tan2 θ, (3.14)

respectively. Finally, we neglect the contribution of the ballistic layer to the mass hold-up
and take

mh =M. (3.15)

At the interface with the erodible bed, z = δ, as mentioned, we take νδ arbitrarily
close to νc.

3.2. Erodible bed

In the bed, where ν exceeds νc, we use the constitutive relations (2.11) through (2.14).
This implies that velocity fluctuations are also crucial in the erodible bed, where we
assume that “the fluctuating energy supplied at the interface” with the flow region is
“conducted away from this surface, dissipated in collisions, and eventually disappears”
(Jenkins & Askari 1991). That is, because the shear rate is negligible in the bed, we ignore
the production of fluctuation energy associated with it, and assume that the diffusion of
fluctuation energy equals its dissipation:

−Q′ = Γ. (3.16)

The momentum balances (3.1) and (3.2) continue to apply in the bed, with the effective
wall friction coefficient depending on the ratio u/T 1/2 as in the collisional flow. We
differentiate (2.10) with respect to z and use it in (3.1) and (2.13) to obtain the differential
equation governing the distribution of the solid volume fraction in the bed:

ν′ =

[
π1/2 (1 + en)Q

4M∞w
− ν cos θ

] [
5

6
(1 + en) k1/2n w + 0.0006kn

]−1
, (3.17)

We obtain the differential equation governing the distribution of the shear stress in the
bed from (3.2), with (2.10) and the expression for νw:

s′ = −ν sin θ + 2
µ

W

[
1− exp

(
−0.14

u

w

)] [5

6
(1 + en) νk1/2n w + 0.0006 (ν − νc) kn

]
.

(3.18)
We obtain the shear rate in the bed from (2.11) and (2.10):

u′ =
5π1/2(1 + en)

4J∞
sw

[
5

6
(1 + en) νk1/2n w + 0.0006 (ν − νc) kn

]−1
. (3.19)

The distribution of the z-component of the energy flux in the bed is governed by (3.16)
with (2.12),

Q′ = −
5
(
1− ε2

)
ν

π1/2Lc
k1/2n w2, (3.20)

with Lc given in (2.14). The differential equation for the square root of the granular
temperature in the bed is, from (2.13),

w′ = − 3π1/2Q

10νM∞k
1/2
n w

. (3.21)
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Finally, the differential equation governing the distribution of the partial mass hold-up
in the erodible bed is

m′ = ν, (3.22)

as in the collisional flow.
The bottom of the bed, at z = 0, is in contact with a rough, rigid base. There, we

assume the no-slip boundary condition,

u0 = 0; (3.23)

that there is no energy flux injected into or taken from the particles in the bed,

Q0 = 0; (3.24)

and that

m0 = 0. (3.25)

Equations (3.4), (3.7) through (3.11), and (3.17) through (3.22) are a system of 12
differential equations in the 6 variables ν, s, u, Q, w and m evaluated in the collisional
flow and in the bed (12 unknowns). We solve this system using the Matlab ‘bvp4c’ two-
point boundary value problem solver with the boundary conditions (3.12) through (3.15),
(3.23) through (3.25), νδ ≈ νc, and assuming continuity in all six variables at the interface
between the collisional flow and the bed (14 boundary conditions). The two additional
boundary conditions allow the values of the thicknesses of the collisional flow, h− δ, and
of the bed itself, δ, to be determined as part of the solution.

Given that the differential equations are highly nonlinear, the convergence of the
iteration process towards the numerical solution of the system is somewhat delicate;
the initial guess for the distribution of the unknowns must be sufficiently close to
the eventual solution. The Matlab code employed for the solution of the differential
equations and values of the variables that can be used as initial guess are available at
http://intranet.dica.polimi.it/people/berzi-diego/.

4. Comparisons with discrete numerical simulations

We now compare the distributions of various quantities along the z-direction obtained
from the solution to the two-point boundary value problem with those measured in DEM
simulations of inclined flows of inelastic, frictional spheres between frictional sidewalls
(Richard et al. 2019). The discrete element method is based on the soft-sphere approach.
The basic principle of DEM simulations is to treat the particles as spheres (the size of the
particles is mildly poly-dispersed, ±20%, to avoid crystallization) submitted to gravity
and contact forces with both other particles and boundaries. These contact forces are
described by the well-known linear spring–dashpot force model in both normal (spring
stiffness kn, damping γn) and tangential directions (spring stiffness kt, damping γt).
In the tangential direction, the spring elongation is truncated to satisfy Coulomb law.
The following values of the dimensionless parameters are used: kn = 2.94 · 106, kt =
2kn/7, γt = 0 and coefficient of sliding friction µ = 0.5. The value of γn is adjusted
to obtain the desired value of the normal restitution coefficient, en = 0.88, while the
tangential coefficient of restitution is et = 1. The dimensionless stiffness, in units of
ρpgd

2, employed in the DEM simulations is approximately three orders of magnitude
less that the dimensionless stiffness of 1 mm glass spheres, with a Young’s modulus of
the order of 70 GPa.

The simulation chute is a rectangular cuboid which can be inclined relatively to the
horizontal by the angle θ. Its size in the x−direction is equal to 25.3, with periodic
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boundary conditions employed along this direction. Along the z−direction (i.e., normal
to the free surface of the flow), the size of the cell is considered as infinite. Frictional
sidewalls are located at positions y = −W/2 and y = W/2. They are treated as sphere of
infinite radius and mass. Initially, the angle of inclination is set to a large value, θ ≈ 70◦,
and grains are poured in the system from an ordered, slightly dilute, hexagonal compact
packing.

Each component of the dimensionless grains’ velocity is initially randomly and uni-
formly assigned between −1 and +1. The angle was then decreased instantaneously to
the desired value and the system slowly relaxes to a steady and fully developed state that
has no sign of the initial ordered structure. Note that this protocol leads to relatively
loose erodible beds and other protocols (e.g. by initially building a dense static packing
and triggering the flow by suddenly increase the inclination angle) lead to much denser
erodible bases and, thus, likely different results.

For solving the differential problem outlined in the previous section, we employ the
same set of microscopic parameters of the DEM simulations. That is, en = 0.88, et = 1,
µ = 0.5 and kn = 2.94 ·106. Then, the effective coefficient of normal restitution ε = 0.645
(Larcher & Jenkins 2013), while νc = 0.587 (Chialvo et al. 2012).

The mass hold-up M, the angle of inclination, θ, and the channel width, W , are
imposed in the simulations. Here, we limit the comparisons with the simulations to
W = 20 and 30. As shown in Richard et al. (2019), due to the presence of the sidewalls,
flows in channels of width W = 5 and 10 are strongly layered in the span-wise direction.
As already mentioned, all measurements in the simulations are averaged along the span-
wise direction. We exclude from the analysis measurements in the region adjacent to the
rigid bottom, where the solid volume fraction decreases as the base is approached. The
thickness of this region is about five diameters and, within it, the base influences the
coarse-graining. We also exclude measurements in the ballistic layer at the top, where
p < 0.039 (Pasini & Jenkins 2005).

In the following, we report comparisons for three combinations of the control param-
eters: M = 25, θ = 30◦ and W = 30; M = 25, θ = 25◦ and W = 30; and M = 37,
θ = 35◦ and W = 20. Similar agreement, not shown here for brevity, is obtained for all
the DEM simulations performed by Richard et al. (2019) with W = 20 and 30 diameters.

Figure 2a shows that the profiles of pressure are overall well predicted by EKT (the
maximum deviation from the measurements is within 10%), even near the top, where
the anisotropy in the normal stresses is strong (Appendix B), and in the bed, thus
justifying the validity of the constitutive relation (2.10). The pressure is over-predicted
near the bottom for the case W = 20 and θ = 35◦, although the scattering in the
measurements might point to a problem with the coarse-graining procedure there. A
remarkable agreement is obtained also for the distribution of the shear stress (figure
2b). The theory correctly predicts even the deviation from the linear distribution near
the bottom of the erodible bed. Obviously, this is a consequence of the validity of the
expression for the dependence of the effective wall friction coefficient on the ratio u/T 1/2,
that we fit using the measurements, even in the bed. It would have been more desirable
to employ, for µw, the expression derived from the application of the momentum balance
at a flat, frictional wall (Jenkins 1992), with no adjustable parameter. We claim that
this is not possible because we are employing a one-dimensional approximation to an
inherently two-dimensional problem. The non-trivial extension of the present theory to
deal with two-dimensional flows is currently work in progress.

The behaviour of the granular temperature is well-captured by EKT when W = 20 and
θ = 35◦( figure 3). For the other two cases, instead, the theory underpredicts the granular
temperature. Near the top, this has probably to do with the fact that the anisotropy in
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Figure 2: Measured (symbols) and predicted (lines) profiles of (a) pressure and (b) shear
stress for: M = 25, θ = 30◦ and W = 30 (circles and solid line); M = 25, θ = 25◦

and W = 30 (triangles and dashed line); M = 37, θ = 35◦ and W = 20 (crosses and
dot-dashed line).
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Figure 3: Measured (symbols) and predicted (lines) profiles of granular temperature for:
M = 25, θ = 30◦ and W = 30 (circles and solid line); M = 25, θ = 25◦ and W = 30
(triangles and dashed line);M = 37, θ = 35◦ and W = 20 (crosses and dot-dashed line).

the velocity fluctuations is stronger, and a linear kinetic theory that assumes nearly
isotropic velocity fluctuations is not applicable. This is particularly evident for the case
W = 30 and θ = 30◦. We also emphasize that the boundary condition for the pressure
at the top of the flow, (3.12), has been derived for horizontal flows in which the velocity
fluctuations were taken to be isotropic. Both assumptions are violated in the present
flow configurations, and this has consequences on the predictions of both the granular
temperature and the solid volume fraction at the interface with the ballistic layer.

On the other hand, in the core of the flow, the solid volume fraction is slightly
overpredicted (see the later figure 5). The strong dependence on ν of the function f1
in the expression for the pressure of kinetic theory, (2.1), implies that small deviations
in the solid volume fraction result in much larger deviations in T . Despite this, the
exponential decay of T inside the bed (figure 3) is notably reproduced. Near the rigid
base, the measured granular temperature deviates from the exponential decay. This
seems to suggest that the rigid boundary is not actually adiabatic, but acts as a source
of fluctuation energy for the granular material. Capturing this behaviour, although
possible by making use of different boundary conditions at the rigid base, such as
those for granular flows over rigid, bumpy surfaces (Richman 1988), would unnecessarily
complicate the analysis.

EKT can qualitatively and quantitatively reproduce the profiles of x-velocity (figure
4), both in the collisional flow and in the erodible bed. The velocity is less sensitive than
the granular temperature to small deviations in the solid volume fraction in the collisional
flow, because its distribution is governed by the shear stress, which is well predicted, and
the viscosity, which is proportional to the product of the coefficient f2 of kinetic theory
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Figure 4: Measured (symbols) and predicted (lines) profiles of x-velocity for: M = 25,
θ = 30◦ and W = 30 (circles and solid line); M = 25, θ = 25◦ and W = 30 (triangles
and dashed line); M = 37, θ = 35◦ and W = 20 (crosses and dot-dashed line).

and the square root of the granular temperature (see equation 2.2). Overestimations in
f2 and underestimations in T compensate each other, so that the agreement between
the theory and the measurements is remarkable. The well-known exponential decay of
the velocity in the erodible bed is also notably predicted (figure 4). The fact that only
nonlocal approaches were previously able to reproduce this feature (Kamrin & Koval
2012; Zhang & Kamrin 2017), reinforces our interpretation of the nonlocal rheology as a
special case of EKT.

Finally, the agreement between the predicted and measured profiles of solid volume
fraction is excellent (figure 5). As anticipated, the volume fraction is slightly overpredicted
in the dense region of the collisional flow, say where the volume fraction is comprised
between 0.5 and νc. These small deviations, of order 1%, are sufficient to cause the
sensible deviations in the granular temperature shown in figure 3, as already pointed
out. Given that the distribution (3.4) of the volume fraction depends on the fluctuation
energy flux, this might suggest that the expression for the latter could be improved in
future works.

5. Conclusions

We have focused on steady and fully developed, inclined, collisional shearing flows of
frictional spheres confined between flat, frictional sidewalls in situations in which the
amount of particles in the system is sufficient to develop erodible beds. The bed is the
region in which the solid volume fraction exceeds the critical value for the development
of rate-independent components of the stresses. Existing results of Discrete Element
simulations demonstrate that the flow above the erodible bed is inherently collisional:
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Figure 5: Measured (symbols) and predicted (lines) profiles of solid volume fraction for:
M = 25, θ = 30◦ and W = 30 (circles and solid line); M = 25, θ = 25◦ and W = 30
(triangles and dashed line);M = 37, θ = 35◦ and W = 20 (crosses and dot-dashed line).

interactions are essentially binary and stresses originate from momentum exchange in
collisions. We have employed the constitutive relations of Extended Kinetic Theory,
which accounts for strong collisional inelasticity, friction, velocity correlation at volume
fraction larger than the freezing point, and finite duration of particle contacts, to close
the balances of momentum and fluctuation energy in the collisional flow.

In the bed, rate-independent stresses proportional to the particle stiffness develop,
although much weaker than the rate-independent stresses that would characterize steady
and fully developed, homogeneous shearing flows at the same volume fraction. However,
the numerical simulations show that velocity fluctuations do persist in the erodible bed.
Assuming that the production of velocity fluctuations through the working of the shear
stress is negligible in the erodible bed, taking the frequency of collisions inversely propor-
tional to the contact duration in the expressions for the rate-dependent components of
pressure and shear stress, the fluctuation energy flux and the collisional dissipation rate
allowed us to obtain numerical distributions of stresses, granular temperature, velocity,
and volume fraction that fit well to those measured in the numerical simulations. The
boundary conditions at the top of the collisional flow were already available in the
literature, while we employed simple boundary conditions, no slip and zero energy flux,
at the bottom of the bed. To treat the flow as unidimensional, we modelled the frictional
sidewalls as additional tangential stresses. We took them as proportional to the particle
pressure through a function of the local ratio between the slip velocity at the walls and
the square root of granular temperature, as suggested by existing boundary conditions
for the collisional flow of particles over a flat, frictional surface. In that expression there
is a parameter that we fit to the measurements.
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The comparisons between the numerical solution of the present model and the results
of discrete numerical simulations for different values of particle mass per unit basal
area, channel widths and inclinations are remarkable, given that the only parameters
of the model are the coefficients of normal and tangential restitution, sliding friction,
normal stiffness, and the fitting parameter in the expression for the effective wall friction
coefficient. Extensions of the theory to fully two-dimensional flows should eliminate the
need for the latter. The limited number of physically accessible parameters of the model
and its capability of reproducing distributions of stresses, volume fractions, velocity and
granular temperature, ranging from dilute to extremely dense conditions, are strong
arguments in favor of EKT when dealing with granular flows. It remains to better
understand the nature of the erodible bed, in particular its micro-structure, in relation
to both the constitutive relations for the stresses and the balance of fluctuation energy
there.

Declaration of Interests. The authors report no conflict of interest.

Appendix A. Effective wall friction

In (3.2), the effective wall friction coefficient is usually taken to be constant (Taberlet
et al. 2003; Jop et al. 2005; Jenkins & Berzi 2010; Gollin et al. 2017), for simplicity. If all
particle-wall contacts are sliding, µw would be equal to the actual wall-particle sliding
friction coefficient, i.e., 0.5 in the DEM simulations of Richard et al. (2019). However,
it has been shown that µw is not constant and actually decreases towards the erodible
bed (Richard et al. 2008), because, as the bed is approached, rolling contacts between
the particles and the walls become dominant.

Boundary conditions for the flows of grains over a flat, frictional surface have been
derived in the context of kinetic theory (Jenkins 1992). There, the slip velocity of the
point of contact between the particles and the wall scaled by the square root of the
granular temperature is related to the ratio of the normal to the tangential stress at the
wall, through a function of the normal and tangential coefficients of restitution and the
coefficient of sliding friction. Jenkins (1992) obtained

µw = min

(√
3

7

1 + et
1 + en

u

T 1/2
, µ

)
, (A 1)

which is a combination of two limits: no sliding (all rolling) for small u/T 1/2 and all
sliding (no rolling) for large u/T 1/2. To better capture the transition between those two
extremes, Louge (1994) suggested a fit of the form

µw = µ
[
1− exp

(
−C u

T 1/2

)]
, (A 2)

where C is a constant that depends on en, et and µ. With the restitution and friction
coefficients of the DEM simulations of Richard et al. (2019), we obtain C = 0.46.
However, the analysis of Louge (1994) was limited to values of µ 6 0.4 and et 6 0.6,
and indeed does not satisfactorily reproduce the effective wall friction measured in
the DEM simulations (figure 6). The latter has been obtained from (3.1) and (3.2)

as µw =
(

tan θ − ds
dp

)(
Wν cos θ

2p

)
and excluding regions of the flows in which the first

normal stress difference was larger than 0.3, thus limiting the scattering associated with
flow anisotropy. With C = 0.14 instead of 0.46, (A 2) can satisfactorily reproduce the
measurements (figure 6). We emphasize that the fitted value of C takes also into account
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Figure 6: Measured (circles) effective wall friction coefficient as a function of the scaled
x-velocity in the DEM simulations of steady, confined incline flows at different widths and
angles of inclination. Also shown are the predictions of Jenkins (1992) (A 1, dot-dashed
line) and Louge (1994) (A 2 with C = 0.46, dashed line), and the present suggestion (A 2
with C = 0.14, solid line).

the role of the gradients along the span-wise direction that we neglect in our approximate
unidimensional treatment of the flows.

Appendix B. Normal stress differences

Equations (3.1) and (3.2) assume that the normal stresses are isotropic and equal to
the pressure. Actually, anisotropy in the stress tensor is typical of granular flows, even
in steady, homogeneous conditions (Saha & Alam 2016). In dilute flows, anisotropy in
the velocity fluctuations is pronounced because of the long distances traveled between
collisions and the resulting changes in momentum between the flow and normal directions
(Jenkins & Richman 1988). In dense flows, it has more to do with the difference between
collisions in the plane and out of the plane of shearing.

Figure 7 depicts the relation between the first normal stress difference N1, that is
the difference between the normal stress in the x-direction and that in the z-direction
divided by the pressure, and the solid volume fraction measured in the DEM simulations
of Richard et al. (2019). The measurements were taken at different widths, mass hold-
ups and angles of inclinations. In particular, for: M = 25, W = 30 and θ = 24◦, 25◦, 28◦

and 30◦; and for M = 37, W = 20 and θ = 30◦, 35◦, 40◦ and 45◦. The flows are highly
anisotropic, especially in the dilute region at the top, i.e., where ν < 0.2. There, the value
of N1 is much larger than what measured in DEM simulations of steady, homogeneous
shearing of frictionless spheres (Saha & Alam 2016). The first normal stress difference
decreases with increasing volume fraction, and can even change sign in the erodible bed,
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Figure 7: Measured (circles) first normal stress difference as a function of solid volume
fraction in the DEM simulations of steady, confined incline flows at different widths, mass
hold-ups and angles of inclination.

as first observed in dense, simple shear flows of disks (Alam & Luding 2003). The EKT
described in the present paper is a linear theory that does not account for the anisotropy
in the particle velocity distribution and might, therefore, fail in the dilute region. It
is possible to include nonlinear terms in EKT (Berzi & Jenkins 2018), but this would
complicate things further, and make the present analysis less transparent.
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