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Abstract— Health condition analysis and diagnostics of rotating machinery requires the capability of 

properly characterizing the information content of sensor signals in order to detect and identify possible 

fault features. Time-frequency analysis plays a fundamental role, as it allows determining both the 

existence and the causes of a fault. The separation of components belonging to different time-frequency 

scales, either associated to healthy or faulty conditions, represents a challenge that motivates the 

development of effective methodologies for multi-scale signal decomposition. In this framework, the 

Empirical Mode Decomposition (EMD) is a flexible tool, thanks to its data-driven and adaptive nature. 

However, the EMD usually yields an over-decomposition of the original signals into a large number of 

intrinsic mode functions (IMFs). The selection of most relevant IMFs is a challenging task, and the 

reference literature lacks automated methods to achieve a synthetic decomposition into few physically 

meaningful modes by avoiding the generation of spurious or meaningless modes. The paper proposes a 

novel automated approach aimed at generating a decomposition into a minimal number of relevant modes, 

called Combined Mode Functions (CMFs), each consisting in a sum of adjacent IMFs that share similar 

properties. The final number of CMFs is selected in a fully data driven way, leading to an enhanced 

characterization of the signal content without any information loss. A novel criterion to assess the 

dissimilarity between adjacent CMFs is proposed, based on probability density functions of frequency 

spectra. The method is suitable to analyze vibration signals that may be periodically acquired within the 

operating life of rotating machineries. A rolling element bearing fault analysis based on experimental data 

is presented to demonstrate the performances of the method and the provided benefits.  

Keywords: Empirical Mode Decomposition, Combined Mode Functions, Vibration, Bearing, 

Fault Detection 
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Nomenclature 𝐵𝑆𝐹  Ball Spin Frequency 𝑐𝑖(𝑡)  ith IMF extracted from the signal 𝑌(𝑡), 𝑖 = 1, … , 𝑛,   𝑐𝑠𝑘(𝑡)   kth sequential CMF extracted from the signal 𝑌(𝑡), 𝑘 = 1, … , 𝑛 𝑐𝑠𝑘∗ (𝑡)  kth final CMF extracted from the signal 𝑌(𝑡), 𝑘 = 1, … , 𝐾 𝐶𝑀𝐹  Combined Mode Function 𝐷𝑘,𝑘+1  distance (dissimilarity) between the kth and the (k+1)th IMFs from 𝑌(𝑡) 𝐸𝑀𝐷  Empirical Mode Decomposition 𝐸𝐸𝑀𝐷  Ensemble Empirical Mode Decomposition 𝑛  Number of IMFs extracted from the signal 𝑌(𝑡) 𝑓(𝑥)  probability density function of random process 𝑥(𝑡) 𝑓(𝑥)  kernel estimator of the probability density function of random process 𝑥(𝑡) 𝐹𝑠  sampling frequency 𝐹𝐹𝑇  Fast Fourier Transform 𝐹𝑇𝐹  fundamental train frequency ℎ  bandwidth of the kernel function ℎ̂  optimal bandwidth of the kernel function ℎ𝑢(𝑡)  difference between the signal 𝑌(𝑡) and 𝑚𝑢(𝑡), at uth step of the sifting algorithm 𝐾∗  number of iteratively generated CMFs  𝐾  final number of CMFs extracted from the signal 𝑌(𝑡) 𝐾𝑒𝑟(𝑥) kernel function 𝐼𝑀𝐹  Intrinsic Mode Function 𝑀  number of peaks in the 𝐷𝑘,𝑘+1 function 𝑚𝑢(𝑡)  mean of envelopes at the uth step of the sifting algorithm 𝒑  vector of “locations” 𝑘 corresponding to peaks in the 𝐷𝑘,𝑘+1 function �̃�  vector 𝒑 with elements sorted in descending peak amplitude order 𝑃𝐷𝐹  probability density function 𝑞𝑘  number of IMFs included into the kth CMF, 𝑘 = 1, … , 𝐾 𝑟𝑖  normalized sample correlation coefficient between 𝑌(𝑡) and the ith IMF 𝑟𝑛(𝑡)  residue of the EMD for the signal 𝑌(𝑡) 𝑟𝑚𝑠  root mean square 𝑆𝑆𝐵(𝐾∗) sum-of-squares between the 𝐾∗ CMFs from 𝑌(𝑡) 
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 𝑆𝑆𝑊(𝐾∗) sum-of-squares within the 𝐾∗ CMFs from 𝑌(𝑡) 𝑇  time window length 𝑡𝑜𝑙  tolerance threshold 𝑈𝐶𝑉  Unbiased Cross Validation 𝑈𝐶𝑉𝑘(ℎ̂) unbiased cross-validation statistic for kth CMF from 𝑌(𝑡), with bandwidth ℎ̂ 𝑤𝑘(𝜔)  weight function in the PDF for the kth CMF from 𝑌(𝑡) 𝑥𝑘(𝜔)  amplitude of frequency spectrum of the kth CMF from 𝑌(𝑡) 𝑌(𝑡)  vibration signal 𝜆  threshold used in the index-based approach for IMF selection 𝜌(∙,∙)  sample cross-correlation coefficient 𝜔  frequency location 

 

1 Introduction 

Sensor signals involved in health condition analysis of rotating machinery usually exhibit a multi-

scale information content, due to the superimposition of features on different time-frequency scales, 

either stationary or non-stationary. Typical rolling bearing faults are caused by localized defects that 

generate impact vibrations. Thus, time-frequency analysis is a powerful approach to characterize both 

the time of impacts and the corresponding frequency ranges. Empirical Mode Decomposition (EMD) 

gained increasing influence in the technical literature to this aim. This kind of analysis relies on a 

decomposition of vibration signals into their embedded modes. Signal decomposition is a critical step 

that strongly influences the capability of isolating fault features and determining the health condition 

of the system. The achievement of a good characterization of the multi-scale content of the signal is 

of great importance to detect and diagnose faulty conditions in order to reduce plant downtime and 

to rapidly react to performance worsening caused by degraded states of the machine components. 

Although several multi-resolution techniques may be applied to this aim [1 – 2], the achievement of 

a synthetic decomposition into a minimal number of physically meaningful and interpretable 

oscillation modes still represents an open issue. In some cases, a number of decomposition levels is 

imposed a-priori and the signal is reconstructed by applying level-dependent thresholding techniques 

[3]. In many practical applications, the signal is first decomposed into a number of scales (usually 

larger than the one required to describe the relevant content), and a subset of modes of interest is then 

selected [4 – 6]. However, this latter approach yields a potential information loss. Furthermore, mode 
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selection may be a troublesome task in practice, being usually based on the human expert’s knowledge 

and difficult to apply in an automatic way. Among time-frequency analysis techniques, the EMD 

proposed by Huang et al. [7] has several attractive properties that make it suitable to fault detection 

and diagnosis problems. The EMD is a nonparametric, data-driven and adaptive method that allows 

decomposing any signal into a number of Intrinsic Mode Functions (IMFs), without any prior basis 

selection. Due to its data-driven nature, the number of IMFs may vary over time, when the EMD is 

applied to periodically acquired signals. As an example, a higher frequency content in vibration 

signals caused by a defective bearing may lead to a larger number of IMFs than the ones extracted 

from the signal under healthy conditions, due to increased frequency ranges and energy levels [8]. In 

addition, the sifting algorithm is known to be affected by the so-called “mode mixing” problem [9], 

which may cause either a splitting of one intrinsic mode into two (or more) adjacent IMFs, or a 

merging of different scales into a single IMF. The EMD usually yields an over-decomposition of the 

signal, which can be inflated by the mode mixing effect and/or by the specific choice of the stopping 

criterion, leading to the presence of IMFs with no physical meaning. The introduction of the Ensemble 

Empirical Mode Decomposition (EEMD) [9] helped to mitigate mode mixing effects, but the EEMD 

is not able to avoid the over-decomposition imposed by the sifting algorithm. As a matter of fact, the 

literature devoted to the EMD and other multi-scale analysis methods lacks automated approaches 

for the achievement of a synthetic decomposition into a minimal number of relevant and interpretable 

modes. The combination of adjacent IMFs into the so-called Combined Mode Functions (CMFs) was 

proposed to synthetize the signal decomposition and to cope with split modes [6]. Such a combination 

can be interpreted as a new adaptive filter bank, which has the benefit of increasing the EMD accuracy 

[6]. Nevertheless, the literature lacks methods to automatically determine which IMFs should be 

summed together, because the proposed procedures rely on a visual inspection of the IMFs and the 

choice of problem-dependent criteria [5, 10 – 12]. 

The development of automated and data-driven tools to enhance the signal decomposition is expected 

to provide multiple benefits: (i) it may speed up the fault detection and diagnosis by improving the 

expert’s decisional process, (ii) it may simplify (or even avoid) the selection of single modes of 

interest, and (ii) it allows implementing in-process monitoring functionalities.  

This paper proposes a novel and automated approach to enhance signal decomposition via EMD, 

which is suitable for vibration signal analysis. The methodology works by automatically converting 

the original IMFs into a minimal number of CMFs. It consists in combining together adjacent IMFs 

such that the final CMF decomposition allows capturing distinct signal features via a parsimony-

oriented procedure. Each eventually generated CMF consists in adjacent IMFs with similar spectral 
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properties described in terms of the probability density function of their frequency spectrum. The 

optimal number of CMFs is selected by minimizing the dissimilarity between IMFs included into the 

same CMF. 

This paper represents a follow-on of a previous study authored by Grasso et al. [13], which proposed 

an EMD-based approach for in-process monitoring of multi-scale signals. Those authors highlighted 

the need for an effective and automated approach to achieve a synthetic and suitable separation of the 

CMFs, by showing that monitoring performances may be considerably influenced by the final CMF 

decomposition [13]. 

The performances of the method are discussed by means of experimental data acquired in a rolling 

element bearing diagnostics application. Vibration signals under both healthy and faulty conditions 

are processed in order to demonstrate the benefits of the proposed methodology and possible critical 

issues that deserve future research. A comparison with benchmark EMD-based analysis is presented, 

to further highlight the potential of the proposed approach. 

Section 2 introduces a real case study devoted to the fault analysis of an evolving faulty state of a 

rolling element bearing; Section 3 briefly reviews the theoretical background of EMD and CMF 

methodologies; Section 4 presents the proposed approach; Section 5 demonstrates the application of 

the proposed methodology in the rolling element bearing fault analysis application; Section 6 

eventually concludes the paper.   

 

2 A real case study 

The experimental data employed in this paper are relative to the condition monitoring of a 

NU1040M1 cylindrical roller bearing installed on the driven end of a stubby shaft in a test-rig 

employed for endurance testing (bearing A in Fig 1). The non-driven end is equipped by a spherical 

roller bearing, while a variable direction in the vertical plane and magnitude load (0-67.32 kN) is 

applied on the central part of the stubby shaft. The housings of the two bearings at the end of the 

stubby shaft can be independently moved in vertical.  
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 Fig. 1 – Bearing A on the stubby shaft of the test-rig 

A long run-in has been performed (about 5 millions of bearing cycles from the beginning of the 

experimental activity), with the two seats aligned and load magnitudes within the bearing design and 

equal to 13.323 kN, at constant  shaft rotational speed of 970 rpm. Then, an angular misalignment of 

the shaft with respect to the bearing housing of about 0.5° has been imposed. In this operating 

condition, a local overload of bearing A occurred, boosting the intentional premature failure of the 

bearing. Bearing A was monitored by a dual-probe (accelerometer and temperature sensor) SKF – 

CMSS 786T-IS and the data are acquired by using a NI PXI-1042Q chassis with a NI PXI-4472 board 

with sampling rate of 20 kS/s. 

 

Fig. 2  - Rollers and cage of the damaged bearing after dismounting 
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Table 1 – Signals acquired in the real case study and corresponding epochs of machine bearing life  

Data-sets Epoch (millions of cycles) 𝑌1(𝑡) 2.03 𝑌2(𝑡) 27.5 𝑌3(𝑡) 34.4 𝑌4(𝑡) 36.2 𝑌5(𝑡) 38.4 𝑌6(𝑡) Faulty bearing replaced by new one 

 

Failure of bearing A occurred after a little less than 39 millions of bearing cycles from the beginning 

of the experimental activity, when high level of vibrations had been detected by the sensor. Visual 

inspection revealed the heavy deformed brass cage shown in Fig. 2 and the presence of metal debris 

mixed with oil residue. Flaking was also present on the roller surface.  

  

Fig. 3 – 𝑟𝑚𝑠 of bearing vibration signals 𝑌1(𝑡), … , 𝑌6(𝑡) 

Whilst the vibration data of bearing A are available for all the test campaign, the data used in this 

paper  refer to five different epochs of the machine life (see Table 1), from a healthy bearing condition 

to a severely faulty state before the substitution of the component. One additional data set was 

acquired after the installation of a new bearing, following the maintenance intervention. The row 

signals of the data sets, denoted by 𝑌𝑗(𝑡), where 𝑗 = 1, … ,6,  correspond to 6 successive acquisitions 

within a time window of length 𝑇 = 5 𝑠. 
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Fig. 4 – Frequency spectra of bearing vibrations signals 𝑌1(𝑡), … , 𝑌6(𝑡) 

Fig. 3 shows the growth of the signal 𝑟𝑚𝑠 during the epochs described in Table 1. The 𝑟𝑚𝑠 remains 

about constant for signals 𝑌1(𝑡), 𝑌2(𝑡) and 𝑌3(𝑡), and it starts growing for signal 𝑌4(𝑡). The frequency 

spectra and the envelope spectra of the signals are shown in Fig. 4 and Fig. 5, respectively. Fig. 4 

shows that the frequency content of the signal strongly changes passing from 𝑌3(𝑡) to 𝑌4(𝑡). In 𝑌4(𝑡) 

the energy of the signal shifts towards the low frequency range, being dominated by the Fundamental 

Train Frequency (FTF) at about 7.28 𝐻𝑧 and its multiples. Fig. 5 shows the modulating effect 

imposed by the Ball Spin Frequency (BSF) at about 78.42 𝐻𝑧 in 𝑌4(𝑡), and it also shows that such a 

modulation is already evident in 𝑌3(𝑡), which suggests that defects were present before the growth of 

the signal 𝑟𝑚𝑠. Generally speaking, the 𝑟𝑚𝑠 provides no information about the time-frequency 

content of the signal, which means that it is not suitable for diagnostic purposes, but it is also poorly 

reliable for the early detection of a defect onset. In 𝑌5(𝑡) the modulation of the fundamental rotation 

frequency (1𝑥) predominates the envelope spectrum. When signal 𝑌5(𝑡) was acquired, the rolling 

element bearing was already in a severely faulty state, which justified its replacement. 

The peaks at 𝑓 = 193.8 𝐻𝑧 (visible in signals 𝑌1(𝑡), 𝑌2(𝑡), 𝑌3(𝑡) and 𝑌6(𝑡)), 𝑓 = 211 𝐻𝑧 (mainly 

visible in signal 𝑌3(𝑡)), and 𝑓 = 228.4 𝐻𝑧 (mainly visible in signal 𝑌3(𝑡)) correspond to 12𝑥, 13𝑥 

and 14𝑥 components, respectively. They are related to the inverter of the electrical motor driving the 

test rig. 
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Fig. 5 – Envelope spectra of bearing vibrations signals 𝑌1(𝑡), … , 𝑌6(𝑡) 

 

3 Theoretical background 

Typical rolling element bearing defects modify the time-frequency content of vibration signals by 

affecting specific embedded oscillation modes, which motivates the use of multi-scale decomposition 

methods. Wavelet analysis represents one of the most employed signal processing techniques in a 

wide range of applications. Nevertheless, it is known to have different deficiencies [14 – 15] that 

reduce its effectiveness for rolling bearing fault detection, e.g., due to the incapacity of achieving fine 

resolutions in both time and frequency (i.e. scale) domains, simultaneously. In addition, the wavelet-

based decomposition relies on the prior definition of a basis function (the mother wavelet) and other 

problem-dependent parameters to design a machine health monitoring and diagnosis tool. On the 

contrary, the EMD was proposed as a nonparametric alternative to the time-frequency methods [7]. 

It is a data-driven and adaptive technique that has a notable potential for automated inspections and 

in-process monitoring applications. In addition, the Hilbert-Huang spectrum, based on the EMD, 

allows one to overcome the simultaneous time and frequency resolution problem, providing a more 

effective alternative to wavelet analysis for rolling bearing diagnostics [15]. The use of EMD (or its 

variants) for bearing fault detection and diagnosis was investigated by several authors, including [6, 
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8, 16 – 18].  A review of the literature devoted to the application of EMD in rotating machinery 

diagnosis was presented by Lei et al., [19].   

The EMD methodology exploits the so-called “sifting” algorithm [7] to decompose a signal 𝑌(𝑡), into 

a number 𝑛 of IMFs, which work as basis functions, and a residual term as follows: 

𝑌(𝑡) = ∑ 𝑐𝑖(𝑡)𝑛
𝑖=1 + 𝑟𝑛(𝑡) (1) 

where 𝑐𝑖(𝑡) is the 𝑖𝑡ℎ IMF and 𝑟𝑛(𝑡) is the residue obtained after extracting 𝑛 IMFs. 

A brief review of the sifting algorithm is presented in Appendix A. By way of example, Fig. 6 shows 

the EMD of signal 𝑌1(𝑡), i.e., the first bearing vibration signal considered, which corresponds to 

healthy conditions in the case study introduced in Section 1, whereas Fig. 7 shows the EMD of signal 𝑌4(𝑡), i.e., the one corresponding to a faulty condition and an increase of the vibration 𝑟𝑚𝑠.  

 

Fig. 6 – Empirical mode decomposition of bearing vibration signal 𝑌1(𝑡) – healthy conditions 

Notice that the number of IMFs extracted from the two signals, denoted by 𝑛1 and 𝑛4, are different. 

In particular, the higher frequency content caused by the presence of defects yields, in this case, a 

larger number of IMF, 𝑛4 = 21, than the one under healthy conditions, 𝑛1 = 17. However, the 

number of IMFs is influenced by many additional factors, including the possible splitting or merging 
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of embedded modes caused by the mode mixing effect, which is influenced by the intermittency and 

noise properties of the signal itself. Fig. 7 clearly shows the defect-induced impacts on the vibration 

signal on different scales, which are absent in the EMD shown in Fig. 6. Nevertheless, the EMD 

results in an over-decomposition of the signals. The decomposition of both 𝑌1(𝑡) and 𝑌4(𝑡) generated 

some low-amplitude and meaningless-frequency components in the higher-order range of IMFs, i.e., 

the order that captures lower frequency regions. The presence of spurious modes further complicates 

the analysis and reduces the accuracy of fault feature extraction.  

 

Fig. 7 – Empirical mode decomposition of bearing vibration signal 𝑌4(𝑡) – faulty conditions 

The decomposition can be enhanced by avoiding the mode mixing effect. To this aim, Wu and Huang 

[9] proposed the EEMD approach, which consists in defining the “true” IMFs as the mean of an 

ensemble of trials, each one involving a sum of a white noise of finite amplitude to the original signal. 

The main limitation of EEMD is its high computational cost, because it requires the computation of 

a sufficient number of ensemble trials. Although some more efficient variants of the EEMD were 

proposed [20], the computational cost is still considerably higher than the one of the basic EMD. In 

addition, the usage of the EEMD methodology is not sufficient to avoid the over-decomposition of 

the signal, and post-processing analysis (often visual inspection) are usually applied to select and 

isolate relevant IMFs. 
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A more interesting and effective approach, to enhance the diagnostic relevance of the decomposition 

and to achieve a more synthetic representation of actually significant embedded modes, is the CMF 

approach [6]. This method consists in summing up adjacent IMFs 𝑐𝑖(𝑡), 𝑐𝑖+1(𝑡), … , 𝑐𝑖+𝑞𝑘−1(𝑡) to 

obtain a new CMF, 𝑐𝑠𝑘(𝑡), as follows: 𝑐𝑠𝑘(𝑡) = 𝑐𝑖(𝑡) + 𝑐𝑖+1(𝑡) + ⋯ + 𝑐𝑖+𝑞𝑘−1(𝑡),   𝑘 = 1, … , 𝐾 (2) 

where 𝑞𝑘 is the number of IMFs combined into the 𝑘𝑡ℎ CMF, 𝑘 = 1, … , 𝐾, being 1 ≤ 𝑞𝑘 ≤ 𝑛 and 𝐾 ≤ 𝑛. The combination of adjacent IMFs allows one to cope with the over-decomposition produced 

by the sifting algorithm and the splitting of intrinsic modes into multiple IMFs. Gao et al. [6] showed 

that such a combination of subsets of IMFs can be interpreted as a new adaptive filter bank based on 

the intrinsic time scales of the signal, which is expected to increase the EMD accuracy. The aim is to 

convert the starting decomposition described by 𝑛 IMFs, 𝑐𝑖(𝑡), 𝑐2(𝑡), … , 𝑐𝑛(𝑡), into a more synthetic 

decomposition described by 𝐾 < 𝑛 CMFs, 𝑐𝑠1(𝑡), 𝑐𝑠2(𝑡), … , 𝑐𝑠𝐾(𝑡). The transformation implies not 

only an information synthesis, but also the capability of separating IMFs characterized by different 

properties and grouping together IMFs that shares similar patterns, leading to a better interpretation 

of underlying phenomena by means of a clustering-like procedure.   

Grasso et al. [13] showed that the CMF methodology may be exploited to design signal monitoring 

techniques and, at the same time, to achieve a better characterization of fault effects on different 

scales. Nevertheless, the selection of the number 𝐾 of final CMFs, together with the determination of 

which IMFs should be summed up together in each CMF still represent two open issues. A criterion 

based on local frequency changes captured by the instantaneous frequencies of IMF was proposed by 

Gao et al. [6]. This criterion is suitable to identify adjacent IMFs that share similar instantaneous 

frequency pattern, but it is not suitable for automatic implementation, as it relies on visual inspection 

of the IMFs. The selection of subsets of IMFs has attracted the attention of different authors, either 

for signal de-noising, de-trending or band-pass filtering. The mainstream methods are based on the 

computation of synthetic indexes [4 – 5, 10 – 12], but they share different limitations: (i) the selection 

of the most suitable index is a problem-dependent issue, (ii) there is a lack of automated ways to 

define thresholds associated to those indexes, apart from few heuristic solutions, and (iii) most of 

those methods are typically inapplicable when multiple groups of IMFs are of practical interest. These 

limitations, coupled with the potential benefits of enhancing the multi-scale decomposition via a 

CMF-based procedure, represent the motivation for the present study.  
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4 The proposed methodology 

Let 𝑌(𝑡) be a signal acquired within a time window 𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑠𝑡𝑜𝑝] with same sampling frequency, 𝐹𝑠, and decomposed into 𝑛 IMFs.  

The proposed approach is aimed at automatically reducing the 𝑛 IMFs into a number 𝐾 < 𝑛 of CMFs 

that are expected to better represent the multi-scale content of the signal, via a parsimony-driven 

procedure. The proposed approach for CMF computation involves four consecutive steps: (i) 

preliminary computation of sequential CMFs, denoted by 𝑐𝑠𝑘(𝑡), 𝑘 = 1, … , 𝑛, (ii) computation of a 

dissimilarity index to determine a possible separation of IMFs into fewer CMFs, denoted by 𝑐𝑠𝑘∗ (𝑡), 𝑘 = 1, … , 𝐾∗, (iii) iterative decomposition into different numbers 𝐾∗ of CMFs, and (iv) determination 

of the optimal number 𝐾 < 𝑛 of final CMFs, 𝑐𝑠𝑘∗ (𝑡).  

 

Fig. 8 – Conceptual scheme of the proposed approach  

Notice that two CMF decompositions are successively generated. The first one, called “sequential 

CMF” decomposition and denoted by {𝑐𝑠𝑘(𝑡), 𝑘 = 1, … , 𝑛}, implies no dimensionality reduction with 

respect to the EMD. The second one, called “final CMF” decomposition and denoted by {𝑐𝑠𝑘∗ (𝑡), 𝑘 = 1, … , 𝐾}, is the final result of an iterative procedure aimed at finding the best compromise 

between information synthesis and separation of relevant modes. 
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A conceptual scheme of the proposed approach is depicted in Fig. 8. 

Once the EMD has been applied to the input signal 𝑌(𝑡), the first step consists in an iterative 

computation of sequential CMFs {𝑐𝑠𝑘(𝑡) = ∑ 𝑐𝑖(𝑡); 𝑘 = 1, … , 𝑛𝑘𝑖=1 }, such that the 𝑘𝑡ℎ CMF is the 

sum of all the IMFs, 𝑐𝑖, from the first one to the 𝑘𝑡ℎ one, i.e., each CMF is simply generated by adding 

one IMF to all the previous ones. The resulting decomposition into 𝑛 CMFs is then used to determine 

if the addition of a higher order IMF to the lower order ones yields a significant modification of the 

spectral properties. Assume that by adding the 𝑖𝑡ℎ IMF, 𝑐𝑖(𝑡), to a CMF that consists in the sum of 

all the previous IMFs, 𝑐𝑠𝑖−1(𝑡) = 𝑐1(𝑡) + ⋯ + 𝑐𝑖−1(𝑡), no significant change of the frequency 

spectrum is observed. This means that the 𝑖𝑡ℎ IMF does not provide any novel information with 

respect to 𝑐𝑠𝑖−1(𝑡), and hence it may be added to the previous IMFs. On the contrary, if the addition 

of the 𝑖𝑡ℎ IMF yields a significant change of the spectral properties, an embedded scale change is 

detected, and an enhanced signal decomposition may be achieved by separating 𝑐𝑖(𝑡) from 𝑐𝑠𝑖−1(𝑡).  

It is clear that the CMF separation mechanism requires a criterion to decide when a scale change 

occurs, i.e., when the information captured by one IMF is significantly different from the one captured 

by the sum of previous IMFs. In our proposed approach, such a decision exploits a dissimilarity 

measure that is based on the probability density functions (PDFs) of CMF frequency spectra. The 

higher is the dissimilarity between the PDFs of two frequency spectra, the higher is the benefit of 

separating the corresponding modes to achieve a meaningful final decomposition. The dissimilarity 

statistic between 𝑐𝑘(𝑡) and 𝑐𝑠𝑘−1(𝑡) will be denoted by 𝐷𝑘,𝑘−1. The rationale for the choice of a PDF-

based criterion and the details of the proposed procedure are discussed in sub-section 4.1.  

Every local peak in the dissimilarity function 𝐷𝑘,𝑘−1 represents a potential scale change, and hence a 

potential separation into distinct CMFs 𝑐𝑠𝑘∗ (𝑡). Generally speaking, the number of potential CMFs is 

upper-bounded by 𝑀 + 1, where 𝑀 is the number of local maxima of the dissimilarity function, 𝐷𝑖,𝑖−1. Thus, multiple potential decompositions {𝐶𝑀𝐹𝑘∗; 𝑘 = 1, … , 𝐾∗}, where 𝐾∗ = 1, … , 𝑀 + 1 are 

possible. Because of this, the last step of the proposed method consists in an automated way to decide 

the optimal number, 𝐾, of final CMFs. The underlying idea consists in computing two sum-of-squares 

statistics that describes the variability within and between the CMFs (respectively called “sum-of-

squares within CMFs”, denoted by 𝑆𝑆𝑊(𝐾∗) and “sum-of-squares between CMFs”, denoted by 𝑆𝑆𝐵(𝐾∗)) and to select the minimum number 𝐾 that corresponds to the best compromise between 

them. The methodology is explained in sub-section 4.3. The final result is a decomposition into 𝐾 ≤𝑛 CMFs, 𝑐𝑠𝑘∗ (𝑡), which are expected to synthetically capture distinct embedded modes. 



15 

4.1. Dissimilarity computation between consecutive CMFs 

The sequential CMF decomposition represents a suitable source of information to decide whether 

each IMF, 𝑐𝑖(𝑡), introduces a relevant scale change with respect to the sum of previous ones, 𝑐𝑠𝑖−1(𝑡), 

or it may be included into the former CMF without distorting its spectral properties.  

The methodology is illustrated by means of an example. Let 𝑌(𝑡) be a signal composed by a white 

noise terms and a superimposition of two frequency components at 𝑓1 = 15 𝐻𝑧 and 𝑓2 = 75 𝐻𝑧, 

respectively. The signal is defined as follows:  𝑌(𝑡) = 𝑌𝑛(𝑡) + 𝑌𝑆1(𝑡) + 𝑌𝑆2(𝑡) 𝑌𝑛(𝑡)~𝑁(0, 𝜎𝑛2); 𝑌𝑆1(𝑡) = 𝐴1sin (2𝜋𝑓1𝑡); 𝑌𝑆2(𝑡) = 𝐴2sin (2𝜋𝑓2𝑡) 

(3) 

where 𝜎𝑛2 = 11, 𝐴1 = 100 and 𝐴2 = 50. 

The signal is generated over a time window 𝑡 ∈ [0, 𝑇] of length 𝑇 = 1 s and sampled at 𝐹𝑠 = 1 𝑘𝐻𝑧. 

Fig. 9 shows a time plot of the signal, whereas its EMD is shown in Fig. 10.  

 

Fig. 9 – Synthetic signal consisting in a superimposition of two oscillation modes and a noise term 

The frequency component at 𝑓2 = 75 𝐻𝑧 is mainly captured by IMFs 𝑐6(𝑡) and 𝑐7(𝑡), whereas the 

IMFs 𝑐8(𝑡) and 𝑐9(𝑡) capture the component at 𝑓1 = 15 𝐻𝑧. Notice that a mode mixing effect 

occurred, causing a partial splitting of the low frequency components into 𝑐8(𝑡) and 𝑐9(𝑡). This is an 

undesired effect, which has a detrimental impact on the interpretation of the IMF information content. 

The noise terms is split into the first five IMFs, 𝑐1(𝑡), … , 𝑐5(𝑡), whereas the two last IMFs in the low 

frequency region, 𝑐10(𝑡) and 𝑐11(𝑡),  represent meaningless modes.  
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Fig. 10 – Empirical mode decomposition of the synthetic signal 

Fig. 11 shows the frequency spectra via Fast Fourier Transform (FFT) of the sequential CMF 

decomposition, {𝑐𝑠𝑘(𝑡), 𝑘 = 1, … , 𝑛 = 11 }, for the synthetic signal 𝑌(𝑡). Fig. 11 shows that the sum 

of the 𝑖𝑡ℎ IMFs to the previous ones does not modify the spectrum of the CMFs unless 𝑖 > 5. As a 

matter of fact, the first five CMFs, 𝑐1(𝑡), … , 𝑐5(𝑡), result from a splitting of the noise term, and hence 

they can be summed up into a single CMF without losing relevant information about the signal 

pattern. When the IMF 𝑐6(𝑡) is summed to the previous ones, instead, a peak at 𝑓2 = 75 𝐻𝑧 is clearly 

observed. The further addition of the IMF 𝑐7(𝑡) has the only consequence of inflating the energy 

associated to 𝑓2 = 75 𝐻𝑧, without introducing additional information. When the IMF 𝑐8(𝑡) is added 

to the previous ones, the contribution of the frequency component at 𝑓1 = 15 𝐻𝑧 becomes visible, 

too. By summing up the following IMFs, no relevant modification of the spectral content is achieved, 

apart from a slight increase of the energy at the low frequency component compared with the high 

frequency one.   
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Fig. 11 – Frequency spectra of the sequential CMFs generated from the synthetic signal 

Therefore, the spectral analysis of the sequential CMFs allows determining the relevant scale changes 

that occur in the original IMF decomposition. One critical issue consists in assessing the dissimilarity 

between the frequency spectra for two consecutive CMFs, 𝑐𝑠𝑘(𝑡) and 𝑐𝑠𝑘−1(𝑡). To this aim, we 

propose a procedure based on the probability density function (PDF) of the CMFs, which involves 

the following steps: (i) estimation of the PDF for each sequential CMF, 𝑐𝑠𝑘(𝑡), for 𝑘 = 1, … , 𝑛; (ii) 

computation of a dissimilarity measure between each pair of PDFs as a function of the index 𝑘, and 

(iii) identification of local maxima of the dissimilarity function. 

The PDF estimation allows transforming the spectrum, denoted by 𝑥𝑘(𝜔), 𝑘 = 1, … , 𝑛, where 𝜔 

represents the frequency location, into a function, 𝑓𝑘(𝑥), that is believed to improve the dissimilarity 

computation. However, in order to properly recognize differences between spectra that involve 

mainly local changes (like the ones shown in Fig. 11), we advocate the use of a weighted PDF 

estimate. The weight function 𝑤𝑘(𝜔) associates a weight to each frequency location, 𝜔. By defining  𝑤𝑘(𝜔) = 𝑥𝑘2(𝜔), local peaks with high amplitude will have a larger weight than other frequency 

bands characterized by a low amplitude, and hence a more effective detection of scale changes will 

be achieved. 

Since the form of the distribution of sequential CMFs is unknown, a nonparametric density estimation 

is required [21], which exploits the kernel fitting technique. Two relevant issues consist in the choice 
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of the kernel function, 𝐾𝑒𝑟(𝑥), and the selection of an optimal kernel bandwidth, ℎ. The latter issue 

is the most critical one, and several methods have been proposed thus far. One simple approach is to 

use rule-of-thumb estimates, which are known to approximate the optimal choice in the presence of 

normal data [22]. However, when strong departures from normality are observed, other methods 

should be preferred, which are aimed at estimating the bandwidth, ℎ, in a data-driven way. The most 

effective methods can be classified into two major categories, i.e., plug-in methods [23] and cross-

validation methods [24]. Among these, the method based on unbiased cross-validation (UCV) is 

probably the most popular and studied one [25 – 26]. Although different studies compared the above 

mentioned algorithms [27 – 29], there is no general rule to prefer one approach over the other, with 

the only exception of rule of thumb methods that should be used only if the expected shape of the 

function is close to a Gaussian. The UCV-based approach is used as a baseline in this study as it was 

demonstrated to yield good results in a wide range of applications [24]. Future studies may be aimed 

at investigating an implementation based on different KDE techniques. Appendix B briefly revises 

the UCV-based method. The kernel function choice has a reduced impact on KDE performances. 

Because of this, the most common choice, i.e., the Gaussian function, is used in this study.  

The symbol 𝑓(𝑥) is used to denote the weighted kernel estimator of the (unknown) density function. 

By way of example, the weighted PDF estimates, 𝑓𝑘(𝑥), for 𝑘 = 1, … , 𝑛 = 11, of the frequency 

spectra of sequential CMFs shown in Fig. 11 are depicted in Fig. 12 (left panel).  

 

Fig. 12 – Probability density functions of CMF frequency spectra (left panel) and corresponding dissimilarity 

index function (right panel) for the synthetic signal 

For sake of clarity, Fig. 12 (left panel) shows the amplitudes of the CMF frequency spectra after 

normalization, i.e., 𝑥𝑘(𝜔) ∈ [0,1] for every sequential CMF. The shape modification of the estimated 
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PDFs occurred at 𝑘 = 6 is clearly visible in Fig. 12 (left panel), which corresponds to the high 

frequency oscillation at 𝑓2 = 75 𝐻𝑧. Another shape modification occurs at 𝑘 = 8, when the CMF 

includes both the low-frequency and high-frequency modes. The next step consists in quantifying the 

dissimilarity between these PDFs. 

Let 𝑓𝑘(𝑥) and 𝑓𝑘−1(𝑥) be the estimated density functions of the frequency spectra of sequential CMFs 𝑐𝑠𝑘(𝑡) and 𝑐𝑠𝑘−1(𝑡) generated from the signal 𝑌(𝑡). Then, their dissimilarity can be expressed in terms 

of their cross-correlation coefficient as follows: 𝐷𝑘,𝑘−1 = 1 − 𝜌 (𝑓𝑘(𝑥), 𝑓𝑘−1(𝑥)) ,       𝑘 = 1, … , 𝑛 (4) 

where 𝜌(∙,∙) is the sample cross-correlation coefficients, such that  𝜌(∙,∙) ∈ [−1,1]. In this study, the 

Spearman’s correlation coefficient is used, because, differently from the Pearson’s coefficient, it is 

able to capture cross-correlations that are not limited to simple linear functions. Such a property is 

expected to enhance the capability of quantifying not only global shape dissimilarities but also local 

ones. The dissimilarity function for the synthetic signal example is shown in Fig. 12 (right panel). It 

exhibits two major peaks at 𝑘 = 6 and 𝑘 = 8, which correspond to the actual scale changes of interest. 

The following steps of the proposed approach are described in the next two sub-sections, respectively 

devoted to the iterative decomposition into few potentially relevant CMFs and to the final selection 

of the optimal number of final CMFs.  

4.2. Decomposition into a reduced number of CMFs 

A local maximum in the dissimilarity function, 𝐷𝑘,𝑘−1, represents a potential scale change in the 

sequential CMF decomposition, such that the inclusion of the 𝑘𝑡ℎ IMF, 𝑐𝑖=𝑘(𝑡), into 𝑐𝑠𝑘−1(𝑡) yields 

a large dissimilarity between 𝑐𝑠𝑘−1(𝑡) and 𝑐𝑠𝑘(𝑡), but the further inclusion of the (𝑘 + 1)𝑡ℎ IMF, 𝑐𝑖=𝑘+1(𝑡), into 𝑐𝑠𝑘(𝑡) yields a smaller dissimilarity between 𝑐𝑠𝑘(𝑡) and  𝑐𝑠𝑘+1(𝑡). This means that the 𝑘𝑡ℎ IMF, 𝑐𝑖=𝑘(𝑡), captures some dissimilar information with respect to the sum of previous IMFs, 

but similar information with respect to the next IMF. Thus, one possible criterion to decide whether 

each IMF should be added to the lower order ones or separated from them consists in dividing the 

final CMFs at indexes 𝑘 corresponding to local maxima in the 𝐷𝑘,𝑘−1 function. Local peak detection 

can be easily performed by finding sign changes in the successive differences of the 𝐷𝑘,𝑘−1 function. 

Nevertheless, only the largest peaks are expected to bring some relevant information about actual 

scale changes in embedded modes. Two operations are required: first, an iterative approach to 

generate potential CMF decompositions, driven by the analysis of the dissimilarity function, 𝐷𝑘,𝑘−1, 

must be applied (briefly explained in this sub-section); second, an optimality criterion should be 
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applied to select the final CMF decomposition that better represents the multi-scale content of the 

original signal (explained in sub-section 4.3). 

Let 𝒑 = [𝑝1, … , 𝑝𝑀] be the vector of “locations” 𝑘 corresponding to these local peaks, where 𝑀 is the 

number of peaks and let �̃� be the vector with elements sorted in descending peak amplitude order. 

The goal is to pass from the 𝑛 sequential CMFs, 𝑐𝑠𝑘(𝑡), to a smaller number of final CMFs, 𝑐𝑠𝑘∗ (𝑡), 

by iteratively imposing a further separation between CMFs corresponding to each element of the 

sorted location vector �̃�. The algorithm consists in the following steps: 

1 Initialize the counter 𝑐 = 1; 

2 Generate a new CMF decomposition by dividing the IMFs into 𝐾∗ = 𝑐 + 1 CMFs, 𝑐𝑠𝑘∗ (𝑡), 

such that the 𝑐𝑡ℎ element of the sorted location vector �̃�, i.e. 𝑝𝑐, represents the argument 

of the first IMF of one of 𝐾∗ CMFs;  

3 Set 𝑐 = 𝑐 + 1: if 𝑐 > 𝑀 the procedure is over, otherwise go to step 2 and generate the 𝑐𝑡ℎ 

CMF decomposition. 

The result consists in 𝑀 possible CMF decompositions {𝑐𝑠𝑘∗ (𝑡); 𝑘 = 1, … , 𝐾∗}, each comprised of 𝐾∗ ∈ [2, 𝑀 + 1] CMFs, 𝑐𝑠𝑘∗ (𝑡).  

4.3. Selection of the final number of CMFs 

The problem of selecting the optimum number of CMFs is analogous to the problem of finding the 

best number of clusters in an unsupervised classification application, which is also known as “cluster 

validity” in the statistical learning literature [30 – 31].  Analogously to clustering problems, our aim 

consists in determining a CMF decomposition such that the inclusion of dissimilar modes into the 

same CMF is possibly avoided by contemporary keeping the number of final CMFs as small as 

possible. A category of cluster validity criteria relies on the measure of the within and the between 

group variance components: they include the Ball & Hall index [31], the Calinski & Harabasz index 

[32], the Hartigan index [33], and many others [34 – 35]. A simple and effective method can be 

designed by considering the variability within and between the CMFs as a measure of the necessity 

of applying a further decomposition. On the one hand, if the variability within the CMFs decreases 

by passing from 𝐾∗ to 𝐾∗ + 1 final CMFs, then at least two dissimilar modes have been separated 

into distinct CMFs, and hence the decomposition that comprises 𝐾∗ + 1 CMFs should be preferred. 

However, if the variability within the CMFs is still larger than the variability between the CMFs, a 

further decomposition is required. In analogy with the cluster validity indexes proposed by other 

authors [31 – 35], these two variabilities can be estimated via the sum-of-squares within and between 
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the 𝐾∗ CMFs, respectively. These indexes are denoted by 𝑆𝑆𝑊(𝐾∗) and 𝑆𝑆𝐵(𝐾∗) and computed as 

follows: 

𝑆𝑆𝑊(𝐾∗) = ∑ ∑ 1 − 𝜌 (𝑓𝑘,𝑖(𝑥) − 𝑓�̅�(𝑥))𝑖∈ 𝑐𝑠𝑘∗ (𝑡)
𝐾∗

𝑘=1  

𝑆𝑆𝐵(𝐾∗) = ∑ 𝑛(𝑘) [1 − 𝜌 (𝑓�̅�(𝑥) − 𝑓(̅𝑥))]𝐾∗
𝑘=1  

(5) 

where 𝑓�̅�(𝑥) is the average density function of frequency spectra within the 𝑘th CMF, 𝑐𝑠𝑘∗ (𝑡), and 𝑓(̅𝑥) is the average density function of the original decomposition. The proposed criterion to 

determine the best number of CMFs is based on the following inequality: 𝑆𝑆𝑊(𝐾∗) < 𝐾∗𝑆𝑆𝐵(𝐾∗) (6) 

When 𝑆𝑆𝑊(𝐾∗) > 𝐾∗𝑆𝑆𝐵(𝐾∗), the variability within the CMFs (in terms of distances between 

density functions) is larger than the variability between the CMFs: this means that a further 

decomposition into 𝐾 + 1 CMFs allows separating distinct modes that are currently included into the 

same CMF. When 𝑆𝑆𝑊(𝐾∗) < 𝐾∗𝑆𝑆𝐵(𝐾∗) the desired condition is achieved, i.e., the IMFs in each 

CMF are close to each other, and different intrinsic modes are separated into distinct CMFs. From a 

parsimony viewpoint, the multiplication by 𝐾∗ is used to penalize the selection of larger number of 

CMFs. Grasso et al. [36] showed that this criterion is effective in practice and it may outperform other 

benchmark validity criteria when coupled with PDF-based dissimilarity functions. Nevertheless, 

future studies may investigate possible ways to tune the selection criterion for general-purpose use.  

 

Fig. 13 – 𝑆𝑆𝑊(𝐾∗) and 𝐾∗𝑆𝑆𝐵(𝐾∗) values for different numbers 𝐾∗ of CMFs (synthetic signal) 

Fig. 13 shows the values of 𝑆𝑆𝑊(𝐾∗) and 𝐾∗𝑆𝑆𝐵(𝐾∗) for 𝐾∗ = 1,2,3 in the synthetic signal example. 

In this case, the proposed criterion leads to the choice of 𝐾 = 3 final CMFs, which are depicted in 

Fig. 14. Fig. 14 shows that the signal decomposition has been synthetized from 𝑛 = 11 starting IMFs 
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to only three final CMFs, which actually capture the three embedded components, i.e., the noise term 

in 𝑐𝑠1∗ (𝑡), the high frequency oscillation in 𝑐𝑠2∗ (𝑡) and the low frequency oscillation in 𝑐𝑠3∗ (𝑡). The 

result is a more synthetic and easier to interpret representation of the multi-scale content of the signal 

than the one provided by the basic EMD methodology. 

 

Fig. 14 – Final CMF decomposition of the synthetic signal (left panels) and corresponding frequency spectra 

for different CMFs (right panels) 

 

5 Analysis of rolling element bearing conditions 

5.1. Performance analysis  

The effectiveness of the proposed approach is proven by means of the application to the vibration 

signals acquired in the case study introduced in Section 1, for rolling element bearing fault analysis. 

In the following, subscripts 1, … ,6 are included into the notation to identify distinct signals 

corresponding to different epochs. Fig. 15 and Fig. 16 show, respectively, the frequency spectra of 

the sequential CMFs generated from the health bearing signal 𝑌1(𝑡) and the faulty bearing signal 𝑌4(𝑡). Relevant frequency components were labeled as multiple of defect-related and known 

frequencies, whereas sidebands and other components are indicated in Hz. Fig. 15 shows that a change 

in the spectral pattern occurs at CMF 𝑐𝑠7,1(𝑡), where the peak at 𝑓 = 193.8 𝐻𝑧 (i.e., the 12𝑥 

component) starts predominating the frequency spectrum. The addition of following IMFs in 

sequential CMFs does not significantly change the spectra, apart from making more evident the 
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contribution of multiples of the fundamental rotating frequency and other components that are not 

related with known defects.  

 

Fig. 15 – Frequency spectra of the sequential CMFs generated from the bearing vibration signal 𝑌1(𝑡) 

Fig. 16 shows that, for signal 𝑌4(𝑡), the noise frequency spectrum characterizes the first 9 sequential 

CMFs, 𝑐𝑠1,4(𝑡), … , 𝑐𝑠9,4(𝑡). A frequency spectrum change occurs at CMF 𝑐𝑠10,4(𝑡), where peaks in the 

high frequency range become evident together with sidebands caused by a modulation effect imposed 

by bearing defects. In correspondence of CMF 𝑐𝑠15,4(𝑡) a further frequency spectrum change seems 

to occur, which shifts the signal energy towards the very low frequency region, with predominant 

peaks at the FTF frequency and its multiples. Although the frequency spectrum is known to be not 

sufficient to properly characterize the bearing defects, it provides a suitable source of information to 

detect possible scale changes between sequential CMFs. As a matter of fact, the frequency spectrum 

is here used not for direct diagnostic purposes, but as an intermediate step to enhance the signal 

decomposition into its embedded modes. The analysis of envelope spectra of final CMFs for diagnosis 

purposes is recommended. 
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Fig. 16 – Frequency spectra of the sequential CMFs generated from the bearing vibration signal 𝑌4(𝑡) 

With regard to signal 𝑌1(𝑡), the probability density functions of the sequential CMF frequency spectra 

are shown in Fig. 17 (left panel), whereas Fig. 17 (right panel) shows the corresponding dissimilarity 

function. The shape of the density functions emphasizes the change of the vibration spectrum 

occurred at CMF 𝑐𝑠7,1(𝑡) and it clearly shows that for 𝑐𝑠1,1(𝑡), … , 𝑐𝑠6,1(𝑡) and for 𝑐𝑠7,1(𝑡), … , 𝑐𝑠17,1(𝑡) 

the density shape remains about constant. The dissimilarity index, 𝐷𝑘,𝑘−1,1, clearly exhibits a major 

peak at 𝑘 = 7, a minor peak at 𝑘 = 3 and two additional very low amplitude peaks at 𝑘 > 10. In this 

case, the criterion based on the 𝑆𝑆𝑊1(𝐾∗) and 𝑆𝑆𝐵1(𝐾∗) statistics yields a final decomposition 

consisting in 𝐾1 = 2 CMFs, such that 𝑐𝑠1,1∗ (𝑡) = ∑ 𝑐𝑠𝑖,1(𝑡)6𝑖=1  and 𝑐𝑠2,1∗ (𝑡) = ∑ 𝑐𝑠𝑖,1(𝑡)17𝑖=7 . The final 

CMF decomposition for the healthy bearing signal, 𝑌1(𝑡), is shown in Fig. 18 (left panels), where 

both the CMF frequency spectra (middle panels) and envelope spectra (right panels) are depicted.  
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Fig. 17 – Probability density functions of CMF frequency spectra (left panel) and corresponding dissimilarity 

index function (right panel) for the bearing vibration signal 𝑌1(𝑡) 

Fig. 18 shows that the entire information content of the signal has been synthetized from the starting 

17 IMFs to only two CMFs, 𝑐𝑠1,1∗ (𝑡) and 𝑐𝑠2,1∗ (𝑡). The first CMF, 𝑐𝑠1,1∗ (𝑡), seems to mainly capture the 

noise term, whereas the second CMF, 𝑐𝑠2,1∗ (𝑡), captures frequency components associated to the 

healthy state of the bearing.  

 

Fig. 18 – Final CMF decomposition for the bearing vibration signal 𝑌1(𝑡) (left panels) and corresponding 

frequency spectra (middle panels) and envelope spectra (right panels) 

With regard to signal 𝑌4(𝑡), the probability density functions of the sequential CMF frequency spectra 

are shown in Fig. 19 (left panel), whereas Fig. 19 (right panel) shows the corresponding dissimilarity 

function. Also in this case, the shape of the density functions emphasizes the two changes of the 

vibration spectrum occurred at CMF 𝑐𝑠10,4(𝑡) and at CMF 𝑐𝑠15,4(𝑡), respectively. The variability in 

the range 𝑐𝑠10,4(𝑡), … , 𝑐𝑠14,4(𝑡) seems to be larger than in the upper and lower order ranges. This may 
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suggest that the IMFs belonging to that range are capturing some intermediate modes where the 

splitting of embedded oscillation scales is larger than in the lower and higher frequency regions. The 

dissimilarity index, 𝐷𝑘,𝑘−1,1, clearly exhibits two major peaks at 𝑘 = 15 and 𝑘 = 10, together with 

some very low amplitude peaks at few other values of 𝑘. In this case, the criterion based on the 𝑆𝑆𝑊4(𝐾∗) and 𝑆𝑆𝐵4(𝐾∗) statistics leads to a final decomposition consisting in 𝐾4 = 3 CMFs, such 

that 𝑐𝑠1,1∗ (𝑡) = ∑ 𝑐𝑠𝑖,1(𝑡)9𝑖=1 , 𝑐𝑠1,1∗ (𝑡) = ∑ 𝑐𝑠𝑖,1(𝑡)14𝑖=10  and 𝑐𝑠2,1∗ (𝑡) = ∑ 𝑐𝑠𝑖,1(𝑡)21𝑖=15 . The final CMF 

decomposition for the faulty bearing signal, 𝑌4(𝑡), is shown in Fig. 20 (left panels), where both the 

CMF frequency spectra (middle panels) and envelope spectra (right panels) are depicted.  

 

Fig. 19 – Probability density functions of CMF frequency spectra (left panel) and corresponding dissimilarity 

index function (right panel) for the bearing vibration signal 𝑌4(𝑡) 

Fig. 20 shows that the entire information content of the signal has been synthetized from the starting 

21 IMFs to only three CMFs, 𝑐𝑠1,4∗ (𝑡), 𝑐𝑠1,4∗ (𝑡) and 𝑐𝑠3,4∗ (𝑡). Such a transformation has preserved the 

original information content, as neither filtering nor IMF selection were applied, but it seems to 

provide a clearer representation of the multi-scale pattern related with the presence of bearing defects. 

The first CMF, 𝑐𝑠1,4∗ (𝑡), captures most of the signal noise modulated by the BSF as shown by the 

envelope spectrum. The second CMF, 𝑐𝑠2,4∗ (𝑡), captures an intermediate spectral range, where the 

modulation at the FTF predominates the envelope spectrum, but the BSF-related component is still 

present. The third CMF, 𝑐𝑠3,4∗ (𝑡), captures the oscillation with frequency equal to the FTF. 
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Fig. 20 – Final CMF decomposition for the bearing vibration signal 𝑌4(𝑡) (left panels) and corresponding 

frequency spectra (middle panels) and envelope spectra (right panels) 

Fig. 21 shows the pattern of dissimilarity indexes 𝐷𝑘,𝑘−1 computed for the five signals acquired from 

an healthy bearing state to a severely faulty state, i.e., 𝑌1(𝑡), … , 𝑌6(𝑡), together with the sixth signal, 

acquired after bearing substitution. It shows that the dissimilarity between sequential CMFs remains 

quite stable for signals 𝑌1(𝑡), 𝑌2(𝑡) and 𝑌3(𝑡), with a peak corresponding to IMF 𝑐7(𝑡). The proposed 

approach yields two CMFs for all these signals, but the analysis of the CMF decomposition of signal 𝑌3(𝑡) highlights that the defect is already present, being evident the contribution of both BSF and 

FTF in the envelope spectrum of the first CMF, 𝑐𝑠1,3∗ (𝑡) (see Fig. 22). 

 

Fig. 21 – Dissimilarity index functions for bearing vibration signals 𝑌1(𝑡), … , 𝑌6(𝑡) 
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Starting from the signal 𝑌4(𝑡) the number of extracted IMFs grows and the pattern of the dissimilarity 

index 𝐷𝑘,𝑘−1 changes, including two major peaks at 𝑌4(𝑡) and three major peaks at 𝑌5(𝑡). Thus, the 

evolution over time of the CMF decomposition follows the evolution of the defect severity, and hence 

it is expected to provide a useful diagnostic tool. The three peaks at 𝑌5(𝑡) yield a decomposition into 

four CMFs, where the noise is separated from defect-related components, leading to a further 

highlight of the faulty state. After replacing the faulty bearing with a healthy one (signal 𝑌6(𝑡)), the 

initial 𝐷𝑘,𝑘−1 pattern characterized by a single peak is restored. 

 

Fig. 22 – Final CMF decomposition for the bearing vibration signal 𝑌3(𝑡) (left panels) and corresponding 

frequency spectra (middle panels) and envelope spectra (right panels) 

 

5.2. Comparison against index-based IMF selection 

As stated in Section 2, different synthetic indexes were proposed in the literature devoted to the EMD 

methodology for the selection of specific IMFs. Apart from denoising or detrending applications, 

index-based selection of IMFs is often used to enhance the characterization of the signal and to 

increase the accuracy of the Hilbert-Huang transform by retaining only relevant modes. Because of 

this, a natural competitor for our proposed approach consists in selecting specific IMFs via index-

based criteria instead of computing a more synthetic decomposition in terms of CMFs. Many 

synthetic indexes have been proposed thus far [4 – 5, 11 – 12] including the energy, the correlation 

between the IMF and the original signal, the peak frequency, etc. Among them, the cross-correlation 

coefficient between each IMF and the original signal has been used by different authors [4, 15] and 

it can be considered a benchmark in this frame. Moreover, Peng et al. [15] proposed a method to 

automatically select the relevant IMFs that works as follows: let 𝑟𝑖 be the normalized sample 
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correlation coefficient between the signal 𝑌(𝑡) and the 𝑖𝑡ℎ IMF, 𝑐𝑖(𝑡); then, if 𝑟𝑖 ≥ 𝜆 the 𝑖𝑡ℎ IMF is 

retained, otherwise it is added to the residue, where 𝜆 = (max𝑖  𝑟𝑖) /10. 

By applying this index-based selection approach to the IMFs generated from signals  𝑌1(𝑡) and 𝑌4(𝑡), 

respectively, the following subsets of relevant IMFs are obtained: {𝑐1,1(𝑡), … , 𝑐5,1(𝑡); 𝑐7,1(𝑡)} and {𝑐1,4(𝑡), … , 𝑐6,4(𝑡); 𝑐15,4(𝑡), … , 𝑐18,4(𝑡)}. This means, that the information content of the signals is 

described in terms of 6 and 10 modes, whereas in terms of CMFs only two and three modes were 

extracted.  

 

Fig. 23 – Hilbert-Huang spectrum based on IMFs selected via cross-correlation-based criterion (left panel) 

and Hilbert-Huang spectrum based on our proposed approach (right panel), for bearing vibration signal 𝑌1(𝑡) 

It is possible to compute the Hilbert-Huang spectrum on either the IMFs selected by using the 

correlation-based criterion or the CMFs generated via our proposed approach. The two resulting 

spectra will be denoted hereafter as “index-based” spectrum and “CMF-based” spectrum for sake of 

clarity. Fig. 23 shows the index-based (left panel) and CMF-based (right panel) Hilbert-Huang 

spectrum for the healthy bearing signal, 𝑌1(𝑡). In both cases, the pattern shows the lack of suspect 

defects, and the high frequency range dominates the time-frequency spectrum.  Fig. 24 shows the 

index-based (left panel) and CMF-based (right panel) Hilbert-Huang spectrum for the bearing signal 

in the presence of a faulty state, 𝑌4(𝑡). In this case, the CMF-based spectrum seems to better depict 

the actual condition of the rolling element bearing. The second CMF, 𝑐𝑠2,4∗ (𝑡) produces a fluctuating 

pattern that oscillates about the BSF level, whereas the third CMF, 𝑐𝑠3,4∗ (𝑡), produces an oscillating 

pattern about the FTF level. The first CMF, 𝑐𝑠1,4∗ (𝑡), captures the high frequency content of the signal, 

the one with the highest energy, and this is visible also in the time-frequency spectrum. Analogously 
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to the CMF-based one, the index-based Hilbert-Huang spectrum allows to detect a changed condition 

of the bearing health state by comparing the spectra in Fig. 24 and those in Fig. 23. Nevertheless, 

IMF selection seems to reduce the capability of detecting some embedded phenomena. In particular, 

the presence of a modulating effect at both the FTF and the BSF is more difficult to appreciate, and 

the presence of different IMFs in the low frequency range has a detrimental effect on the fault analysis 

and the determination of its cause. Because of this, the enhanced computation of CMFs is expected 

to reduce the dimensionality of the problem and improve the interpretation of the system health 

conditions with respect to other IMF selection methods commonly used in practice.  

 

Fig. 24 – Hilbert-Huang spectrum based on IMFs selected via cross-correlation-based criterion (left panel) 

and Hilbert-Huang spectrum based on our proposed approach (right panel), for bearing vibration signal 𝑌4(𝑡) 

 

6 Conclusions 

In rotating machinery fault detection and diagnosis applications, the capability of isolating fault 

features and determining the health condition of the system often requires a clear decomposition of 

sensor signals in their embedded modes. The data-driven and adaptive properties of the EMD 

methodologies attracted the attention of many researchers in this field, but the current literature lacks 

automated methods for the extraction of relevant modes. As a matter of fact, the EMD yields an-over 

decomposition of the signal, with spurious IMFs, especially in the low frequency range, and the 

possible occurrence of the mode mixing effect. The selection of specific IMFs of interest is often a 

challenging task, whose result is influenced by problem-dependent criteria. 
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This study presented an automated approach for the enhancement of vibration signal decomposition 

via EMD. The goal is to achieve a synthetic characterization of relevant modes by defining the 

optimal number of CMFs, where the term “optimal” refers to the best compromise between the 

number of final CMFs and the capability of capturing salient features on distinct scales. 

The proposed approach works in a fully data-driven way by evaluating the role played by each IMF 

in determining the spectral property of the signal. The main idea of the approach is to compute the 

empirical probability density function of the CMFs frequency spectra and compute a dissimilarity 

index between density functions of adjacent IMFs to cluster them. In particular, the minimal number 

of final CMFs is eventually determined by applying a criterion that inherits the cluster validity 

principle used in unsupervised classification. 

The proposed approach was illustrated by means of a simulation example consisting in a synthetic 

signal. The application of the method to a real case study involving rolling element bearing fault 

analysis showed that the method is suitable to reduce the number of relevant modes from many IMFs 

to few CMFs and, simultaneously, to enhance the interpretation and characterization of multi-scale 

phenomena of interest. The comparison with an index-based approach for IMF selection, with is 

believed to be representative of the common practice in EMD-based diagnostic problems, showed 

that the investigation of the nature and possible causes of bearing defects can be improved by using 

a CMF-based approach.  

Future research developments will be aimed at evaluating the possible extension and generalization 

of the proposed approach to other application fields and different kinds of sensor signals. A direction 

of future research will be also devoted to couple the proposed procedure with alarm criterion usually 

applied in statistical process monitoring literature. In addition, the case study here discussed was 

characterized by a constant rotation speed. Future studies may be aimed at testing the robustness of 

the proposed approach in the presence of rotation speed fluctuations. 
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Appendix A: the sifting algorithm 

Let 𝑌(𝑡) be a generic signal acquired at sampling frequency 𝐹𝑠. Then, the algorithm to extract the 

IMFs that capture intrinsic oscillation modes is called “sifting” algorithm, and it works as follows 

[7]:  

1. All the local minima and maxima of the signal 𝑌(𝑡) are identified and they are interpolated 

respectively by an upper and a lower envelope expressed on a cubic spline basis; 

2. the mean of the two envelopes is calculated and designated as 𝑚1(𝑡); then, the difference between 

the signal 𝑌(𝑡) and 𝑚1(𝑡) is calculated and designated as ℎ1(𝑡): ℎ1(𝑡) = 𝑌(𝑡) − 𝑚1(𝑡) (A.1) 

If ℎ1(𝑡) satisfies the following conditions: 

a) in the entire dataset, the number of extremes and the number of zero crossings must be either 

equal or different at most by one;  

b) at any point, the mean value of the envelope defined by the local maxima and the envelope defined 

by the local minima is zero; 

then, ℎ1(𝑡) is taken as the first IMF of the signal and designated as 𝑐1(𝑡). If ℎ1(𝑡) is not an IMF, ℎ1(𝑡) replaces the original signal and the above steps are repeated until an IMF is obtained. 
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3. The first IMF, 𝑐1(𝑡), is separated from the signal 𝑌(𝑡) by: 𝑟1(𝑡) = 𝑌(𝑡) − 𝑐1(𝑡) (A.2) 

The residue, 𝑟1(𝑡), is treated as the original signal and the above steps are repeated, leading to the 

extraction of the following IMFs 𝑐2(𝑡), … , 𝑐𝑛(𝑡) such that: 𝑟1(𝑡) − 𝑐2(𝑡) = 𝑟2(𝑡)𝑟𝑛−1(𝑡) − 𝑐𝑛(𝑡) = 𝑟𝑛(𝑡) (A.3) 

At the end of the process, the signal is decomposed into 𝑛 IMFs and a residue 𝑟𝑛(𝑡): 

𝑌(𝑡) = ∑ 𝑐𝑖(𝑡) + 𝑟𝑛𝑛
𝑖=1 (𝑡) (A.4) 

The residue is a signal such that no further decomposition is possible. In this study, the Amplitude 

Ratio criterion proposed by Rilling et al. [37] is used. The EMD algorithm usually converges rapidly 

in few iterative passes, producing a nearly orthogonal adaptive basis, as discussed in [7] and [38]. 

 

Appendix B: On kernel density estimation 

The kernel density estimation is a nonparametric approach to estimate the probability density 𝑓(𝑥) 

of a random variable 𝑥. The basic idea is to estimate the density function at a point 𝑥𝑖 using the 

neighboring observations, such that the influence of 𝑥𝑖 on the estimate at any 𝑥 vanishes 

asymptotically. The methodology is widely used in practice, and there is an extensive literature in 

this field [22, 24, 39]. Two relevant issues consist in the choice of the kernel function, 𝐾𝑒𝑟(𝑥), and 

the selection of an optimal kernel bandwidth, ℎ. The latter issue is the most critical one, and several 

methods have been proposed thus far. One simple approach is to use rule-of-thumb estimates, which 

are known to approximate the optimal choice in the presence of normal data [22]. However, when 

strong departures from normality are observed, other methods should be preferred, which are aimed 

at estimating the bandwidth, ℎ, in a data-driven way.  

The kernel estimator of (𝑥) from a random sample 𝑋1, … , 𝑋𝑝, denoted by 𝑓(𝑥), is given in [26]: 

𝑓(𝑥) = 𝑝−1 ∑ ℎ𝑘−1𝐾𝑒𝑟((𝑥 − 𝑋𝑙) ℎ𝑘⁄ ), 𝑘 = 1, … , 𝑛𝑝
𝑙=1  (B.1) 

where 𝑝 is the number of frequency locations and ℎ𝑘 is the kernel bandwidth of the 𝑘th CMF extracted 

from the signal profile 𝑌(𝑡). Notice that, since the probability distribution may considerably change 
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from CMF to CMF, different optimal choices of ℎ𝑘 can be made, for 𝑘 = 1, … , 𝑛. The essential idea 

of UCV is to use the bandwidth, ℎ𝑘 = ℎ̂, that minimizes the function: 

𝑈𝐶𝑉𝑘(ℎ̂) = ∫ 𝑓ℎ̂(𝑥)2𝑑𝑥 − 2𝑝−1 ∑ 𝑓ℎ̂,𝑙(𝑋𝑙)𝑙 ,   𝑘 = 1, … , 𝑛 (B.2) 

where 𝑓ℎ̂ denotes the kernel estimator based on the choice ℎ𝑘 = ℎ̂, and 𝑓ℎ̂,𝑙 denotes the leave-one-

out kernel estimator, defined as follows: 

𝑓ℎ̂,𝑙(𝑥) = 𝑝−1 ∑ ℎ𝑘−1𝐾𝑒𝑟((𝑥 − 𝑋𝑙) ℎ̂⁄ ), 𝑘 = 1, … , 𝑛𝑝
𝑢=1𝑢≠𝑙  (B.3) 

Thus, the optimal choice of ℎ𝑘 is defined by: ℎ𝑘 = ℎ̂ = 𝑎𝑟𝑔 minℎ>0 𝑈𝐶𝑉𝑘(ℎ),    𝑘 = 1, … , 𝑛 (B.4) 

 


