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Abstract

Recent years have seen an explosive growth in
the recording of increasingly complex and high-
dimensional data. Classical statistical methods are
often unfit to handle such data, whose analysis calls
for the definition of new methods merging ideas and
approaches from statistics, applied mathematics and
engineering. This work in particular focuses on data
displaying complex spatial dependencies, where the
complexity can for instance be due to the complex
physics of the problem or the non-trivial conforma-
tion of the domain where the data are observed.

1 Introduction

Today’s data are not only increasingly big, but also
increasingly complex; see, e.g., Secchi [2018], Wit
[2018], Olhede and Wolfe [2018], and the various
other contributions to the special issue on The role
of Statistics in the era of big data [Sangalli, 2018].
The analysis of complex data structures poses new
challenges to modern research and it is fueling some
of the most fascinating and fastest growing fields of
Statistics.

This article pays particular attention to data dis-
playing complex spatial or spatio-temporal depen-
dencies. The sources of this complexity can be varied.
In engineering problems and in many applications in
the physical sciences and biosciences, the source of
this complexity is the complex physics of the phe-
nomenon under study. One example is offered by
Azzimonti et al. [2015] and Arnone et al. [2019], that
study blood flow velocity in human arteries, starting

from eco-color doppler data.

The complex structure of space-time dependencies
may as well be driven by external sources. Illustra-
tive problems in this respect concern the study of
environmental and climate data, in presence of pre-
vailing streams or winds. Figure 1 for instance illus-
trates the analysis of oceanographic data recorded at
moored buoys in the Eastern Gulf of Mexico, taking
into account the presence of the Gulf stream, that
determines a strong anisotropy and non-stationarity
in the phenomenon.

The complex spatial variation might also be the
consequence of the non-trivial conformation of the
domain where the data are observed. The study of
buoys data in Figure 1 illustrates also this aspect.
The Florida peninsula determines in fact a strong
concavity in the domain of interest, a portion of the
ocean, strongly influencing the phenomenon under
study: the values of the oceanographic measurements
(e.g., sea temperatures) taken at two buoys lying at
opposite sides of the Florida peninsula can not influ-
ence each other as much as the values taken at two
buoys, having the same reciprocal distance, but both
lying in the same side of the peninsula.

In other applications the domain is a curved sur-
face with a non-trivial geometry. Data distributed
over two-dimensional manifold domains are in fact
common in varied contexts, ranging from geosciences
and life sciences to engineering. In engineering,
for instance, especially in the in the automotive,
naval, aircraft and space sectors, quantities of inter-
est are observed over the surface of a designed three-
dimensional object. An example is provided in Figure
2, which illustrates the study of pressure and aerody-
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Figure 1: Top left: the yellow and red markers indicate the location of moored buoys in the Eastern Gulf
of Mexico; various oceanographic measurements are taken at each buoy. Top right: representation of the
Gulf Stream via an anisotropic and non-stationary transport field (figure adapted from the Ocean Surface
Currents, http://oceancurrents.rsmas.miami.edu). Bottom Left: triangulation of the domain of interest.
Bottom right: average monthly sea temperatures from July 2018 to February 2019, observed at a subsample
of the buoys (each curve corresponds to one buoy; data from the National Oceanic and Atmospheric Admi-
nistration, http://www.ndbc.noaa.gov).

namic forces exerted by air on the surface of a shuttle
winglet; see Wilhelm and Sangalli [2016].

Figure 3 points to another fascinating example
of data distributed over two dimensional manifolds
with formidably complicated geometries; see Lila
et al. [2016a]. This neuroscience study involves high-
dimensional neuroimaging signals associated with
neuronal activity in the cerebral cortex, a highly
convoluted thin sheet of neural tissue that consti-
tutes the outermost part of the brain, and where
most neural activity is focused. When analyzing sig-
nals distributed over the cerebral cortex, neglecting

its morphology may lead to totally inaccurate esti-
mates, since functionally distinct areas, that are far
apart along the cortex, may in turn be close in three-
dimensional Euclidean space, due to the highly con-
voluted nature of the cortex.

Moreover, it is often the case that the phenomenon
under study is characterized by some specific condi-
tions at the boundaries of the domain of interest. For
instance, in the study of blood-flow velocity, detailed
by Azzimonti et al. [2015] and Arnone et al. [2019],
the blood-flow must be zero at the arterial walls, that
constitutes the boundary of the domain, due to fric-
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Figure 2: Left: profile of SOAR shuttle, described by Non-Uniform Rational B-Splines [Courtesy of Swiss
Space Systems Holding SA]; the winglet is highlighted in yellow. Center: measurements of pressure coeffi-
cient obtained through pressure probes on the shuttle winglet. Right: corresponding estimate of pressure
coefficient. See Wilhelm et al. [2016].

tion between the blood particles and the arterial wall.
It is thus crucial that the estimation method can com-
ply with such condition.

Classical methods for spatial data analysis [see,
e.g., the textbooks Cressie, 2015, Cressie and Wikle,
2011, Diggle and Ribeiro, 2007] are unfit to han-
dle these data structures, since they typically work
over rectangular or tensorized domains. Recent pro-
posals to handle data over non-trivial planar do-
mains are presented by Ramsay [2002], Lai and Schu-
maker [2007], Wang and Ranalli [2007], Wood et al.
[2008], Lindgren et al. [2011], Scott-Hayward et al.
[2014], Menafoglio et al. [2018]. With the excep-
tion of the technique proposed by Wood et al. [2008],
that can comply with some simple types of bound-
ary conditions, the remaining methods do not pos-
sess this ability. Concerning manifold domains, most
contributions focus on spheres [see, e.g., Gneiting,
2013, Castruccio and Stein, 2013, Jeong and Jun,
2015, Porcu et al., 2016, Baramidze et al., 2006, Lai
et al., 2009, and references therein] and sphere-like
domains [Wahba, 1981, Lindgren et al., 2011], while
Duchamp and Stuetzle [2003], Hagler et al. [2006],
Chung et al. [2005, 2017] can deal with more general
two-dimensional curved domains.

In our experience, one key to face the chal-
lenges posed by the analysis of data characterized by
complex spatial dependencies consists in developing
methods that merge ideas and approaches from dif-

ferent scientific disciplines, with an intense interplay
of statistics, applied mathematics and engineering.
This work in particular offers an expository overview
of an innovative class of models, named Spatial Re-
gression with Partial Differential Equation regular-
ization, SR-PDE [Sangalli et al., 2013, Azzimonti
et al., 2014, 2015, Ettinger et al., 2016, Dassi et al.,
2015, Wilhelm et al., 2016, Lila et al., 2016a, Wil-
helm and Sangalli, 2016, Bernardi et al., 2017, 2018,
Arnone et al., 2019]. These are regression methods
with regularization terms that involves a Partial Dif-
ferential Equation (PDE). PDEs offer convenient de-
scriptions of complex phenomena and are commonly
used in engineering and sciences. The PDE in the
regularizing term permits to model the space vari-
ation, in a way that can be directly suggested by
problem-specific knowledge on the phenomenon un-
der study, coming for instance from the physics, me-
chanics, chemistry or morphology of the problem.
Moreover, SR-PDE can efficiently handle data scat-
tered over both planar and curved domains with com-
plex shapes, because it naturally considers distances
within the domain of interest, thus appropriately
dealing with boundaries and non-Euclidean geome-
tries. Furthermore, boundary conditions can be in-
cluded in the model. Numerical analysis techniques,
such as finite elements analysis [see,e.g., the textbook
Ciarlet, 2002] and isogeometric analysis [see,e.g., the
textbook Cottrell et al., 2009] are used to solve the es-
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Figure 3: Left: Triangulated surface approximating the left hemisphere of the cerebral cortex of a template
brain; the mesh is composed by 32 000 nodes and by 64 000 triangles. Right: functional connectivity map
obtained from a functional magnetic resonance imaging scan on a healthy subject. See Lila et al. [2016a].

timation problem, making the method highly compu-
tationally efficiency. An R/C++ library implement-
ing SR-PDE is available from The Comprehensive R
Archive Network [R Core Team, 2015]; see Lila et al.
[2016b].

The work is organized as follows. Section 2 in-
troduces SR-PDE, discussing the modeling of spatial
variation via the differential regularization and the
inclusion of boundary conditions. Section 3 discusses
the solution of the estimation problem via numerical
techniques. Section 4 gives the form of the estima-
tors, and briefly discuss uncertainty quantification for
the considered models. Section 5 outlines extensions
of the models to generalized linear settings, spatio-
temporal data and different sampling schemes. Sec-
tion 6 considers population studies and presents a
study of neuronal connectivity on the cerebral cor-
tex. Some concluding remarks are given in Section 7.
Technical details are deferred to the Appendix.

2 Spatial regression with diffe-
rential regularization

Consider n locations p1, . . . ,pn over a two-
dimensional domain D. Assume that at location pi

we observe a variable of interest zi ∈ R, and possibly
also a set of covariates wi ∈ Rq. The core of SR-PDE
is a regression model of the form

zi = wt
iβ + f(pi) + εi, i = 1, . . . , n (1)

where β ∈ Rq is an unknown vector of regression co-
efficients, that describes the effect of the covariates
on the variable of interest, f : D → R is unknown de-
terministic field, that captures the spatial structure
of the phenomenon under study, and ε1, . . . , εn are
uncorrelated errors, with zero mean and finite vari-
ance. In the example of buoy data, for instance, we
could consider as zi the sea temperature, observed
at the buoy location pi, and as wi other oceano-
graphic quantities, such as salinity, air temperature,
etc., measured at the same buoy. We can thus model
the sea temperatures, considering their spatial struc-
ture through the field f, and taking (if desired) into
account the other oceanographic quantities as covari-
ates.
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The key idea in SR-PDE is to estimate β and f by
minimizing the regularized least-square functional

n∑
i=1

(
zi −wt

iβ − f(pi)
)2

+ λ

∫
D

(
Lf − u

)2
dp (2)

where λ is a positive smoothing parameter and
Lf = u is a PDE that formalizes some partial
problem-specific information about the phenomenon
under study, coming for instance from the physics,
mechanics, chemistry or morphology of the problem.
The estimation functional (2) trades-off a data fi-
delity criterion, the least-square term, and a model-
fidelity criterion, the misfit with respect to the PDE
[see Azzimonti et al., 2015, 2014].

By the regularizing term we can model the spa-
tial variation in an extremely flexible and rich way.
Specifically, L denotes here a differential opera-
tor that can include second order terms, first or-
der terms and zero order terms. The second or-
der terms model non-stationary (i.e., spatially in-
homogeneous) and anisotropic diffusion effects; the
first order terms model non-stationary unidirectional
transport effects; the zero order terms model non-
stationary shrinkage effects. Considering the exam-
ple of buoy data, we can for instance describe the
Gulf stream by a diffusion-transport differential equa-
tion, and use this PDE in the estimation functional
(2): the resulting estimator will hence appropriately
account for the fact than sea temperatures at two
nearby buoys, lying in the direction of the current,
are more strongly associated that sea temperature at
two buoys, that have the same reciprocal distance,
but lie transversely with respect to the current. An-
other example is offered by Azzimonti et al. [2015]
and Arnone et al. [2019], and concerns the study of
blood flow velocity within arteries, starting from eco-
color doppler acquisitions. In this application the
PDE is based upon extensive problem-specific knowl-
edge about fluid-dynamics, and specifically about
heamodynamics, and formalizes the main features of
the complex physics of the phenomenon under study.
This enables to obtain physiological estimates, that
cannot instead be obtained using the classical meth-
ods.

Notice that we do not assume that the true f satis-

fies the PDE in the regularizing term. Rather, we as-
sume that the PDE carries partial information about
the true f , so that the misfit Lf−u is small. Hence we
use the PDE to regularize the estimate, with typically
small values of the smoothing parameter λ, rather
than searching for the solution of the PDE that is
closest to the data.

When no problem-specific knowledge is available,
nor anisotropy is appreciable in the data, we can set L

to the Laplace operator Lf = ∆f = ∂2f
∂p2

1
(p)+ ∂2f

∂p2
2
(p),

for fields f defined over planar domains, or to the
Laplace-Beltrami operator, for fields f defined over
curved domains (the Laplace-Bertami being the gen-
eralization of the Laplacian to functions defined over
surfaces); see Sangalli et al. [2013] for planar domains
and Ettinger et al. [2016], Lila et al. [2016a], Wilhelm
et al. [2016] for curved domains. The Laplace and
Laplace-Beltrami operators offer simple measures of
the local curvature of f , with respect to the do-
main where f is defined. Setting L to the Laplace
or Laplace-Beltrami operator (and considering a null
forcing term u), we are thus targeting the smoothness
in the estimated field: the higher the smooothing pa-
rameter λ, the smoother will be the resulting estimate
of the field; the smaller the smoothing parameter λ,
the more we are allowing for local curvature in the
estimate of f to capture the observed data.

Moreover, we can set various forms of boundary
conditions that the field f must satisfy at the bound-
aries of the domain of interest. These conditions may
concern the value of f and/or the value of the nor-
mal derivative of f at the boundary of the domain.
This permits a very flexible modeling of the behav-
ior of the field at the boundaries of the domain, and
is crucial in many applications to obtain meaningful
estimates; see, e.g., Azzimonti et al. [2015], Arnone
et al. [2019].

3 Use of numerical techniques
to solve the estimation prob-
lem

The estimation problem (2) cannot be solved ana-
lytically, and numerical techniques such as finite el-
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Figure 4: Examples of linear finite element bases on a planar (left) and non-planar (right) triangulation.

ement analysis or isogeometric analysis can be used
to obtain an approximate solution. In particular, the
spatial domain of interest D is approximated by an
appropriate mesh T , and a finite system of bases,
ψ1, . . . , ψNT , associated with this mesh is hence con-
sidered. These bases are then used to represent func-
tions f : D → R, via basis expansions f = f tψ,
where ψ := (ψ1, . . . , ψNT )t and f is the vector of
basis coefficients. The original infinite-dimensional
problem (2) is thus suitably approximated by a fi-
nite dimensional-problem [see Azzimonti et al., 2014,
2015, Wilhelm et al., 2016, for details]. These nu-
merical techniques permit to consider domains with
complex shapes. For instance, the triangular mesh in
the bottom left panel of Figure 1 offers a discretiza-
tion of the Eastern Gulf of Mexico and is used for
the analysis of buoy data mentioned in the previ-
ous sections, while the non-planar triangular mesh
in the left panel of Figure 3 provides a discretiza-
tion of the cerebral cortex and is used for the analy-
sis of the neuroimaging data described in Section 6.
The bases ψ1, . . . , ψNT are piecewise polynomials and
have a local support, restricted to only few elements
of the mesh. This ensures the high computational
efficiency of the methods. In particular, the intro-
duction of the numerical approximation reduces the
estimation problem to the solution of a linear system

that is composed by highly sparse blocks.

In most applications we use finite elements over tri-
angular meshes. Figure 4 illustrates a linear finite ele-
ment basis on a planar and on a non-planar triangula-
tion. Wilhelm et al. [2016] explores instead the use of
isogeometric analysis based on Non-Uniform Rational
B-Splines (NURBS), that are advanced non-tensor
product splines with high smoothness. The latter
numerical solution is particularly interesting for en-
gineering applications. Indeed, NURBS are exten-
sively used in computer-aided design (CAD), man-
ufacturing, and engineering, to represent the three-
dimensional surface of the designed item. Moreover,
when optimizing the design, especially in the space,
aircraft, naval and automotive sectors, it is crucial
to study the distribution of some quantity of interest
over the surface of the designed item. Consider for
instance the pressure exerted by air over the surface
of a shuttle winglet; see Figure 2. In this respect SR-
PDE based on NURBS can offer important in-built
tools for uncertainty quantification and for predic-
tion, exploiting the same basis representation that is
used to design the object.
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4 Estimators

The estimators obtained from the discretization have
very simple forms and uncertainty quantification is
fully available for these models. To give the form
of the estimators, we have to introduce the follow-
ing notation. Let z be the vector of observed data
values, z := (z1, . . . , zn)t, and, for a function f :
D → R, let fn be the vector of evaluations of f at
the n spatial locations, fn := (f(p1), . . . , f(pn))t.
Moreover, if covariates are present, denote by W
the n × q matrix whose ith row is given by wt

i ,
the vector of q covariates associated with observa-
tion zi at pi. Let Q be the matrix that projects
into the orthogonal complement of Rn with respect
to the subspace of Rn spanned by the columns of
W , Q := I − W (W tW )−1W t. Moreover, let Ψ be
the n × NT whose ij−th entry is the evaluation of
the j−th basis function at the i−th spatial location,
ψj(pi). Then, the estimator of β has the least square
form

β̂ = (W tW )−1W t(z− f̂n)

and the field estimator is given by f̂ = f̂ tψ, where f̂
has the penalized least-square form

f̂ = (ΨtQΨ + λP )−1ΨtQ z (3)

and P represents the discretization of the penalty
term in (2).

Moreover, we can predict the value for a new obser-
vation, at location pn+1 and with covariates wn+1,
by

ẑn+1 = wt
n+1β̂ + f̂(pn+1) = wt

n+1β̂ + f̂ tψ(pn+1).

The above expressions highlight that the estima-
tors β̂ and f̂ , as well as the predicted value ẑn+1, are
linear in the observed data values z. Exploiting the
simple forms of these estimators, we can derive their
distributional properties and some classical inferen-
tial tools, such as confidence intervals for β̂ and f̂(p)
and prediction intervals for new observations. See the
Appendix for details.

When covariates are not included in the model, the
field estimator f̂ is as in (3), but with Q replaced by
the identity matrix. Azzimonti et al. [2014] shows

that the field estimator is asymptotically unbiased.
The estimator f̂ is in fact affected by bias due to the
discretization and to the presence of the regulariz-
ing term. On the other hand, both sources of bias
disappear as the number n of observations increases,
filling the domain of interest: the bias due to dis-
cretization disappears if the mesh is suitably refined
as n increases; the bias due to the regularizing term
disappears if the smoothing parameter λ decreases as
n increases. The latter appears to be a natural re-
quest, since having more observations lessen the need
to regularize. Moreover, Arnone [2018] has started in-
vestigating the consistency of the estimators when λ
decreases as n increases, according to an appropriate
rate.

5 Some modelling extensions

The model described in the previous sections can be
extended in a number of directions.

Wilhelm and Sangalli [2016] extends the linear re-
gression model in (1) and (2) to a generalized linear
model framework. This enables the modelling of vari-
ables of interest having any distribution within the
exponential family. The exponential family includes
most of the well-known distributions, both contin-
uous and discrete. This model generalization thus
broadens enormously the applicability of the pro-
posed technique. Wilhelm and Sangalli [2016] for in-
stance shows an application to the analysis of crime
data, modelled as Poisson counts.

SR-PDE can also be extended to space-time data.
As an example, in the application to buoy data, in-
stead of considering one single temperature value at
each buoy, we can consider multiple temperature val-
ues, observed across time. The bottom right panel
of Figure 1, for instance, shows the average tem-
perature values recorded over several months: each
one of these curves corresponds to one buoy. We
can thus study the spatio-temporal variation of the
phenomenon (accounting as well for time-varying co-
variates observed at the same buoys, if desired).
The field f is in this case defined over a spatio-
temporal domain. The regularizing term can in-
volve a time-dependent PDE, that jointly models the
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spatio-temporal behavior of the phenomenon under
study, as detailed in Arnone et al. [2019]. Alterna-
tively, the sum-of squared-error criterion can include
two regularizing terms that account separately for
the regularity of the field in space and in time; see
Bernardi et al. [2017].

Moreover, different sampling designs can be consid-
ered. For instance, instead of data referred to point-
wise spatial locations, as considered in the previous
sections, we can deal with areal data, i.e., data re-
ferred to areal subdomains. For instance, Wilhelm
and Sangalli [2016] study criminality analyzing crime
counts per municipality district. Furthermore, in-
stead of data referred to specific temporal instants,
we can consider mean values over time intervals, or
cumulative values over time intervals. Various com-
binations of the sampling in space and time can also
be considered [see Arnone et al., 2019, for details].

6 Population studies

Suppose now that multiple realizations of the field are
available, z1, . . . , zm, corresponding to m statistical
units, where zj := (zj1, . . . , zjnj

)t, and zji is the value
assumed by the j−th statistical unit at location pji,
j = 1, . . . ,m, i = 1, . . . , nj . We are here interested
in a population study. Suppose, in particular, that
we want to study the variability across the observed
signals z1, . . . , zm. To this aim, Lila et al. [2016a] pro-
poses a method for functional Principal Component
Analysis (fPCA), which is based on SR-PDE. Like-
wise standard multivariate principal component anal-
ysis, the method enables to estimate the main modes
of variability in a population and to perform dimen-
sional reduction. Moreover, thanks to the properties
of SR-PDE, the proposal of Lila et al. [2016a] is able
to deal with functional signals observed over domains
with complex shapes.

Lila et al. [2016a] illustrates the method via an
application to the study of high-dimensional neu-
roimaging signals associated with neuronal activity
in the cerebral cortex. The dataset consists of resting
state functional magnetic resonance imaging scans
from about 500 healthy volunteers, and is made avail-
able by the Human Connectome Project [Essen et al.,

Figure 5: From top to bottom, first, second and
third principal components of functional connettivity
maps, obtained by regularized fPCA based on SR-
PDE; see Lila et al. [2016a].
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2012]. The left panel of Figure 3 shows a triangular
mesh representing the cortical surface of a template
brain. The scans of the various subjects are mapped
to this template, to enable comparisons across sub-
jects. The figure highlights the highly convoluted
morphology of the cortex. While most neuroimaging
analysis ignore the morphology of the cortical sur-
face, there is nowadays a growing awareness of the
need to include the complex brain morphology, to
advance our still limited knowledge about brain func-
tioning [see, e.g., Glasser et al., 2013, and references
therein]. This has generated a strong momentum in
the international community for the development of
methods able to accurately analyze data arising from
these complex imaging scans. As mentioned in the
Introduction, classical tools such as non-parametric
smoothing have already been adapted to deal with
data observed over two-dimensional curved domains,
such as the cortex [see,e.g., Hagler et al., 2006, Chung
et al., 2005, 2017]. In this respect, Lila et al. [2016a]
offers the first method for population studies.

The analysis focuses on functional connectivity
maps. Specifically, a functional connectivity map is
computed for each subject, starting from magnetic
resonance imaging data. The map highlights the ar-
eas of the cortex that are more highly connected to a
region of interest, chosen on the template brain, and
common across subjects. For this analysis, we con-
sider a region within the Precuneus. The right panel
of Figure 3 displays the functional connectivity map
for one subject in the dataset.

Figure 5 shows the first three principal compo-
nents estimated by the regularized fPCA technique
proposed in Lila et al. [2016a]. These functions, com-
puted over the cortical surface, identify the first three
main connectivity patterns across subjects. More-
over, they can be used to perform dimensional reduc-
tion of this highly dimensional dataset. The principal
components combine a desired smoothness with the
ability to capture strongly localized features in the
modes of variation. Lila et al. [2016a] shows that
the proposed method outperforms standard multi-
variate PCA, that return estimates characterized by
excessive local variation, neglecting the shape of the
domain; the proposed method is also proved supe-
rior to the classical pre-smoothing approach, where

each subject-specific map is smoothed previous to
performing the multivariate PCA.

7 Discussion

Various other extensions of the described models
can be considered. Of particular interest, for in-
stance, is the generalization towards data distributed
in volumetric domains with complex shapes. Such
a generalization would constitute a crucial advance
with respect to the available techniques, which only
work on parallelepiped domains. For instance, in
the neurosciences, an extension of SR-PDE to three-
dimensional domains would enable the study of
neuroimaging signals arising from the grey matter,
respecting its formidably complicated morphology,
characterized by complicated internal and external
boundaries and holes. SR-PDE can also be general-
ized to more articulated regression frameworks, in-
cluding for instance mixed effect settings, and lasso
or ridge penalizations of the parametric part of the
models.

As discussed in the previous sections, SR-PDE
merges approaches from statistics, mathematics and
engineering. Thanks to this powerful blend, the
method have important advantages with respect to
classical techniques and and they are able to han-
dle data structures for which no other method is
currently available. Moreover, the use of advanced
numerical analysis techniques makes SR-PDE highly
computationally efficient.

We are confident these methods will prove highly
valuable in a number of applications in the engineer-
ing and sciences.
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8 Appendix

Denote by S the n× n matrix

S = Ψ(ΨtQΨ + λP )−1ΨtQ.

Using this notation,

f̂n = S z

β̂ = (W tW )−1W t
{
I − S

}
z .

If we assume that the random errors ε1, . . . , εn in
model (1) are uncorrelated, with zero mean and fi-
nite constant variance σ2, then E[z] = Wβ+ fn and
V ar(z) = σ2 I. Moreover, exploiting the properties
of the matrices Q and W , we can derive the following
means and variances of β̂ and f̂n:

E[β̂] = β + (W tW )−1W t
(
I − S

)
fn

V ar(β̂) = σ2(W tW )−1 + (4)

σ2(W tW )−1W t
{
S St

}
W (W tW )−1

and

E[f̂n] = S fn

V ar(f̂n) = σ2 S St. (5)

Now consider the estimator of the field f at any lo-
cation p ∈ Ω:

f̂(p) = ψ(p)t(ΨtQΨ + λP )−1ΨtQz.

Its mean and variance are given by

E[f̂(p)] = ψ(p)t(ΨtQΨ + λP )−1ΨtQfn

V ar[f̂(p)] =

σ2ψ(p)t(ΨtQΨ + λP )−1ΨtQΨ(ΨtQΨ + λP )−1ψ(p).

The covariance at any two locations p1,p2 ∈ Ω is
given by:

Cov[f̂(p1), f̂(p2)] =

σ2ψ(p1)t(ΨtQΨ + λP )−1ΨtQΨ(ΨtQΨ + P )−1ψ(p2).

The above expressions highlight that both the first
order structure of f̂ , i.e., its mean, and the second

order structure of f̂ , i.e., its covariance, depend on
the regularization being considered.

A robust estimate of σ2 is given by

σ̂2 =
1

n− (q + tr(S))

(
z− ẑ

)t(
z− ẑ

)
.

This estimate, together with expressions (4) and (5),
may be used to obtain approximate confidence in-
tervals for β, approximate confidence bands for f,
and approximate prediction intervals for new obser-
vations.
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