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Evolution of the scalar dissipation rate
downstream of a concentrated line source in
turbulent channel flow

E. GERMAINE,L. MYDLARSKI{and L. CORTELEZZI
Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada

(Received 7; revised ?7; accepted ?. - To be entered by editorial office)

The dissipation rate, e¢, of a passive scalar (temperature in air) emitted from a concen-
trated source into a fully developed high-aspect-ratio turbulent channel flow is studied.
The goal of the present work is to investigate the return to isotropy of the scalar field
when the scalar is injected in a highly anisotropic manner into an inhomogeneous turbu-
lent flow at small scales. Both experiments and direct numerical simulations (DNSs) are
used to study the downstream evolution of €y for scalar fields generated by line sources
located at the channel centreline (ys/h = 1.0) and near the wall (ys/h = 0.17). The
temperature fluctuations and temperature derivatives were measured by means of a pair
of parallel cold-wire thermometers in a flow at Re, = 520. The DNSs were performed at
Re,; = 190 using a spectral method to solve the continuity and Navier-Stokes equations,
and a flux integral method (Germaine et al. 2013, 3DFLUX) for the advection-diffusion
equation. The statistics of the scalar field computed from both experimental and nu-
merical data were found to be in good agreement, with certain discrepancies that were
attributable to the difference in the Reynolds number of the two flows. The return to
isotropy of the small scales is never perfectly observed in any region of the channel for
the downstream distances studied herein. However, a continuous decay of the small-scale
anisotropy is observed for the scalar field generated by the centreline line source in both
the experiments and DNSs. The scalar mixing is found to be more rapid in the near-wall
region, where experimental results exhibit low levels of small-scale anisotropy. However,
the DNSs, being performed at lower Re., show that persistent anisotropy can also exist
near the wall, independently of the downstream location. The role of the mean velocity
gradient in the production of £¢ (and therefore anisotropy) in the near-wall region is
highlighted.

1. Introduction

The ability of turbulence to mix one or more scalars within a fluid is of particular rele-
vance to a variety of engineering applications including combustion, pollution dispersion
and heat transfer. Using premixed combustion as an example, reactions occur only if the
fuel and oxidizer are sufficiently mixed at the molecular level prior to ignition. However,
our comprehension and ability to predict turbulent mixing are limited because the fluid
mechanics that governs turbulent mixing involve multi-scale phenomena for which the
details are not yet fully understood.

The turbulent mixing process stretches and stirs the scalar field, which serves to
increase the scalar gradients. The scalar fluctuations are then smoothed out by the
molecular mixing that principally occurs at the smallest scales of the turbulence. The
rate of destruction of the scalar variance is quantified by the scalar dissipation rate,
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eo(= a((00/0x;)?). Tt is the only term in the scalar variance budget that must be non-
zero in every turbulent flow. Consequently, €9 is omnipresent and of critical importance
to the description of turbulent scalar fields. Furthermore, it is a quantity whose primary
contributions derive from the smallest scales of the scalar field.

The predominant theory related to turbulent scalar mixing, Kolmogorov Obukhov
Corrsin (KOC) theory, predicts that the small scales should be isotropic and independent
of the large scales of a scalar field; the latter being anisotropic in most cases. However,
it has been shown that departure from isotropy occurs at the small scales of the scalar
field when its large scales are anisotropic, which puts KOC phenomenology into question
(Warhaft 2000).

Investigations into the local isotropy of the scalar field (and, in particular, violations
thereof) have been widely reported in the literature (e.g. Sreenivasan 1991). However,
the large majority of these studies focussed on the evolution of a scalar field injected into
a homogeneous and isotropic turbulent hydrodynamic field at large scales. Althought,
the assumption of homogeneity considerably simplifies the analysis and yields interest-
ing similarities between the scaling of the velocity and scalar fields when the injection
occurs at large scales (Corrsin 1952; LaRue & Libby 1981; Ma & Warhaft 1986; Danaila
et al. 2012). However, such a configuration is not representative of real flows, which are
generally inhomogeneous and exhibit discrepancies between the scales of the velocity and
scalar fields. Furthermore, only a small subset of the previous work has focussed on the
dissipation rate of the scalar variance, even though €y remains one of the less understood
(yet most important) quantities within a turbulent flow.

The small-scale injection of a scalar by means of a point or line source in an inhomo-
geneous flow is of relevance to multiple engineering applications, including the transport
of a plume emitted by a smokestack in the atmospheric boundary layer, or the mixing of
chemical species injected into a combustion chamber. Given the importance of such ap-
plications, it is somewhat surprising that relatively few studies of turbulent scalar mixing
resulting from small-scale injection and focusing on the scalar dissipation rate, ¢, have
been undertaken. This fact motivates the research herein.

The main objective of the present work is to further investigate and understand the
evolution of the scalar field when injected in a highly anisotropic manner at small scales
in an inhomogeneous turbulent flow. In measuring the evolution of €9 downstream of the
source, we aim to further our understanding of the details of the scalar mixing process,
which will improve our effectiveness in predicting the phenomena that rely on this process.
In many cases, local isotropy is invoked when estimating 9. When the scalar is injected
at small scales, such an assumption is clearly inaccurate near the source. Furthermore,
though this assumption may increase in validity with increasing distance from the source,
the rate at which it does so is an important factor. Therefore, particular attention will
be paid to the evolution of the three different components of the scalar dissipation rate:
g9, = a((00/0x)?), eg, = a((80/0y)?) and g9, = a((80/0z)?). We focus our attention
on the relative contributions of €y, €¢, and €4, to ¢, and therefore on the evolution of
this anisotropy. To this end, all three components of the scalar dissipation rate have been
studied both, experimentally and by means of numerical simulations.

The remainder of this paper is organized as follows. The relevant literature is reviewed
in §2. Then, the experimental apparatus and details of the numerical simulations are
reported, respectively, in §3 and §4. Results are presented in §5, §6 and §7, comparing, as
often as possible, the experimental and numerical results. The first of these three sections
presents results pertaining to the velocity field. The second presents large-scale statistics
(mean and root-mean-square (r.m.s.) temperatures), and compares them to the previous
results of Lavertu & Mydlarski (2005) to validate the present measurements. The third
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section, which comprise the vast majority of the results presented herein, reports in detail
the evolution of the scalar dissipation rate and its three components at several locations.
Lastly, conclusions are presented in §8.

2. Literature review

The theoretical foundation of (hydrodynamic) turbulence was proposed by Kolmogorov
(1941). This work, commonly referred to as K41, introduces several concepts necessary
to the description of the transport and dissipation of turbulent kinetic energy in a tur-
bulent flow. As there is also significant interest in heat and mass transfer, Kolmogorov’s
arguments were extended by Obukhov (1949) and Corrsin (1951) to the transport of
passive scalars, referred to as Kolmogorov Obukhov Corrsin (KOC) phenomenology. At
sufficiently high Reynolds numbers (Re = UL/v, where U is an average fluid velocity,
L is some characteristic length of the system, and v is the kinematic viscosity of the
fluid) and Péclet numbers (Pe = UL/« or UL/ D, where « is the thermal diffusivity of
the fluid and D the scalar (molecular) diffusivity of a chemical species in the fluid), it
supposes that there is a decay of any large-scale anisotropy when smaller and smaller
scales are considered, the scalar dissipative scales returning to a statistically isotropic
state. The smallest hydrodynamic and scalar scales (n and 7y, respectively) are related
by the Prandtl number (Pr = v/a) or Schmidt number (Sc = v/D). (Subsequently, in
the interest of concision, we will assume the scalar under consideration is temperature
in our discussions.) The relationship between 7, 179 and Pr depends on whether Pr > 1
or Pr < 1. Note that 1y and n are of the same order of magnitude in the air flow
studied herein, where Pr = 0.7 ~ O(1). Therefore ng = nPr—%/* (Corrsin 1951), where
n = (13/e)'/* and where & = 2v(s;;s;;) is the dissipation rate of turbulent kinetic energy.
(sij = $(0u;/0z; + Ouj/Ox;) is the fluctuating strain rate.)

The transport of a scalar quantity injected by a line source in a turbulent flow has
been studied since the early experiments of Taylor (1935) and Uberoi & Corrsin (1952).
Measurements taken downstream of a heated line source in homogeneous, isotropic tur-
bulence were carried out by Warhaft (1984) and Stapountzis et al. (1986). The authors
showed that, in isotropic turbulence, the development of the mean thermal wake can
be divided into three stages corresponding to different times ¢: i) a molecular diffusive
range (t < a/(v?), where (v?) is the velocity variance in the transverse direction), in
which the width of the mean temperature profile, o;,eqn, increases as v/t, ii) a turbulent
convective range (a/(v?) < t < tr, where t, is the Lagrangian integral time-scale) in
which the growth of oyeqn is linear in time, and iii) a turbulent diffusive range (¢t > tr,)
where opmean is proportional to t(2~™/2 (with n ~ 1 being the decay exponent of the
velocity field). Subsequently, Karnik & Tavoularis (1989) investigated the evolution of a
thermal plume in a homogeneous (but non-isotropic) turbulent shear flow. In contrast
with grid turbulence, there is a continuous supply of kinetic energy from the mean shear
to the turbulence, ensuring that the turbulence does not decay in this flow. The authors
observed that the decay of the scalar fluctuations close to the source was not very differ-
ent from that observed in isotropic turbulence. However, farther downstream, the mean
shear affected the scalar statistics, imposing the effect of its large-scale anisotropy on
the evolution of the scalar. Chung & Kyong (1989) also investigated the dispersion of a
turbulent temperature field behind a line source in a homogeneous turbulent shear flow.
Their goal was to provide experimental data for the assessment of third-order transport
models. The mean and r.m.s. scalar profiles were found to exhibit nearly Gaussian dis-
tributions except for a minor degradation in the center region of the r.m.s. temperature
profile. The evolution of second-order moments of scalar plumes, emitted from instanta-
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neous and continuous area, line, and point sources, was modelled by Thomson (1996).
Given that the flow under consideration was homogeneous, isotropic turbulence, he was
also able to model the evolution of the scalar dissipation rate (via the scalar variance
budget). Livescu et al. (2000) used Direct Numerical Simulations (DNSs) to study the
development of the scalar plume produced by a line source in decaying homogeneous,
isotropic turbulence. Their study focused on a statistical analysis of moments of different
orders and confirmed the experimental results of Warhaft (1984).

Although previous work in homogeneous flows has drastically increased our under-
standing of the mixing of scalars emitted from sources at small scales, their applicability
to engineering and natural flows remains somewhat limited given that almost all “real”
flows (e.g. jets, boundary layers, duct flows) are inhomogeneous. Consequently, scalar
dispersion within inhomogeneous flows has also been studied. To this end, Fackrell &
Robins (1982) investigated the evolution of a thermal plume emitted from a point source
in a turbulent boundary layer. The authors reported measurements of the variance, in-
termittency, peak concentration values, probability density function and spectra of the
scalar field. They showed that most of the fluctuations are produced in the vicinity of
the source, and that the maximum amplitude of the fluctuations is source-size depen-
dent. Raupach & Legg (1983) studied the dispersion of a thermal plume emitted in a
turbulent boundary layer from a line source. Their work was focused on testing first-
and second-order closure models. To this end, they measured the dissipation rate of
the temperature fluctuations by assuming local isotropy and using Taylor’s hypothesis
(c0iso ~ (3a/(U)?){((06/0t)?), where angular brackets represent averaged quantities).
They reported that their measurements of €9 were 20% below its value inferred from the
scalar variance budget. Paranthoén et al. (1988) studied the evolution of the tempera-
ture field downstream of a line source in a turbulent boundary layer and in a planar jet.
They reported mean and r.m.s. profiles of the temperature field and proposed a rescaling
scheme based on the temporal integral Lagrangian scale of the vertical velocity fluctua-
tions. The scheme was shown to be efficient in rescaling the mean profiles, but not the
r.m.s. profiles. Tong & Warhaft (1995) studied the dispersion and mixing of temperature
fluctuations emitted in the self-similar region of an axisymmetric turbulent jet from two
heated annular (ring) sources. The two sources were used to study the mixing of two in-
dependently introduced scalar fields. Their results contrasted with those obtained in grid
turbulence (Warhaft 1984), where the mixing and dispersion was slower. The authors
also showed that far downstream of the jet exit, the scalar field becomes independent
of its method of introduction into the flow. Tong & Warhaft (1995) also examined the
relationship between the integral-scale and dissipation-scale fluctuations in the far-field.
Even though they reported that large- (§%) and small-scale (A#?) quantities become less
coupled as the Reynolds number increases, conditional expectations of A#? on € exhibited
a significant dependence of the former on the latter. Rosset et al. (2001) investigated the
transport of temperature behind a line source in a turbulent jet and a turbulent bound-
ary layer over a flat plate. The authors were particularly interested in the behavior of
the scalar dissipation rate, 9. Near the source, they observed a large anisotropy of the
dissipative scales, which was explained by the high temperature gradient imposed by the
source and by the flapping of the thermal wake. This anisotropy persisted downstream
in the off-center region of the plume. However, in the central part of the plume, they
reported a return to isotropy of the different components of e9. Rosset et al. (2001) de-
rived a model to estimate the return-to-isotropy time-scale and proposed arguments to
explain this phenomenon. Nevertheless, they ultimately remarked that the details of the
process remain to be understood.

One subset of inhomogeneous flows is of particular interest. Fully-developed, turbulent
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duct flows, of circular or high-aspect-ratio cross-sections, are only inhomogeneous in one
(the wall-normal) direction. Such a characteristic simplifies the analysis given that the
inhomogeneity of the underlying velocity field is limited to one direction (as opposed
to two or three). Brethouwer et al. (1999) used DNS to study the turbulent mixing of
a passive scalar in fully-developed turbulent pipe flow. In their work, the scalar was
released from a point source at the centreline of the pipe. They presented large-scale
statistics, i.e., mean and r.m.s. concentration profiles, turbulent fluxes and probability
density functions (PDFs) which, in this case, at the center of the flow, compared favorably
to experimental data from grid-turbulence. The release of a scalar field from a line source
in a turbulent channel flow has also been investigated in the experiments of Lavertu &
Mydlarski (2005). The authors studied the evolution of the temperature field in turbulent
channel flow. The line source was oriented in the spanwise (z) direction resulting in a
thermal plume that was statistically two-dimensional. The authors reported large-scale
statistics measured at different downstream locations in the scalar plume and for several
wall-normal locations of the line source. They observed significant differences from the
results in grid turbulence, which were attributed to the inhomogeneity of this flow in the
wall-normal direction. Vrieling & Nieuwstadt (2003) and Costa-Patry & Mydlarski (2008)
both studied the passive scalar mixing downstream of two line sources in fully-developed
turbulent channel flow using DNSs and experiments, respectively. They showed that mean
temperature values can be inferred from measurements downstream of a single source.
However, the combined variance of two sources cannot be obtained by adding the variance
of the individual sources. In contrast with Lavertu & Mydlarski (2005) and Costa-Patry
& Mydlarski (2008), Bakosi et al. (2007) used probability density function methods and
the TECM (interaction by exchange with the conditional mean) model to investigate
the dispersion of a passive scalar released continuously from a concentrated source in
a turbulent channel flow. One-point statistics of the scalar field were compared to the
DNS data of Abe et al. (2004) and the experimental data of Lavertu & Mydlarski (2005).
The width of the mean scalar profiles obtained with the IECM model were larger than
those measured in the experiments at different downstream locations from the source.
Boppana et al. (2012) performed Large-Eddy Simulations (LESs) of the dispersion of a
scalar from a line source in a turbulent channel flow. They reported mean and r.m.s.
profiles and PDFs of the scalar fluctuations. Their results were also compared to the
experiments of Lavertu & Mydlarski (2005), which exhibited discrepancies for both the
width and location of the profile’s peak. Note that in contrast to Bakosi et al. (2007),
the widths of the mean profile computed by Boppana et al. (2012) were smaller than
those obtained from Lavertu’s experiments. In addition, Boppana et al. (2012) observed
a double peak in the r.m.s. profiles at downstream locations from the source (x/h > 7.4)
that were not reported in the experiments. PDFs of both the LESs and experiments
were in good agreement, except for the thermal fields generated by the centreline source.
Lepore & Mydlarski (2011) studied the downstream evolution of a three-dimensional
thermal plume in the turbulent channel flow released by a line source oriented in the wall-
normal direction. They examined in detail the mean and fluctuating temperature fields
at different locations in the thermal plume to highlight the differences between lateral
and transverse dispersion. Lastly, Mydlarski et al. (2007) focused on the dissipation rate
of a scalar field emitted from a line source in a turbulent channel flow. The authors
confirmed that small-scale anisotropy is amplified at the interfaces between the plume
and the ambient fluid. They reported that a large anisotropy occurs in regions of high
turbulent intensity and their results showed that there may exist a competition between
mechanisms that amplify and destroy anisotropy. However, £y was not directly measured
in this work, but was inferred from the scalar variance budget (given certain assumptions).
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Exp. DNS
<U>y/h:1 [m/s] 5.3 -
Urms,, /p—1 [m/s] 0.22 -

Ur [m/s] 0.26 -
Ny/h=1 [m] 0.28 x 1073 -
Re(= (U)y/n=1h/v) 10600 3600
Re, (= u,h/v) 520 190
Rex(= Urms, /1 Ay/h=1/V) 59 36
ys/h =017 yi =88 yf =33
ys/h = 1.0 yd =520 yi =190

Table 1: Flow parameters. Properties of the flow considered in the experiments and
numerical simulations, and source locations in terms of wall units. v = 15 x 107% m?/s.

In contrast to their work, the present work directly measures (all three components of)
the scalar dissipation rate, using both experiments and numerical simulations.

3. Experimental apparatus

The experiments were conducted in the same open-circuit channel as the one used by
Lavertu & Mydlarski (2005), Costa-Patry & Mydlarski (2008) and Lepore & Mydlarski
(2011). The air flow is supplied by a Hudson Buffalo centrifugal blower powered by a
7.5 h.p. electric motor whose speed is monitored by an ABB ACS 600 controller. The air
flow is filtered at the inlet of the motor to prevent particles (of diameter greater than
3 um) from entering the channel. A flexible rubber coupling is used to join the blower
output to the entrance of the flow conditioning section to minimize the transmission of
any blower vibrations to the flow conditioning section. The latter consists of a wide-angle
diffuser, a settling chamber and a contraction. After exiting the contraction, the flow that
enters the channel is uniform and has a low-turbulence-intensity (0.25%).

The test section is 8 m long and has a large aspect ratio, i.e. the height of the channel
in the spanwise (z) direction is large (1.1 m) compared to its width (2h = 0.06 m) in the
wall-normal (y) direction, see figure 1. Consequently, the flow is statistically independent
of z, away from the top and bottom walls of the channel. The development of the flow is
accelerated by the addition of two 3 mm diameter cylindrical rods (located 3 mm from
each wall, at the entrance of the test section) that trip the boundary layers that form on
the test section walls. At the downstream end of the test section, where the measurements
are recorded, the flow is fully-developed with a mean flow in the downstream (z) direction
and zero mean wall-normal (V') and lateral (W) velocities. In the fully developed region,
the flow is statistically stationary and one-dimensional with velocity statistics depending
only on the wall-normal distance (y). Note that such a flow is statistically symmetric
about the mid-plane. Lastly, 7.5 cm of honeycomb mesh (of 5 mm cell size) is used at
the outlet to prevent perturbations from outside the channel from being communicated
upstream, into the channel. The flow conditions are listed in table 1.

In the test section, the scalar (temperature) is injected into the flow by heating a fine
line source. The latter is a 0.127 mm diameter Ni-Cr wire extended across the spanwise
direction of the test section at wall-normal locations of ys/h = 1.0 (channel centreline)
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Figure 1: Schematic of the experiment. (Adapted from Lepore & Mydlarski (2011).)

and ys/h = 0.17 (near-wall region). The wire was heated electrically by a DC power sup-
ply and the power consumption was continuously monitored so that the energy released
into the flow remained equal to 45 W/m. See figure 1 for a schematic of the experiment.

The temperature fluctuations, 6, and their dissipation rate, ey, were measured by means
of cold-wire thermometry. The sensors were inserted into the channel from its outlet using
a (915 mm-long) probe support (TSI-1155-36). The accurate positioning of the sensor in
the wall-normal direction was ensured by means of a precision transversing mechanism
driven by computer controlled stepper motor. The minimum step increment was 0.01
mm. The sensor consisted of two parallel 90%—platinum/10%-rhodium wires of 0.63 pm-
diameter mounted on a TSI 1244 probe. Variations of the sensor temperature are linearly
proportional to its electrical resistance (over small ranges) and are measured by a cold-
wire thermometry circuit designed by Lemay & Benaissa (2001). The output signals of the
cold-wire thermometer were 4) amplified and filtered by a Krohn-Hite 3384 8-pole filter,
and 1) digitized using a 16 bit (£5V") National Instruments PCI 6036E data acquisition
card. The acquisition procedure was undertaken using LabVIEW virtual instruments.
Depending on the wall-normal location of the probe, the sampling frequency (2.5 times
the low-pass filter frequency) was in the range [5 — 10] kHz and the sampling time was
fixed at 200 s for each locations. The length-to-diameter ratio of the cold-wire sensors was
approximately 800 (i.e. Iy ~ 0.5 mm) and its frequency response was approximately
5 kHz when operated in a 5 m/s flow. Note that the temporal resolution of the wire was
sufficient given that the Kolmogorov frequencies, f, = (U)/(2mn), of the flow studied
herein did not exceed 4 kHz. In addition, the (temporal resolution) correction proposed
by Lemay & Benaissa (2001) was applied to the acquired data. However, the effect of this
correction was relatively small as it increased the estimate of the temperature dissipation
by less than 1% when measured at the farthest downstream location and by 5% when
measured at the location closest to the line source.

The scalar derivative (90/0x) in the downstream direction was estimated using Tay-
lor’s hypothesis in conjunction with the time derivative of temperature (96/0t). This
measurement required only a single cold-wire, whereas, two wires were needed to esti-
mate the derivatives (00/9y) and (00/0z) in the wall-normal and spanwise directions,
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respectively. Zhou et al. (2003) investigated the effects of the separation between the two
wires and found that the spectra of temperature derivatives are significantly affected by
the electronic noise contamination from one wire to the other when the separation is
smaller than 37. In addition, they recommended the use of a correction method similar
to that of Wyngaard (1969) when the wire separation was larger than 37. As a con-
sequence, we designed our sensors so that the separation between the two wires was
nominally, 3n (= 0.75 mm), being slightly smaller than 37 at the channel centreline, and
slightly larger near the wall, as 1 is a function of wall-normal position. This conclusion
is furthermore supported by the works of Danaila et al. (2000), Anselmet et al. (1997)
and Antonia & Mi (1993), who all agree that wire separations of 37 are optimal.

4. Numerical simulations

To complement the experiments described in §3 and provide further insight on the
evolution of the scalar dissipation rate, we performed direct numerical simulations (DNSs)
of a nearly identical problem. The fully developed turbulent flow can be assumed to be
homogeneous in the spanwise and streamwise directions while the scalar field can be
assumed homogeneous in the spanwise direction only. The scalar field presents a sharp
gradient at the line source while the velocity gradients of the hydrodynamic field are
smooth. However, since the temperature difference between the fluid in the plume and
the incoming fluid are small, the hydrodynamic problem can be assumed to be one-way
coupled with the adevection-diffusion problem. Therefore, we split the DNS in two parts:
we first compute the solution to the hydrodynamic field and, subsequently, the solution
to the advection-diffusion problem.

Spectral methods have become a standard tool to simulate fully developed turbulent
channel flows because of their high-accuracy and kinetic energy conservation properties.
We directly numerically simulate the time-evolution of the hydrodynamic flowfield by
solving continuity and Navier-Stokes equations,

=0, j = —— —+ v ,
O0x; ot O0x; p O0x; O0x;0x;

with periodic boundary conditions in the streamwise (x) and spanwise (z) directions, and
no-penetration and no-slip conditions at the walls, see figure 1. The streamwise mean
pressure gradient, which drives the mean flow in the z-direction, is adjusted dynamically
to maintain a constant mass flux through the channel. To integrate the above equations,
we use the spectral code named “Channelflow” (Gibson et al. 2008; Gibson 2010, licensed
under the GNU GPL, http://channelflow.org/), which performes the time integration
leveraging a third-order Runge-Kutta method.

Spectral methods, however, are not suitable for the simulation of a scalar field injected
by means of a line source, i.e. a singularity, that introduces a sharp-gradient in the scalar
field. In the presence of sharp-gradients, the convergence rate of spectral methods dete-
riorates to first-order because spurious oscillations develop in the vicinity of a line source
and propagate in the flowfield (Gibbs phenomenon). Furthermore, spectral methods are
not suited for solving non-periodic problems. (See, for example, Simens et al. 2009, for
details.). Therefore, we solve the advection-diffusion equation

oT oT o*T

ot T Vioe, = “on0m,

(4.1)

(4.2)

with periodic boundary conditions in the spanwise (z) direction, inflow/outflow at the
inlet/outlet of the channel, and adiabatic (no-flux) at the walls (see figure 1) using a
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scheme we developed, named 3DFLUX (Germaine et al. 2013). 3DFLUX is a high-order,
three-dimensional, conservative, monotonicity preserving numerical solver. It is nominally
third-order in space and second-order in time. The line source used in the experiment
is simulated using a string of constant-source nodes located on a straight line, oriented
parallel to the z-axis.

In this two-step numerical approach, the solenoidal velocity field of the turbulent chan-
nel flow is precomputed by the Channelflow code and, subsequently, is passed as an input
to the 3DFLUX code to solve the advection-diffusion equation. This passage, apparently
trivial, is indeed very delicate because of the different velocity representations and grids
used in the two codes. In Channelflow, the velocity field has a spectral representation with
a resolution dictated by the number of Fourier and Chebyshev modes used. In 3DFLUX
the computational domain is discretized with a number of non-overlapping control vol-
umes or cells. The scalar field is discretized at the centre of each cell, whereas the com-
ponents of the velocity field are stored at the centre of the faces of each cell (staggered
grid). Therefore, the velocity field produced by Channelflow is passed to 3DFLUX by
interpolating the spectral representation of the velocity field on each face of the 3SDFLUX
grid.

The interpolation of a divergence-free velocity field has been the subject of several
publications in the last decade (see for example Balsara 2001; Li & Li 2004; Chamecki
et al. 2008). The method proposed by Chamecki et al. (2008) is efficient only when the
grids of the two different discretization methods are identical, and therefore not applicable
herein. We devised our own method in which we first use a spectral (exact) interpolation
to compute the value of the velocity components at nine points on each face, i.e. one at
the center, four at the corners, and four at the mid-side of the edges of the faces. Then, we
computed the value of each velocity component at the face of each cell by averaging the
nine interpolated values. Finally, we applied a very small correction to the u—component
of the velocity field to guarantee the exact divergence-free condition. Note that i) the
choice of the u—component is arbitrary (it could have been the w—component), and i)
this correction has a minuscule impact on the velocity field, as it modifies the interpolated
instantaneous values of the u—component by less than 0.01%.

The simulations of the velocity and scalar fields were both performed without turbu-
lence models, by resolving the entire range of scales. The computational conditions are
reported in table 2 for the (¢) hydrodynamic field, and (i) scalar field for two source
locations (ys/h = 1.0 and ys/h = 0.17). These DNSs require that the computational
domain be large enough to capture the integral scales and the spatial resolution be small
enough to resolve, as accurately as possible, the dissipative scales. On the one hand, the
large scales are correctly represented when the two-point correlations in the streamwise
and spanwise directions are zero, respectively, at the half-length and half-height of the
domain (Kawamura et al. 1998; Moser et al. 1999). The domain size selected herein is
the same as in Kawamura et al. (1998), Moser et al. (1999) and Schwertfirm & Manhart
(2007). The Kolmogorov (i.e. smallest) length scale should ideally be resolved. However,
it has been claimed that this requirement is often too stringent. Moin & Mahesh (1998)
noted that the smallest resolved length scale is required to be on the order of n but not
equal to 1. They further reported that very good agreement of large-scale statistics can
be obtained between DNSs and experiments even though the Kolmogorov scales are not
fully resolved in the simulation. Kawamura et al. (1998) validated the resolution of their
simulations by showing substantial drop-offs in the one-dimensional energy spectra at
high-wave numbers.

Traditionally, the goal of most experiments is to resolve all scales of size n or larger.
This being said, recent work has taken advantage of the constantly increasing compu-
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velocity scalar scalar
ys/h=1.0 ys/h =0.17
Ly x Ly x L, 2mh X 2h X h 2mh X 2h x wh ~ 2wh X 2h X Th
LI x Lf x L 1187 x 378 x 594 1187 x 378 x 594 1187 x 378 x 594
Nz X Ny x N, 256 x 193 x 192 514 x 195 x 194 258 x 390 x 194
Azt Ayt Azt 4.64,0.025 — 3.1,3.1  2.32,1.96,3.1 4.64,0.98, 3.1

Az*, Ay*, Az" at y/h =1.0 1.25,0.83,0.84
Az™, Ay*, Az at y/h =0.17 2.40,0.88, 1.60

Az® Ay®, Az® at y/h = 1.0 - 0.50,0.42,0.66 0.99,0.21,0.66
Az, Ay, Az® at y/h = 0.17 - 0.95,0.80,1.27  1.91,0.40, 1.27
thum 2770 665 665

Table 2: Details of the numerical grids for the computation of velocity, and scalar fields
with two different source locations. The superscript “+” indicates the normalization by
the viscous length (v/u,) or time (v/u2) scale, and the superscripts “+” and “e” are used
for the normalization by the Kolmogorov (1) and Corrsin (79) length scales, respectively,

estimated at y/h = 1.0 and 0.17 as specified.

tational power to simulate turbulent scalar mixing at spatial resolutions finer than 7.
For example, Schumacher et al. (2005) studied the fine structures of homogeneous and
isotropic turbulent scalar mixing using high-resolution simulations (the grid spacing be-
ing smaller than n by a factor of two). They showed that when large fluctuations of e
exist, a spatial resolution based on 7 (defined using its average value) incorrectly pre-
dicted the small-scale statistics. Kozuka et al. (2009) and Galantucci & Quadrio (2010)
both performed DNSs of turbulent scalar mixing in channel flows at high resolution.
Galantucci & Quadrio (2010) carried out three DNSs at increasing spatial resolutions
that they labelled Low, Medium and High. The Low resolution is comparable to the res-
olution of most wall-turbulence DNSs performed to date (with passive scalars) whereas,
in the High resolution simulations, all cell sizes are consistently smaller than 7,,, the
averaged Kolmogorov length scale evaluated at the wall. The spatial resolution denoted
Medium was midway between the two other resolutions. The authors reported several
statistics pertaining to the rate of dissipation of the scalar field (mean, variance, and
PDFs of ey). They showed that the estimates of g¢ can increase by 5% when using the
High or Medium resolutions instead of the Low one. The resolutions used for the sim-
ulations presented herein (see table 2) are comparable to the Medium resolution used
by Galantucci & Quadrio (2010). The accuracy of the chosen resolution as it pertains
to the smallest scales in the flow will be subsequently confirmed when the normalized
(one-dimensional) dissipation spectra for the simulations will be shown to be capable of
reproducing the dissipative scales measured in the experiments.

To compute the hydrodynamic field, uniform meshes were used in the z- and z-
directions whereas a non-uniform mesh (Chebyshev distribution) was adopted in the
y-direction. As shown in table 2, two different grids were used to discretize the scalar field,
depending on the source location. When the source was at the centreline, i.e. ys/h = 1.0,
a quasi-homogeneous grid was used given that the scalar plume did not interact with the
walls (for the downstream locations studied herein). When the source was near the wall
(ys/h = 0.17), the grid resolution was halved in the y-direction to capture the smallest
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wall-normal fluctuations of the scalar field that occur in the vicinity of the walls. The
spatial resolution (Az, Ay, Az) of the scalar field generated by the centreline source was,
for either grid, smaller than or equal to the Corrsin scale. The spatial resolution of the
scalar field generated by the near-wall source is, in the worst case, less than twice the
Corrsin scale in the z-direction. However, note that Ay is always smaller than the Corrsin
scale.

Lastly, to study the evolution of the scalar field at the farther downstream locations, we
adopted a strategy that consisted in connecting several channels in series and computing
the solution for the scalar field sequentially, i.e. the outflow of the first channel became
the inflow of the second one, and so on. Note that the hydrodynamic field is the same
in all channels because of its periodic boundary conditions. In this paper, we limited
our computation to two channels, i.e. (x/h)max = 2Ly/h, where L, is the length of one
channel in the z-direction.

5. Results: Velocity field

To be consistent with Lavertu & Mydlarski (2005), the experiments were carried out
(in the same experimental facility) at Re, = 520. However, the simulations were per-
formed at a lower Reynolds number (Re, = 190) to resolve all scales while keeping
the flow turbulent and the computational effort feasible. Mean velocity profiles in fully
turbulent channel flow from both the experiments and DNSs are plotted in figures 2(a)
and compared to the numerical results of Moser et al. (1999) (Re, = 180 and 590) and
Abe et al. (2001) (Re, = 180 and 640). The experiments of Hussain & Reynolds (1975)
(Re; = 640) are also included for comparison. The mean velocity profile obtained from
the present DNS is in very good agreement with those measured in flows at Re, = 180.
As noted by Kim et al. (1987), even if Re, = 180 is a relatively low Reynolds number (for
a turbulent flow), both linear and logarithmic regions exist and are distinct. Small dif-
ferences are observed between the experiments and the DNSs. However, these differences
can be attributed to the difference in Reynolds number of the flows — a conclusion that
is confirmed by the good agreement between the present experimental results and the
higher Reynolds number simulations of Moser et al. (1999) and Abe et al. (2001). These
simulations also exhibit smaller values of u™ for a given location y* in the logarithmic
region.

The root mean square of the velocity fluctuations is plotted in figure 2(b). The data
of Hussain & Reynolds (1975), Moser et al. (1999) and Abe et al. (2001) are once again
reported for comparison, where available. The values of the three components (u},,,, v;,

and w;l, ) increase with Re, and are consistent with differences in the Reynolds number
between the present experiments (Re, = 520), Moser et al. (1999) (Re, = 590) and Abe
et al. (2001) (Re, = 640). Furthermore, the present DNS (Re, = 190) agrees very well
with the results of Moser et al. (1999) and Abe et al. (2001) (both with Re, = 180). In
short, figure 2(b) shows good agreement between the present and previous data obtained
at similar Re,. (Note that the peak value of u},,, measured by Hussain & Reynolds (1975)
is somewhat low compared the other results. This discrepancy may be justified by the
difficulties in performing these early near-wall measurements). Finally note that original
and interpolated velocity field are indistinguishable. Consequently only the former has

been plotted.
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Figure 2: Velocity profiles in fully turbulent channel flow. Mean (a) and r.m.s. (b) velocity
profiles (normalized by wu,) from experiments (Re, = 520, (o)), DNSs (Re, = 190, (o))
and compared to the DNSs of Abe et al. (2001) (Re, = 180, (- - -) and Re, = 640, (—))
and Moser et al. (1999) (Re, = 180, (O) and Re, = 590, (M)), and the experiments of
Hussain & Reynolds (1975) (Re, = 640, (+)).

6. Results: Large-scale statistics of the scalar field

In this section, large-scale statistics of the scalar field from experiments and numerical
simulations are analyzed and compared with those obtained in Lavertu & Mydlarski
(2005). As the experiments were performed at a different Reynolds number than that of
the numerical simulations, we normalized the downstream location (x/h) by the ratio
(Urms/(U)) ™" where t,ms and (U) are the r.m.s. and mean velocities measured at the
centreline. Note that this normalization is equivalent to normalizing the flight time from
the source by (an approximation of) the integral time scale (t;, &~ h/tpms)

(z/U)) _ (=/{U)) (z/h) (6.1)

/i (¢/Urms) - (h/urms) — ((U)/trms)

The mean temperature profiles at three downstream locations behind the line source
(t/tr, = 0.08, 0.2 and 0.4) are shown in figures 3(a) and 3(b) for the y;/h = 1.0 and 0.17
source locations, respectively. Given that mean temperature excesses ((AT) = (T') — Tw)
can be difficult to measure accurately due to drift in the free-stream temperature, we
used the technique proposed in Lepore & Mydlarski (2011), which consists of sequen-
tially measuring the free-stream (i.e. ambient, room) temperatures at the same location,
immediately after measuring the mean temperatures at a given (x,y) location in the
thermal plume, to estimate the mean temperature excess based on the “instantaneous”
free-stream temperature, which accounts for the aforementioned drifts in the free-stream
temperature (as opposed to assuming Tt is the same for all measurements of (T'(z,y))).

For the centreline source location (ys/h = 1.0), very good agreement between the
experiments and numerical simulations is observed, and the mean profiles are well ap-
proximated by Gaussian curve fits. (Gaussian fits are of interest for three reasons. Firstly,
a Gaussian profile is the analytical solution to the advection-diffusion equation for the
dispersion from a line or point source in a constant velocity and constant — laminar or
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Figure 3: Non-dimensionalized mean temperature excess profiles for two line source lo-
cations, ys/h = 1.0 (a) and ys/h = 0.17 (b). Experiments (solid symbols) and DNSs
(open symbols) are reported at several downstream locations: ¢/t = 0.08, (e and o);
t/tr, = 0.2, (A and A); t/tr, = 0.4, (B and O), respectively. The vertical line indicates
the transverse location of the source and the solid lines are the best fit Gaussian curve
fits to the numerical data.

turbulent — diffusivity flow, which is approximately the case in the centre of the channel,
and less so near the wall. Secondly, such fits assist in comparing with results that have
been obtained in homogeneous turbulent flows, where Gaussian profiles have been ob-
served. Thirdly, due to the least-square fitting process, fitting a curve to the data allows
a more precise estimate of the standard deviation (or, alternatively, the half-width) of
the plume by reducing error. We further note that the large-eddy simulations of Boppana
et al. (2012), carried out at Re, = 520 (i.e., the same value as the experiments herein),
did not agree as well with the experiments of Lavertu & Mydlarski (2005) (that give
very similar results to those herein — to be discussed shortly in the context of figures
5-8) and underestimated the plume width — see their figure 10(c). This presumably de-
rives from their under-resolved transverse velocity fluctuations — they obtained values of
(v?) at y/h = 1 that were 20% lower than the those obtained by Moser et al. (1999)
at Re, = 590 — see figure 5 in Boppana et al. (2012). Although a 20% underestimate
of (v?) may not seem egregious, the observed good agreement between the present DNS
and experiments implies that accurate estimates of (v?) are critical to reliably predicting
the evolution of the plume. We furthermore remark that the PDF method simulations
of Bakosi et al. (2007) overestimated the width of the mean profiles for a centreline
source. However, the explanation in this case is less clear, especially given that they also
under-resolved (v?) (see their figure 1(b)), as noted by Boppana et al. (2012).

Similarly, good agreement between the experimental and numerical mean tempera-
ture profiles is obtained for the near-wall line source (ys/h = 0.17). However, for the
farthest downstream distance considered herein (¢/t; = 0.4) the experimental mean
temperature profile is wider than the numerical one. Far downstream of the source, the
(two-dimensional) plume grows and becomes wider in the transverse direction. One edge
of the plume is mixed with the cold flow contained in the central region of the channel,
whereas the other edge comes in contact with the (nominally) adiabatic walls. Conse-
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Figure 4: Non-dimensionalized r.m.s. temperature excess profiles for two line source lo-
cations, ys/h = 1.0 (a) and ys/h = 0.17 (b). Experiments (solid symbols) and DNSs
(open symbols) are reported at several downstream locations: ¢/t = 0.08, (e and o);
t/tr, = 0.2, (A and A); t/tr = 0.4, (B and O), respectively. The vertical line indicates
the transverse location of the source and the solid lines are the best fit Gaussian curve
fits to the numerical data.

quently, the plume contains a hot region near the wall and a colder region away from
the wall. The discrepancies observed for t/t;, = 0.4 in figure 3(b) are consistent with
an energy loss (in the experiments) to the walls due to the latter not being perfectly
adiabatic (because ATpeak is smaller than it should ideally be in the experiments due
to the heat transfer from the plume to the wall). In dimensional terms, the peak mean
excess temperature at t/t;, = 0.4 when ys/h = 0.17, is less than 0.4°C, so even very
minor energy losses to the channel wall, which is not perfectly adiabatic in reality, can
have an effect. For the case of the centreline source, neither side of the plume comes
in contact with the channel walls and the mean temperature profile remains symmetric
about the line source location, in very good agreement with the numerical simulations.
Like for the case of the centreline source, the large-eddy simulations of Boppana et al.
(2012) were found to underestimate the width of the mean plume when ys/h = 0.17
at all downstream locations — see their figure 10(b). This presumably derives from their
under-resolved transverse velocity fluctuations, combined with the above-mentioned heat
transfer to the wall in the experiments, which results in overly wide (normalized) plume
widths farther downstream.

The simulations also exhibit a shift in the peak of the mean profile towards the region
of lower velocity (i.e. towards the wall) when y,/h = 0.17. A similar shift was reported
in Karnik & Tavoularis (1989). At the wall, the simulated mean temperature profiles
must all exhibit d(T")/0y|y,=0 = 0, consistent with the adiabatic boundary conditions
imposed in our simulations. Experimental measurements in the range 0 < y/h < 0.1
were, however, not possible due to interference of the probe with the wall.

The transverse profiles of the r.m.s. temperature fluctuations, 6,.,,,s, normalized by their
peak values, Orms—peak, are reported in figures 4(a) and 4(b) respectively for ys/h = 1.0
and 0.17 at three downstream locations: ¢/t = 0.08, 0.2 and 0.4. The experimental and
numerical results collapse well for both line source locations, in addition to being well
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Figure 5: Downstream evolution of the non-dimensionalized peak mean temperature for
two line source locations: ys/h = 1.0 (a) and ys/h = 0.17 (b). Experiments (H), DNSs
(O0) and Lavertu & Mydlarski (2005) (x).

approximated by Gaussian curve fits. At y;/h = 1.0, the peaks of the fluctuations remain
behind the line source, as expected, by the underlying symmetry of this flow. However, for
ys/h = 0.17, a drift of the peak towards the centreline is clearly observed. Similar drifts
have been reported in Fackrell & Robins (1982), Raupach & Legg (1983) and Lavertu
& Mydlarski (2005). Also note the very good agreement between the experiments and
simulations at ¢/t = 0.4 for the case of the near-wall source. The good collapse of the
two r.m.s. profiles (when normalized by their peak value) reaffirms our hypothesis that
the disagreement observed in figure 3(b) for the mean profiles at the same location arises
from an underestimate of ATpeak' For a centreline source, the large-eddy simulations

of Boppana et al. (2012) underestimate the plume width, similar to their results for the
mean profile. For the case of the source at ys/h = 0.17, the r.m.s. profiles of Boppana
et al. (2012) are of a similar shape, but are offset and closer to the wall. Given that the
r.m.s profiles are related to the mean profiles (i.e., the former can be predicted from the
latter using gradient transport theory, for example), such a result is consistent with their
mean profiles that are not as wide. Similar to the mean profiles, the simulations of Bakosi
et al. (2007) overpredicted the width of the r.m.s.profiles.

The double-peaked r.m.s. profile in the vicinity of the source reported by Warhaft
(1984) and Karnik & Tavoularis (1989) for homogeneous flows is also observed for the
simulations (not shown). The double peak remains up to t/t;, = 0.1 (x/h = 2.0), after
which the profile becomes single-peaked. Note that when ys/h = 0.17 the double peak
is not symmetric, as it must be for the centreline source case, with the near-wall peak
having a lower magnitude. Lastly, note that experiments were not performed close enough
to the line source to observe double-peaked 0,.,,s profiles.

Figures 5 and 6 respectively show the downstream decay of the peak of the mean and
r.m.s. profiles normalized by a reference temperature

2h

(AT) pep(UNAT)dy Py

o pep(U)dy mep

(6.2)
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Figure 6: Downstream evolution of the non-dimensionalized peak r.m.s. temperature for
two line source locations: ys/h = 1.0 (a) and ys/h = 0.17 (b). Experiments (H), DNSs
(O0) and Lavertu & Mydlarski (2005) (x).

(see Incropera et al. 2007, p.495), where p and ¢, are, respectively, the density and the
specific heat at constant pressure of air, (U) = (U(y)) is the mean velocity, Ps is the
power of the line source, and 71 is the mass flow rate of air in the channel. Note that
the above definition of (AT')..s is different from that proposed by Rosset et al. (2001):
(AT ) of = (Ps/1s)/(pcpUsds), where P/l is the electric power per length unit injected
via the line source, Uy is the mean longitudinal velocity at the source location, and dy is
the source diameter. Such a reference temperature may not be appropriate if both the
diameter of the source and the input power change. For instance, when ds and P; are each
multiplied by two (assuming that the change of diameter has a negligible impact on the
temperature profiles, which is reasonable for a very small diameter line source like those
used herein), (AT'),..¢ should also be doubled to maintain a consistent normalization,
which is not the case using their definition, due to the latter’s dependence on d;.

Figures 5 and 6 show good agreement between the numerical and experimental results
— both the present ones and those of Lavertu & Mydlarski (2005). We note that the
change in curvature observed in figure 5(b) is a consequence of the adiabatic walls. The
downstream locations of the changes correspond to the locations at which the peak “en-
counters” the wall, and subsequently stops spreading on that side. Due to the adiabatic
boundary conditions at the wall, the peak remains at y = 0 for all subsequent down-
stream locations. A similar change in curvature was observed for plumes emanating form
a near-wall source in Boppana et al. (2012). Such a phenomenon, however, was absent
in the case of the centreline source, as the downstream distances studied herein were not
large enough for the plume to have grown sufficiently for its edges to interact with the
channel walls.

The downstream evolution of the half-width of the mean and r.m.s. profiles (i.e. the
widths of the profiles at the locations where they falls to 50% of their peak values)
are plotted in figures 7 and 8, respectively, for the two source locations. The standard
deviations ¢ are determined by best fitting a Gaussian curve to the data of figures 3
and 4. (Note that the standard deviation of the Gaussian profile is linearly related to its
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Figure 7: Downstream evolution of the non-dimensionalized width of the mean tem-
perature profiles for two line source locations: ys/h = 1.0 (a) and ys/h = 0.17 (b).
Experiments (H), DNSs (O) and Lavertu & Mydlarski (2005) (x).
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Figure 8: Downstream evolution of the non-dimensionalized width of the r.m.s. tem-
perature profiles for two line source locations: ys/h = 1.0 (a) and ys/h = 0.17 (b).
Experiments (l), DNSs (O) and Lavertu & Mydlarski (2005) (x).

half-width.) Once again good agreement between experimental and numerical results is
obtained. Note that in figure 7(b), the standard deviation of the numerical results tends
to be larger than that of the experiments for the farthest downstream distance present
herein, in contrast with the results of figure 3(b). This difference in fact derives from the
fact that a Gaussian curve fit is not an especially accurate fit far downstream of the line
source.

To complement the preceding analysis of large-scale statistics of the scalar field, we
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Figure 9: Instantaneous temperature fields generated (by DNS) downstream of line
sources at two wall-normal locations: ys/h = 1.0 (a) and ys/h = 0.17 (b). Re, = 190.
t+ = 2770 for the velocity field and t* = 166 for the scalar field (where, in the latter case,
t+ = 0 corresponds to the time at which the scalar is first injected into the flow). Note that
the legend is non-linear in the non-dimensionalized temperature (T —Two )/ (Tinaz —Too))-
Imagery produced by VAPOR (www.vapor.ucar.edu — see also Clyne & Rast (2005);
Clyne et al. (2007))
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plot in figure 9 the instantaneous temperature fields generated by our DNS downstream
of both a centreline and near-wall line source. Note the “holes” in the temperature field
for the plume emanating from the centreline source. Such holes are absent in the plume
emanating from the near-wall source given the different nature of the mixing near the
wall (including a reduced tendency of the plume to flap). The presence of the wall i)
limits the plume’s growth on one side, ii) is the cause of the flow’s inhomogeneity (which
is strongest near the wall), and iii) affects the mixing, as will be further discussed.

7. Results: Small-scale statistics of the scalar field

We now proceed to investigate the small-scale structure of the scalar field. Both ex-
periments and numerical simulations are used in our analysis. We present statistics at
various (downstream and transverse) locations behind the line source. The details of the
measurement locations are specified in the figures.

7.1. Spectra of 8, €9 and 08/0x3

We begin by plotting the one-dimensional longitudinal power spectra of the scalar fluctu-
ations, Fy(k1), where k; is the longitudinal wavenumber. Results are presented for four
downstream locations for each of the two line source locations studied herein, ys/h = 1.0
and 0.17, in figures 10 and 11, respectively. The experimental results are obtained from
time series, which provide Eulerian time spectra, Ep(f). Eulerian spatial spectra, Fg(k1),
are obtained using Taylor’s hypothesis Fy(k1) = ((U)/(27))Eo(f), where k1 = 2xf /{U).
Taylor’s hypothesis is a reasonable approximation in most regions of the flow where
Urms/{U) < 10%. (See Sreenivasan et al. 1977; Prasad & Sreenivasan 1990, for example.)
For consistency with the experiments, the numerical spectra were also computed from
time series, so as not to introduce any artificial differences associated with the (small)
errors induced by the inevitable use of Taylor’s hypothesis in the experiments.

To compare experiments and simulations, the abscissa and ordinates were normalized
by small scale quantities, i.e. e73/4%/4¢q_and n = (v /£)*?>. Note that the dissipation
rate of the turbulent kinetic energy, e, was determined using the assumption of local
isotropy, i.e., € = 15v fooo k3 Ey(k1)drk1, where E, is the power spectrum of the longitu-
dinal velocity fluctuations. Although the complete definition of € can be computed in the
DNS, the simulations calculated n using the above equation so that the results would be
consistent with those obtained in the experiments (for which € can only be estimated us-
ing the assumption of local isotropy). Near the centreline, this is an excellent assumption,
however, very close to the wall, at locations outside of the range of experimental mea-
surements undertaken in this work, it does introduce some error (Antonia et al. 1991).
For example, at y/h = 0.05 (which corresponds to ¥ ~ 10 in the DNSs), the difference
in estimates of the Kolmogorov microscale is ~ 2. g9, was determined from its definition
(—a/(U)?)((00/0t)?) and also invoking Taylor’s hypothesis.

Figures 10 and 11 show very good agreement between the experimental and numerical
results at large 1, independent of the line source location. However, some differences exist
at small k1 for the spectra measured downstream of the centreline line source (see figure
10) due to the difference in Reynolds numbers between the experimental and numerical
flows. (Given that the normalization is based on small-scale quantities, one cannot expect
spectra of the two flows at different Reynolds number to be the same at large scales.)
Note that the turbulence intensity (and therefore local Reynolds number) is higher in
the near-wall region and, hence, the mixing more effective (Lavertu & Mydlarski 2005).
As a consequence, the agreement between experimental and numerical results at small
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Figure 10: One-dimensional longitudinal spectra of the temperature fluctuations for
ys/h = 1.0 at three downstream locations: t/t;, = 0.08 (a), t/tr, = 0.2 (b) and t/t;, = 0.4
(¢, d) and at two wall-normal locations: y/h = 1.0 (a-c) and y/h = 0.8 (d). Results from
experiments (solid line) and DNSs (dashed line) are reported.

to medium k; is better for the scalar field generated by the near-wall source (figure 11)
than that for the centreline source (figure 10).

One-dimensional streamwise dissipation spectra, i.e. K2 Eg(r1), for thermal fields orig-
inating from line sources located at ys/h = 1.0 and ys/h = 0.17 are plotted in figures 12
and 13, respectively. The experiments and DNSs are in good agreement at all measure-
ment locations for both line source locations. Note that the normalization used in these
figures implies that the area under each curve is equal to the Prandtl number (Pr = 0.7).
As previously noted, these results serve to confirm that the resolution of our DNSs is
sufficient to %) accurately resolve the contributions to €y, and i) reproduce the range of
length scales measured in the experiments.

The dissipation spectra are generally found to peak at k11 ~ 0.2 showing that most of
the dissipation occurs at length scales five times larger than 7, consistent with the finding
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Figure 11: One-dimensional longitudinal spectra of the temperature fluctuations for
ys/h = 0.17 at three downstream locations: t/t, = 0.08 (a), t/t, = 0.2 (b) and t/t;, = 0.4
(¢, d) and at two wall-normal locations: y/h = 0.17 (a-c) and y/h = 0.3 (d). Results from
experiments (solid line) and DNSs (dashed line) are reported.

of Kozuka et al. (2009). However, a slight drift of the peak locations with increasing
downstream distance from larger to smaller k; for the centreline source is observed. (The
peak occurs at k11 = 0.26, 0.21 and 0.17 for ¢/t;, = 0.08, 0.2 and 0.4, respectively.) Such
a trend is not observed downstream of the near-wall sources. This may be attributed to
the increased mixing that occurs near the wall (Lavertu & Mydlarski 2005).

We proceed to analyze the components of the dissipation spectra by examining one-
dimensional spectra of the temperature derivative /93, where 900/00 is the S-derivative
of the scalar fluctuations (8 = x, y or z). To this end, figures 14 and 15 plot spectra of
the streamwise (z), wall-normal (y) and spanwise (z) components of the fluctuating tem-
perature gradient, i.e. Epg/95- Eagjo. Was measured by assuming Taylor’s hypothesis,
whereas the other two were measured using a second-order finite difference approxima-
tion. Note that the streamwise (one-dimensional) spectrum tends towards zero at large
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Figure 12: One-dimensional longitudinal dissipation spectra of the temperature fluctua-
tions for ys/h = 1.0 at three downstream locations: t/t;, = 0.08 (a), t/t;, = 0.2 (b) and
t/tr, = 0.4 (c, d) and at two wall-normal locations: y/h = 1.0 (a-c) and y/h = 0.8 (d).
Results from experiments (solid line) and DNSs (dashed line) are reported.

scales, which differs from the two other spectra that are subject to aliasing and have a
finite value at zero wavenumber (Van Atta 1991). This difference is therefore not dy-
namical and thus not indicative of a lack of local isotropy. Note that the spectra were
normalized by egn/v, where eg = €, + €9, + €9, and where 1 was computed using the
assumption of local isotropy.

The present spectra are similar to those reported by Van Atta (1991) and Thoroddsen
& Van Atta (1996), who studied scalar dissipation in decaying stably stratified grid
turbulence. The authors showed that the large and small scales are anisotropic near
the grid but become strongly anisotropic farther downstream in their stratified flow.
Interestingly, they noticed that all scales develop anisotropies at about the same rate.

In the present research, the scalar is injected in a highly anisotropic manner that
produces sharp gradients in the y-direction in the vicinity of the source. This anisotropy
is shown in both figures 14(a) and 15(a) where ¢, > ¢, . However, the gap between &g,
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Figure 13: One-dimensional longitudinal dissipation spectra of the temperature fluctu-
ations for ys/h = 0.17 at three downstream locations: t/t;, = 0.08 (a), t/tr, = 0.2 (b)
and t/t;, = 0.4 (c, d) and at two wall-normal locations: y/h = 0.17 (a-c), y/h = 0.3 (d)
y/h = 0.6 (f). Results from experiments (solid line) and DNSs (dashed line) are reported.

and eg, diminishes considerably with increasing downstream distance. Ultimately, the
experimentally measured spectra of €9, and €q, at t/t; = 0.4 (figure 14(c)) are almost
indistinguishable, which shows a clear tendency of the scalar dissipation rate towards
isotropy. It is also interesting to note that the collapse between the spectra of g, and &g,
appears even sooner when the source is in the near-wall region (i.e. t/t;, = 0.2 as shown
in 15(b)). This can again be attributed to the higher turbulence intensity (and therefore
better mixing) that occurs in the near-wall region.

Figures 14 and 15 exhibit good agreement between the experiments and DNSs at
large wavenumbers, especially for the centreline line source. Furthermore, a similar good
agreement is also reported at small wavenumbers when the line source is located at
the centreline, which reinforces the validity of the results presented herein. However,
discrepancies exist at small wavenumbers when the line source is in the near-wall region.
The numerical results exhibit a persistent anisotropy between eg, and €4, when y,/h =
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Figure 14: One-dimensional spectra of the temperature derivatives (06/98 where 8 = z,y
or z) for ys/h = 1.0 at three downstream locations: t/t;, = 0.08 (a), ¢/t = 0.20 (b) and
t/tr, = 0.40 (c-d), and at two wall-normal locations: y/h = 1.0 (a-c) and y/h = 0.8 (d).
Results from experiments (solid line) and DNSs (dashed line) are reported.
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0.17. These discrepancies are related to the production of €9 by mean velocity gradients,
which occurs away from the centreline, near the wall. This effect will be discussed in
more detail further on in this section. The reader is also referred to Gonzalez (2000),
which describes the effects of mean velocity and temperature gradients on the isotropy
of g4 in detail.

7.2. PDFs of 00/0x3 and €¢

The PDFs of the temperature derivatives are plotted in figures 16 and 17 for line sources
located at ys/h = 1.0 and 0.17, respectively. The PDFs of the three components are
quite different from each other near the source and become similar at the farthest down-
stream distance, where they develop quasi-exponential tails. Close to the source, figure
16(a) shows three peaks in the simulated PDF of the wall-normal temperature deriva-
tive, P(00/0y), whereas the PDFs of the other two derivatives are unimodal. These
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Figure 15: One-dimensional spectra of the temperature derivatives (06/98 where 8 = z,y
or z) for ys/h = 0.17 at three downstream locations: t/t;, = 0.08 (a), ¢/t = 0.20 (b)
and t/t, = 0.40 (c, d), and at two wall-normal locations: y/h = 0.17 (a-c) and y/h = 0.3
(d). Results from experiments (solid line ) and DNSs (dashed line) are reported.

triple peaks are due to the nature of the temperature field immediately downstream
of the source. For very small ¢/ty, the plume is a top-hat profile and thus we expect
the PDF to be given by two delta functions where the two peaks are nominally at
+ (Twire — Too) /(ds/2), where dy is the source diameter. However, slightly farther away
from the source, after some mixing has occurred, the principal peak (or mode) starts to
emerge while the other two initial peaks recede. Even farther away from the source, the
peaks from the initial top-hat profile disappear and the PDF develops exponential tails,
in this case, characteristic of a well-mixed scalar. In the near-wall region, the mixing
being better, the initial peaks disappear very quickly and the initial trimodal PDF is not
observed for the measurement locations considered herein. For a similar reason, the ex-
perimentally measured P(90/0y) (being at a higher Reynolds number) is also unimodal
although of a shape that would be consistent with a trimodal PDF farther upstream.



26 Emmanuel Germaine, Laurent Mydlarski and Luca Cortelezzi

yS/h =1.0 y/h=1.0

B / eﬁ—rms B / eﬁfrms

Figure 16: PDFs of the temperature derivatives (00/083 where 8 = x,y or z) for ys/h =
1.0 at three downstream locations: ¢/t = 0.08 (a), t/tr = 0.2 (b) and t/tr = 0.4 (c,
d) and at two wall-normal locations: y/h = 1.0 (a-c) and y/h = 0.8 (d). Experimental
and DNS results are respectively denoted by the solid symbols (06/0x (e), 90/0y (H)
and 96/0z (A)) and by the open symbols (06/9z (o), 0/0y (O) and 90/0z (A)). The
curve for P[(00/0x)/(00/0x)rms] is plotted normally, whereas remaining curves are offset
downwards in increments of two decades.

In addition, it is worth noting that the quasi-exponential tails appear sooner for the
near-wall line source than when the line source is at the centreline.

To further study the evolution of the small-scale scalar field, figure 18 examines the
PDFs of gp for the centreline source in figure 18a), and those of the near-wall source in
figure 18b). We remark that we plot the PDF of the natural logarithm of e¢, in(eg), to
verify whether the PDF's of €y exhibit a log-normal distribution, as has been hypothesized
(e.g. Gurvich & Yaglom (1967)) and observed in situations where the scalar is injected
at large scales (e.g. Sreenivasan et al. (1977); Dahm & Buch (1989); Su & Clemens
(2003); Schumacher & Sreenivasan (2005); Sutton & Driscoll (2013)), albeit with small
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Figure 17: PDFs of the temperature derivatives (g = 00/953, where 8 = z,y or z) for
ys/h = 0.17 at three downstream locations: t/t, = 0.08 (a), t/t, = 0.2 (b) and t/t;, = 0.4
(¢, d) for two wall-normal locations: y/h = 0.17 (a-c) and y/h = 0.3 (d). Experimental
and DNSs results are respectively denoted by the solid symbols (96/0z (e), 96/0y (H)
and 00/0z (A)) and by the open symbols (00/0z (o), 90/0y (O) and 90/0z (A)). The
curve for P[(00/0x)/(06/0x),ms| is plotted normally, whereas remaining curves are offset
downwards in increments of two decades.

departures, which may or may not be significant (Holzer & Siggia 1994). Plotting the
PDF's in log-linear coordinates i) renders log-normal distributions to appear as concave-
down parabolas, and ii) emphasizes the tails of the PDFs. In the most extreme case
(closest to the source for ys/h = 1.0), the PDF of &y is clearly not log-normal, having
a distinct peak and tails for small values of g9 (i.e. their left tails), which verge on
exponential behaviour. As previously observed (e.g. Lavertu & Mydlarski (2005)), the
centreline plume flaps more because i) it is not bounded on one side (by the wall), and
ii) the intensity of the turbulence (and therefore the mixing) is lower at the centreline
than it is near the wall, where u,,,s increases due to increased production of turbulent
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Figure 18: PDFs of (the natural logarithm of) eg/(g¢) at ys/h = 1.0 (a), and ys/h = 0.17
(b) for three downstream locations: ¢/t = 0.08 (solid line), t/t;, = 0.2 (dashed line), and
t/tr, = 0.4 (dotted line). Only DNS results are presented given that the three components
of €g are not measured simultaneously.

kinetic energy. Consequently, the possibility of measuring small values of €y for the plume
generated by the centreline source is increased due to i) smaller measured temperature
differences due to the increased bulk motion of the plume, and ii) increased measurements
made outside of the plume. As t/t;, (or equivalently x/h) increases, and as the wall is
approached, the PDFs of gy evolve, becoming more log-normal in nature, presumably
due to the reduced flapping of the plume (as it widens with increasing ¢/¢;,) and the
more intense turbulent mixing that occurs near the wall. Such variations in the shape of
the PDF of €y need to be accounted for to accurately model to scalar mixing process,
such as that which would occur in a combustion chamber where the fuel is injected at
small scales. Assumption of a constant shape (e.g. log-normal) of the PDF of g9 would
clearly be inaccurate over significant regions of the flow in situations where a scalar is
injected at small scales.

7.3. The evolution of g

The instantaneous fields of the (total and three components of the) scalar dissipation
rate (i.e., €g, €g,, €0, and €, ), are plotted in figure 19. These are presented to provide
qualitative insight into the scalar dissipation rate. In the analysis that follows, we quan-
titatively discuss the evolution of €y and its components by analyzing specific statistics
related to these quantities. For example, it is already evident from figure 19 that the
largest contribution to €4 comes from €4, . However, one can also observe that its relative
contribution to £y decreases with increasing downstream distance, as will be elaborated
upon below. We encourage the reader to refer back to these plots for further insight in
the course of the subsequent discussion.

Wall-normal profiles of the three components of the scalar dissipation rate are reported
in figure 20 for two downstream locations and two source locations, where the scalar
dissipation rate has been scaled by tr,/(AT)?Z, ;.

For ys/h = 1.0, figure 20 shows that the three components of the scalar dissipation
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Figure 19: Instantaneous scalar dissipation rate fields — total and individual components
— generated (by DNS) downstream of a line source at two wall-normal locations: ys/h =
1.0 (a), (c), (e) and (g); ys/h = 0.17 (b), (d), (f) and (h). a(80/0x;)?: (a) and (b).
a(00/0x)%: (c) and (d). «(00/0y)?: (e) and (f). a(90/92)%: (g) and (h). Re, = 190.
t*t = 2770 for the velocity field and ¢+ = 166 for the scalar field (where, in the latter
case, tT = 0 corresponds to the time at which the scalar is first injected into the flow).
Note that the legends corresponds to the instantaneous scalar dissipation rates non-
dimensionalized by g (t/tr, = 0.08,y/h = 1.0;ys/h = 1.0). Imagery produced by VAPOR
(www.vapor.ucar.edu — see also Clyne & Rast (2005); Clyne et al. (2007)).
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Figure 20: Wall-normal evolutions of the three components of the scalar dissipation rate
for ys/h = 1.0 and ys/h = 0.17 at two downstream locations: t/tz, = 0.08 (a, b) and
t/tr, = 0.4 (c, d). Experimental results are denoted by the solid symbols: £g, (), €¢, (H)
and €9, (A) and the numerical results are denoted by the open symbols: €4, (o), ¢, (O)
and €y, (A). The vertical line indicates the transverse location of the source.

rate have approximately Gaussian profiles with maxima at the channel centreline. Outside
the plume, a plateau is observed in the experimental data due to the non-zero ambient
noise (i.e. noise measured by the cold-wire thermometer outside of the thermal plume,
which includes i) electronic noise, ii) actual temperature fluctuations in the free-stream
flow, which is never perfectly isothermal, and iii) a negligible contamination by the ve-
locity fluctuations being erroneously recorded as temperature fluctuations). Small-scale
anisotropy is observed near the source (t/t; = 0.08) where €9, > €y, = €g,. Farther
downstream (t/t;, = 0.4), the gap between the three components of ¢4 is considerably
reduced.

For ys/h = 0.17, figure 20 shows, firstly, that the experimental data appear to be
more isotropic, presumably due to their larger Reynolds number, whereas the DNSs data
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exhibit differences between the three components (gp, > €9, > €4, ). Furthermore, the
peak of ¢, (the largest component) measured from the DNSs remains downstream of
the source location for all measurement locations presented herein, whereas the peak
of €9, measured in the experiments drifts towards the channel centreline. This may be
explained by the prominence in the DNSs of the mechanism of production of €4, due to
mean velocity gradients (which, as previously mentioned, will be discussed shortly). The
movement in the peak of the scalar dissipation profile recalls the drift observed in the
r.m.s. profiles. Note that in both the experiments and the DNSs, the peaks of the e,
and g¢, profiles drift towards the centreline as ¢/ty, is increased (but the rate at which
they do so is faster for the experiments). €, also remains the largest component. Note
that if the scalar were injected uniformly, one might expect that the scalar dissipation
would peak near the region of maximum shear. (Recall that in a turbulent channel flow,
the turbulence intensity is maximum in the buffer layer, i.e. y* € [5,30]. In the present
flows, y* = 15 corresponds to y/h = 0.03 and y/h = 0.08 in the experiments and the
DNSs, respectively.)

The evolution of the peak of the dissipation profile is somewhat similar to the evolution
of the peak of the r.m.s. profile (see figure 4(b)). Previous researchers have attempted
to establish a parallel between the location of the maximum of dissipation and that
of the maximum temperature fluctuations. For instance, Lockwood & Moneib (1980)
measured the fluctuating temperature in a heated round turbulent free jet. They showed
that the scalar dissipation rate of a turbulent jet attains its maximum at the location
of the maximum of the temperature fluctuation intensity. However, this conclusion was
contradicted by the observations of Antonia & Mi (1993), who studied the temperature
“jumps” (a relatively sudden increase in temperature followed by a gradual decrease —
also known as “ramp-cliff” structures) in a heated turbulent jet, and who attempted to
estimate their contributions to the temperature dissipation. They showed that although
the temperature “jumps” contributed to an increase in the temperature variance, their
contribution to the scalar dissipation rate was small.

The downstream evolution of the centreline (y/h = 1.0) and the off-centreline (y/h =
0.8) mean thermal dissipation is shown in figure 21 for ys/h = 1.0. At the centreline,
the experiments and DNS both exhibit a power law-decay of the form o ~ (t/t1)",
where n varied between —2.2 and —2.0, with the experiments tending to exhibit slightly
more negtative decay exponents. Away from the centreline, a power-law decay is also
observed, but only after a certain distance downstream (¢/t;, 2 0.2), which approximately
corresponds to the point at which the plume is wide enough so that the sensor (located
at y/h = 0.8) no longer measures outside of the plume as it flaps. Analogous plots
for the near-wall source are also given in figure 22. As for y,/h = 1.0, the dissipation is
maximum in the vicinity of the source and exhibits a power law-decay with similar values
of decay exponents, with the experiments again tending to exhibit a slightly more rapid
decay. Given the larger values of €y measured in the central region of the plume, one
can furthermore conclude that the efficiency in smearing the fluctuations in the scalar
field is larger behind the source than at the edges of the plume. However, at the farthest
downstream location, the difference between the two is smaller than 8%, indicating that
gp tends to become more uniform inside the plume as it expands, as observed in figure
20. We also note that Rosset et al. (2001) found g ~ =2 downstream of a heated line
source placed in a turbulent boundary layer. Their decay exponent, albeit slightly more
negative, is quite similar to the values measured herein, despite the differences in flow
geometry, Reynolds number, line source location, etc.

To investigate the evolution of the components of the scalar dissipation rate and their
anisotropy, figures 23 and 24 plot the evolution of ¢, /4., where the indices 3 and y can
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Figure 21: Downstream evolution of the total scalar dissipation rate for ys/h = 1.0 at two
wall-normal locations: y/h = 1.0 (a) and y/h = 0.8 (b). Experimental results are denoted
by the solid symbols and the numerical results are denoted by the open symbols. The
solid line and dashed line are the best-fit power laws to the experimental and numerical
data, respectively.
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Figure 22: Downstream evolution of the total scalar dissipation rate for ys/h = 0.17
at two wall-normal locations: y/h = 0.17 (a) and y/h = 0.3 (b). Experimental results
are denoted by the solid symbols and the numerical results are denoted by the open
symbols. The solid line and dashed line are the best-fit power laws to the experimental
and numerical data, respectively.

be x, y or z, and where 3 # ~. For a locally isotropic scalar field, this ratio must be equal
1. When the line source is at the centreline, both the experiments and the DNSs show
that the anisotropy is reduced and the components of the scalar dissipation rates converge
towards an isotropic state. Near the source, however, the dissipation is predominantly in
the y-direction due to the sharp temperature gradients (06/9y) there that are associated
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Figure 23: Downstream evolution of the ratios €9, /g, (where 3 and v = x,y or z and
B # ) for ys/h = 1.0 at two wall-normal locations: y/h = 1.0 (a) and y/h = 0.8 (b).
Experimental results are denoted by the solid symbols: €q,/co, (®), €q,/c0. (M) and
€0,/c0, (A) and the numerical results are denoted by the open symbols: €q, /eg, (o),
€o,/c0. (O) and gq, /g9, (D).
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Figure 24: Downstream evolution of the ratios €9, /g, (where 3 and v = x,y or z and
B # ) for ys/h = 0.17 at two wall-normal locations: y/h = 0.17 (a) and y/h = 0.3
(b). Experimental results are denoted by the solid symbols: ¢, /4, (o), €9, /2o, (W) and
€0,/€0. (A) and the numerical results are denoted by the open symbols: €q, /eg, (o),
€9,/€0, (O) and €, /cq, (D).

with the plume boundary. The dissipation in the two other directions (90/0x and 00/0%)
are almost equal, indicative of the quasi-axisymmetric nature of the turbulence at that
location. For the near-wall source, figure 24 indicates that i) the agreement between the
experiments and the DNSs is not as good as it is for the centreline source, with the
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Figure 25: Transverse profiles of the skewness of the scalar derivative, Sapg/95 =
((00/0B)3)/((86/0B3)%)%/?, where S is equal to z, y or z, at t/t;, = 0.4. (a) ys/h = 1.0.
(b) ys/h = 0.17. Experiments (solid symbols) and DNSs (open symbols) are reported.
Sa6/92, (@ and o); Spg/0,, (M and O); Spg 0=, (A and A), respectively. The vertical line
indicates the transverse location of the source.

experiments being notably more isotropic than the DNSs. Furthermore, note that the
anisotropy is stronger when measured at y/h = 0.17 than at y/h = 0.3, indicating that
there exists regions in the channel flow field that better lend themselves to returning to
an isotropic state. We will subsequently argue that the anisotropy is dependent on the
presence of velocity gradients (Antonia & Browne 1986; Gonzalez 2000), as well as the
Reynolds number of the flow. In this vein, we remark that the anisotropy measured in
the experiments is less strong than in the DNSs, presumably due to its larger Reynolds
numbers, which i) results from a more rapid elimination of the large-scale anisotropy
associated with the injection of the scalar, and ii) explains the discrepancies observed
in figure 24. Moreover, note that the flow is no longer (quasi-) homogeneous in the
regions plotted in figure 24, so the equal offset of the anisotropy of g, by €4, and eg,
is not observed here (like in figure 23). Regarding these figures, we finally note that the
measured increase in anisotropy observed in figures 23(b) and 24 is presumably due to
experimental errors arising from the low signal-noise ratio at the farthest downstream
location (¢/tr, = 0.6).

The small-scale anisotropy of the scalar field can also be examined using third-order
statistics — most notably the skewness of the scalar derivative, which must be zero in a
locally isotropic flow. Figure 25 plots the transverse profiles of the skewness of (90/90),
Soesap = ((00/0B)%)/((00/0B)?)%/2, where 3 is equal to z, y or z. When y,/h = 1.0, we
observe that Spg/, and Spg,a. are close to zero in the inner core of the plume, where
the former is consistent with local isotopy, but the latter simply being symptomatic of
the homogeneity of the flow in the z-direction. Syg /s, is an odd function of y/h due to
the underlying symmetries of the flow when y,/h = 1.0, and changes sign depending on
which side of the flapping plume the sensor is located. Thus, its zero value at y/h = 1.0
does not result from local isotropy at that location, but is rather a consequence of the
underlying symmetries in this case. When ys/h = 0.17, persistent anisotropy in Spg /9,
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Figure 26: Transverse profiles of the mechanical and thermal time scales normalized by
tr. (a) ys/h = 1.0. (b) ys/h = 0.17. Lines are DNS results, symbols are experimental
ones. (k/e)/tr: solid line or #. ((8%)/e9)/tr at t/t;, = 0.08: dotted line or . ((62)/cq)/t1,
at t/t;, = 0.2: dot-dashed line or A. ({(6?)/)/tr at t/t;, = 0.4: dashed line or M.

and Spg/9, is observed, although it is i) lesser in magnitude for the experimental data,
and ii) more uniform over the extent of the plume. However, Sgg /4. is zero in both cases
once again, as expected.

From figures 23 and 24, one observes that the end of the period of isotropization occurs
within a few tenths of ¢, (= h/trms). It is therefore of interest to see how this time scale
relates to the mechanical or thermal time scales of the flow. To this end, figure 26 plots
the transverse profiles of both the (experimental and numerical) mechanical and thermal
time scales normalized by t1: (k/€)/tr and ({62)/eg)/tL, respectively. The latter are
plotted at three downstream locations (t/t; =0.08, 0.2 and 0.4), whereas the former is
the same for all downstream distances in this fully-developed flow. We firstly remark
that ¢z, is directly related to the mechanical time scale, k/e = L(uju;)/2v(sijs:;) ~
SuZ, ) (W3/0) ~ € trms ~ h/urms = tr. Thus it is reasonable for k/e and ¢, to be
of the same order, which we observe (quite closely for the experiments, and within a
factor of ~ 1.5 for the simulations). This difference is due to the fact that, in the above
approximation, C.(= ¢/(u3,,,/¢)) is not a constant but a decreasing function of Reynolds
number (in the range of moderate Reynolds numbers characterizing the present work,
Sreenivasan (1984); Donzis et al. (2005)) such that k/e ~ Cctr before C; has reached its
asymptotic value.

Given this, one can conclude that isotropization of the scalar field occurs, more or
less, within a few tenths of the mechanical time scale, implying that it may not be the
most relevant scale. With respect to the thermal time scale, we remark that because
tr, ~ k/e, ((8%)/eg)/tL can be interpreted as a thermal-to-mechanical time-scale ratio. In
the present work, we observe that the thermal time scale is initially notably smaller than
the mechanical one — of the same order as the return-to-isotropy time scale, viz. tenths of
tr. It then increases with downstream distance, tending towards (k/¢)/tr, except near the
wall in the simulations. In the other cases, the increase in ((#%)/eq)/t1, is consistent with a
plume injected at small scales, which proceeds to grow, and ultimately, occupy then entire
cross-section of the channel, taking on a time scale similar to that of the hydrodynamic
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field. However, near the wall for the simulations, which are at a lower Reynolds number
than the experiments, we observe ((#%)/eg)/t1 to be roughly independent of t/t;. This
observation is consistent with the notion that close to the wall, at low Reynolds numbers,
another phenomenon is dictating the mixing process. As we shall argue momentarily, it
is most likely that this phenomenon is the production of €4, due to the mean velocity
gradient, which is presumably controlling the thermal time scale and may explain why
((02)/eg)/t1 is not evolving with downstream distance (t/tr) in that region. However,
when isotropization occurs, ((#?)/eq)/t1, appears to increase, possibly asymptoting to
(k/e)/tr. We also note that Rosset et al. (2001) and Gonzalez & Paranthoén (2003)
argued that the thermal time scale may be more relevant to the mixing / isotropization
process than the mechanical one. Furthermore, Gonzalez & Paranthoén (2003) noted that
((02)/eq) ~ (Lo/ kzé/ %), where kg represents the kinetic energy of the flow structures of
size £y, which, in this case, falls between the Kolmogorov and integral length scales. Thus
Lo/ k;/ ? can also be interpreted as a time scale related to the (inverse of the) vorticity
at the scale ¢y. Lastly, we observe a reasonable agreement between the experimental and
numerical results for the thermal time scale in the case of the centreline source. Near
the wall, the difference may be due to the larger effect (in this region) of the difference
in Reynolds numbers between the two sets of data, as already noted. Furthermore, the
factor of ~ 1.5 between the experimental and numerical data for the mechanical time
scale may also derive from the different Reynolds numbers of the flow, and thus possible
different values for the non-dimensional constants in the above approximation relating
k/e to ty,.

To further study the return to isotropy (or the lack of a return, in the case of the
simulations of the plume emitted from a near-wall source), consider the evolution equation
of the scalar dissipation rate, given by

P

90 a0 _ o, 0050 00 90, , OT) Ou; 99
o U =2 o o T2 0, o O

80 . 02(T) du; 80 00
B 2a<Uja_SCi>a$iaSCj B a<a$1 81'1 8—1']
d [ ey ,, 020 0%
— — (u; -2 —_— 1
+ 896]- (CY 896]- <u]€0>) @ <82L'Z(92L'] 8:ci8:cj>’ (7 )
r

(where repeated indices imply Einstein’s summation convention). In the limit of large
Reynolds and Péclet numbers, it is hypothesized (Corrsin 1953; Tennekes & Lumley
1972) that the above equation simplifies to a balance between the production of gg due

to stretching of the scalar gradients by the turbulent strain rate (2a<gizi 66:2 6870])) and
2%0 _0%0

5,0 00,07 }). However, at finite
Reynolds and Péclet numbers, other terms may be relevant. To investigate and explain
the previously observed anisotropy, we focus on the two terms P(= P, + P, + P.) and
I'(=T;+T,+T,). The former is the production of ¢ by mean velocity gradients, and the
latter quantifies the dissipation of €y by molecular processes, as just noted. For channel
flow, the components of these two terms are: P = P, = —2a0(U)/0y((08/0y)(06/0x))
with P, = P, = 0 and T, = 2a2[((8%0/02%)?) + ((0%0/0x0y)?) + ((0%0/0202)?)],
L, = 2a2[((020/0ydx)?) + ((8%0/0y?)?) + ((8%0/0yD=z)?)] and T, = 2a2[((0%0/020x)?) +
((9%20/020y)?) + ((0%0/022)?)]. Figure 27 shows the wall-normal profile of the three com-

the destruction of €9 by molecular processes (I' = 2a%(




37

ponents of I and Py, for the two source locations (ys/h = 1.0 and 0.17) at three down-
stream positions (t/tz, = 0.08, 0.2 and 0.4). Note that the y- and z-components of T
were not accessible experimentally as 00/9y and 00/0z were not simultaneously mea-
sured. Furthermore, combined statistical moments of both the velocity and temperature
derivatives are not computed due to the fact that the velocity and temperature field are
not calculated nor measured simultaneously in the present approach. This thus precludes
any comparison of P with the other leading-order term in equation (7.1).

The mean velocity gradient that exists in the wall-normal direction only, contributes
to the production of €4 (in the y-direction). The relative importance of this production
depends on the wall-normal location within the channel. As the mean velocity gradient
(0(U)/dy) is small in the centre of the channel, there is very little production of the scalar
dissipation by the mean velocity field in the central region (and none at the channel mid-
plane, by symmetry). On the other hand, the contribution of P, to €p, is not negligible
in the near-wall region, as the velocity gradients are large there. In fact, figure 27 shows
that the production of dissipation in the wall-normal direction is of the same order of
magnitude as I'y near the walls. The figure also shows that P, does not contribute to
the evolution of gy, (or €9) when the source is at the centreline, as expected. Lastly,
this production of €y due to mean velocity gradients now explains the aforementioned 1)
persistent anisotropies for the near-wall scalar fields (figure 24), and ) the persistence
of a maximum in €4, near the wall (figure 20). In addition, it may possibly explain the
constancy of the thermal time scale near the wall, when ys/h = 0.17, as observed in
figure 26b).

Johansson & Wikstrom (1999) performed DNSs of turbulent channel flow with an
imposed mean scalar gradient. In the near-wall region, they showed that the two mean
gradient production terms (i.e. the first and second terms on the right hand side of
equation (7.1)) as well as the term that is the scalar-field analogue to the vortex-stretching
term in the turbulent enstrophy budget (i.e. the fourth term in the right hand side of
equation (7.1)) contribute the most to the production of 9. These results agree with
those presented herein.

Anisotropy invariant maps for €9 (Antonia & Kim 1994) are plotted in figures 28-30
where the three solid lines are (often referred to as) the Lumley triangle (Lumley 1978).
This triangle is delimited by the following three curves (in the (111, —II) plane):

II 1
17\ 32
I = -2 (?) , (7.3)
11\*/?
II7I =2 (;) . (7.4)

II and II1I are the second and third invariants of the scalar dissipation rate anisotropy

tensor defined as:
(L2

Ox; Oxj 1
tij = a——— — =05, 7.5
j =@ (<o) 37 (7.5)
where §;; is the Kronecker delta. The second and third invariants are given by:
1
II = *gtijtji; (76)
1
111 = _tijtjktki- (77)

3
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Figure 27: Wall-normal evolution of the y-component of the production of ¢ by
the three components of the dissipation of ey and by the mean velocity gradi-
ent for y;/h = 1.0 and ys/h = 0.17 at two downstream locations: t/t;, = 0.08
(a, b) and ¢/t = 0.4 (¢, d). Experimental results are denoted by the solid sym-
bols: —2a? (((820/0x2)?) + ((020/0x0y)?) + ((0%6/0x:0z)?)) (e) and the numerical re-
sults are denoted by the open symbols: —2a? [((026/027)%) + ((8%0/0x0y)?) +
((020/0202)*)] (o), —2a® [((0°0/0ydx)*) + ((820/0y*)%) + ((0°0/0y0z)*)] (D),
—20?% [((820/0202)) + ((820/020y)?) + ((9%0/02%)?)] (A). The production of dissipa-
tion —2a(U),((06/0y)(06/0x)) is also reported for the experiments (x) and the DNSs
(+)-

The plot of —I1 versus I11 represents all the possible states that characterize the tensor
ti;. Curves (7.3) and (7.4) are respectively the right and left “axisymmetric” boundaries of
the anisotropic invariant map. The vertex IT = I1] = 0 characterizes the isotropic state.
The top right vertex of the line given by equation (7.2) represents the one-component
state and the bottom left vertex represents the two-component state.

The return to isotropy behind a centreline source (figure 28(a)) is i) clearly axisymmet-
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Figure 28: Anisotropy invariant map of ¢ for y;/h = 1.0 (a) and ys/h = 0.17 (b).
Statistics were computed at t/t; = 0.02 (o), 0.08 (O), 0.2 (A) and 0.4 (x) and for
y/h € [0.8,1.2] (a) and y/h € [0.0,0.4] (b).

ric, consistent with the previous results of figure 23, and i) more rapid than that of the
scalar field behind the near-wall source. The axisymmetry of the scalar field behind the
centreline line source is more clearly observed in figure 29, which shows a very large level
of axisymmetry at y/h = 1.0, but a slightly smaller degree of axisymmetry at y/h = 0.8.
These results should be contrasted with those of figure 30, which depict the anisotropy
invariant maps for different wall-normal locations for the scalar field generated by the
near-wall source. Of particular interest is the evolution from a one-dimensional state very
close to the wall (Antonia & Kim 1994) in figure 30(c) to an almost axisymmetric state
farther away from the wall in figure 30(d).

7.4. Conditional statistics

To gain further insight into the dependence of the scalar dissipation rate, ¢, on the
scalar fluctuations, 6, which is of particular use in PDF models of scalar mixing, we
examine the expectation of £y, conditioned on individual values of 0, i.e. (g,|0), where
€0, is the f-component of the scalar dissipation (8 = x, y or z). Theoretical work has
shown that the form of the conditional expectation profiles, (e4|6), depends on the PDF
of the scalar fluctuation, 6 (Pope & Ching 1993). A Gaussian PDF of 6 is associated
with g9 and 0 being independent. In this case, (g9|6) is found to be a constant (e.g.
Anselmet et al. 1994, figure 9b). A super-Gaussian PDF of the scalar is associated with
a rounded, concave-up V-shape for the profile (Sinai & Yakhot 1989; Jayesh & Warhaft
1992) whereas a sub-Gaussian PDF is associated with a rounded concave-down V-shape
for the profile (Mydlarski 2003).

Figures 31a) and c) plot the expected value of the various components of the scalar dis-
sipation rate conditioned on the temperature fluctuations for y;/h = 1.0. In the present
work, the scalar dissipation rate conditioned on the scalar fluctuation exhibit a concave-
down, rounded V-shape. Such a shape indicates that large values of the scalar fluctuation
are associated with low values of the scalar dissipation. Each plot begins with an approx-
imately linear departure from 6/6,.,s ~ —1.5, increasing to a maximum, after which
the conditional expectation begins to decrease. The double peaks of (g, |0) measured in
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Figure 29: Anisotropy invariant map of &g for ys/h = 1.0 and y/h = 1.0 (a). A close-up
of figure (a) is presented in figure (b). Anisotropy invariant map of €4 for ys/h = 1.0 and
y/h = 0.8 (c). A close-up of figure (c) is presented in figure (d). Statistics were computed
from ¢/t;, = 0.02 to 0.48.

the experiments in the vicinity of the source disappear farther downstream. These may
be related to the previously discussed PDFs of 96/0y, which were shown to be bi- or
trimodal near the source (see figure 16).

Figures 31b) and d) plot the conditional expectation (gg,|0/0rms)/(c0,) when the line
source is near the wall (ys/h = 0.17). The general form of the profiles is somewhat
different from that with the centreline line source. In contrast with the DNS profiles,
the experimental profiles increase near the upper limits of the range of temperature
fluctuations. This increase also appears when the source is at the centreline but with a
(relatively) smaller magnitude. Note that figure 31(d) has been plotted with different axis
ranges due to large rare excursions in this part of the flow, where some measurements
are outside the plume, and the others in its outer edges.

Kailasnath et al. (1993) investigated the conditional scalar dissipation rate in three
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Figure 30: Anisotropy invariant map of &g for y;/h = 0.17 and y/h = 0.17 (a). A close-up
of figure (a) is presented in figure (b). Anisotropy invariant map of ey for ys/h = 0.17
and y/h = 0.01 (c¢) and for ys/h = 0.17 and y/h = 0.3 (d). Statistics were computed
from ¢/t = 0.02 to 0.48.

different shear flows: wakes, jets, and in the atmospheric surface layer. They also found
that the “hot side” of the conditional expectation (g¢|0) increased with 6. They concluded
that the very hot events associated with very high intermittent dissipation rates were
non-universal. In addition, they mentioned that the low temperature events may also be
non-universal but their contribution to the conditional expectation is small because the
dissipation in the cold fluid is small. These observations are consistent with the present
results.

Independently of the source location, figure 31 shows a tendency to isotropic behavior
as the downstream distance from the source increases. At low 6/6,.,,,5, the experiments
and DNSs agree relatively well. However, the discrepancies at large 6/6,.,,s may be due
to the fact that the large positive fluctuations of 6 are rare and may suffer from a reduced
level of statistical convergence.

The expectations of the components of the dissipation conditioned upon individual
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Figure 31: The expectation of the components of the temperature dissipation conditioned
on the temperature fluctuations for ys/h = 1.0 and ys/h = 0.17 at two downstream
locations: ¢/t = 0.08 (a, b) and ¢/t = 0.4 (¢, d) at four wall-normal locations: y/h = 1.0
(a), y/h = 0.17 (b), y/h = 0.8 (¢) and y/h = 0.3 (d). Experimental results are denoted
by the solid symbols: (gg, |0) (o), (c¢,|0) (M) and (¢, |0) (A) and the numerical results
are denoted by the open symbols: (g4, [0) (o), (c¢,16) (O) and (gg,|0) (A).

values of the temperature derivatives, (gq,|00/0x), where f = x, y or z, are plotted
in figure 32 for the two line source locations presented herein. These figures show that
larger magnitudes of 90/0z lead to higher values of €y, consistent with the definition
g9, = a((80/0x)%). In addition, g0, and €¢_ do not directly depend on 96/0x which ex-
plains the flatter profiles obtained for (gg,|00/0x) and (gg,|00/0x). That being said, they
are clearly not independent, especially farther downstream. Overall, a good agreement
between experiments and DNSs is observed.

Figure 33 and 34 compare the expectations of 4, conditioned upon individual values
of 90/0x, 00/0y, and 06/0z. The figures show consistent results for all three compo-
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Figure 32: The expectation of the components of the temperature dissipation conditioned
on the z-partial derivative of the temperature fluctuations for y;/h = 1.0 and ys/h = 0.17
at two downstream locations: ¢/t = 0.08 (a, b) and t/t;, = 0.4 (c, d) at four wall-
normal locations: y/h = 1.0 (a), y/h = 0.17 (b), y/h = 0.8 (¢) and y/h = 0.3 (d).
Experimental results are denoted by the solid symbols: (g, [06/9z) (e), (co,|00/0x)
(M) and (eg,|00/0x) (A) and the numerical results are denoted by the open symbols:
(£0,100/0z) (o), (4,100/0x) (O) and (g¢,|00/0x) (A).

nents, where 4) the correlation is highest when considering the component of £¢ and the
derivative of 6 measured in the same direction, and i) a reduced, but clearly non-zero,
correlation is observed for the expectations conditioned on the temperature derivative in
a different direction.



mmanuel Germaine, Lauren arski and Luca Cortelezzi
44 E G , L t Mydlarsk d L Cortel
A A A
30 30 30

& y/h=10 yh=10 & y/h=10 yh=10 & y/h=10 yh=1.0

X 25 t/tL =04 X o5 . t/tL =04 X o5 . t/tL =04

Ny R o A, . A, .

_E 20 E20 a . E20 .

S ® ¢ 2 S N

S 15 . o s 15 . = 5 s 15 “ R

s s o

= o & = n u = -

< 10 e o = 10 ~ 10 N .

o . . 5 <) o " [ <) 2 %

850 am o & it t 850 o0 m ) & 50 : I

= a e [ 3 = . u = . = 4 A ®

=% I‘l s A Tam =% ° . =% ® . e

w® 0.0, me _m w® 0.0 - w00

v "o 10 ¥V 10 10 ¥V 10 10
(ae/ax)/(ae/ax)rms (ae/ay)/(ae/ay)rms (89/82)/(86/82)rrns

(a) (b) (c)

Figure 33: The expectation of the components of the temperature dissipation conditioned
on the z-, y- and z-partial derivatives of the temperature fluctuations for ys/h = 1.0 at
t/t;, = 0.4 and y/h = 1.0. Experimental results are denoted by the solid symbols and the
numerical results are denoted by the open symbols. (a) (eg,|00/0x). (b) (£4,]00/0y).

(c) (£0,5100/0z). B = x (circles); B =y (squares);3 = z (triangles).
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Figure 34: The expectation of the components of the temperature dissipation conditioned
on the x-, y- and z-partial derivatives of the temperature fluctuations for ys/h = 0.17 at
t/t;, = 0.4 and y/h = 0.17. Experimental results are denoted by the solid symbols and
the numerical results are denoted by the open symbols. (a) (cg,|00/0x). (b) (c4,|00/dy).

(c) (£0,100/0z). B =z (circles); B =y (squares);3 = z (triangles).

8. Conclusions

In the present work, the dissipation rate of a scalar (temperature) emitted from a
concentrated line source in a fully developed turbulent channel flow was studied by
means of both experiments and numerical simulations. The aim was to investigate the
evolution of the small scales of the scalar field by measuring the (three components of
the) scalar dissipation rate, €p, at several downstream and wall-normal locations. The
scalar was injected in a highly anisotropic manner and an examination of the downstream
evolution of €9 permitted an investigation of the return to isotropy of the small scales of
the scalar field.

Large- and small-scale statistics of the scalar field were reported for two different source
locations (ys/h = 1.0 and 0.17), with an emphasis on the small-scale ones, given the
nature of this study. Overall, a good agreement between the experimental and numerical
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data was obtained, confirming that the DNS is capable of resolving the experimentally
measured dissipative scales. Some discrepancies between the two were, however, observed.
These were attributed to the differences in the Reynolds number between the experiments
(Re; = 520) and the DNSs (Re, = 190).

The principal contribution of this work is a detailed description of the downstream and
transverse evolutions of small-scale statistics of the scalar field (with an emphasis on the
scalar dissipation rate), as well as their dependence on the source location. The effect of
the source location is a critical aspect of the present work, as it is an essential parameter
that is only present in inhomogeneous flows — a category into which all practical flows
fall. The present work provides insight into the effect of source location on the small-scale
statistics of the scalar field, which, until now, had not been explicitly studied.

To this end, the downstream and transverse evolutions of the spectra and PDF's of the
scalar gradients (00/0xp), €y, , €4,, €o. and €g, as well as their dependence on source lo-
cation, were analyzed. For the case of the centreline source, a tendency for these statistics
to return to isotropy was always observed. When the source was located near the wall, the
tendency to return to isotropy was not as evident, given that the production of €4, due
to the mean velocity gradient, which was most evident in plots of €4, /€g.,, may be non-
negligible at lower Reynolds numbers, such as those which characterized our numerical
simulations. Because the near-wall region has characteristics that both reduce anisotropy
(e.g. higher degrees of mixing, due to the more intense nature of the turbulence therein)
and increase anisotropy (e.g. production of ¢, by mean velocity gradients), the depen-
dence of the return to isotropy on source location is complex, in addition to possibly being
dependent on the Reynolds number, the Schmidt number (Yeung et al. 2002; Brethouwer
et al. 2003, e.g.), etc. We have also argued that when the production of g5, by mean ve-
locity gradients is non-negligible, a return to isotropy is inhibited by this mechanism,
which possibly maintains the thermal time-scale at fixed value, unlike what was observed
when small-scale isotropy of the scalar field was recovered. The return to isotropy of the
scalar field was also quantified using anisotropy invariant maps for the scalar dissipation
rate, which highlighted, downstream of the centreline source, i) the axisymmetric nature
of scalar dissipation rate, and ii) an improved tendency towards isotropy of the small
scales. The nature of the anisotropy invariant maps was, however, distinctly different in
the near-wall region, varying from a one-dimensional state very close to the wall, towards
an axisymmetric state as the centreline was approached. Lastly, conditional expectations
of the three components of g9 were presented, which, in addition to providing insight
into the scalar field’s structure, should be of benefit to those developing mixing models
for PDF methods.

The more rapid return to isotropy of certain statistics (e.g. both the spectra and PDFs
of the scalar gradients, PDFs of gg, etc.) in the near-wall region are consistent with
the scalar field undergoing increased mixing in regions of more intense turbulence (i.e.
regions of locally higher turbulent Reynolds numbers). However, in the current flow,
the increased values of wu,,,s are associated with the larger contribution of production
of turbulent kinetic energy by mean velocity gradients, which as previously noted, also
serves to produce anisotropy. Increased mixing in regions or more intense turbulence
is consistent with the arguments of Rosset et al. (2001) and Gonzalez & Paranthoén
(2003), as increased levels of turbulence can be associated with increased vorticity. Rosset
et al. (2001) hypothesized that the return to isotropy in a flow in which the scalar field
is injected at small scales is caused by both molecular dissipation and stretching, in
which the latter is effected by both strain and rotation, with rotation serving to reorient
the scalar gradients and thus “isotropizing” the scalar field. Gonzalez & Paranthoén
(2003) further analyzed the work of Rosset et al. (2001) and suggested that the return
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to isotropy was “governed by vorticity at scales of the order of the instantaneous scalar
sheet thickness,” arguing that vorticity at smaller scales could not significantly distort
the plume, whereas that at large scales would be able to rotate the plume, but would
be weaker (assuming typical Kolmogorov arguments for the dependence of vorticity on
length scale).

In addition to the above, it is worth reiterating the comments of Rosset et al. (2001)
and Gonzalez & Paranthoén (2003), who emphasize that flows in which the scalar is
injected at small scales are notably different from those in which the scalar is injected at
large-scales (i.e., by way of a mean scalar gradient). In the latter class of flows, anisotropy
is continually generated by the large-scale anisotropic injection mechanism. In the current
case of small-scale injection by a line (or point) source, the small-scale anisotropy does
not originate from large-scale anisotropy being transferred to smaller scales, because it
originates at small scales, and the mean scalar gradients, which are the source of the
anisotropy, become smaller and smaller as the plume is increasingly well mixed, thus also
promoting, in part, a return to isotropy. Nevertheless, the exact nature of the return to
isotropy of a scalar field injected at small scales merits additional investigations, such as
i) ones that might focus on the effect of the intensity of the turbulence / local Reynolds
number, without compounding the results with a change in the mean velocity gradient
/ production of turbulent kinetic energy, ii) further investigating the effect of Schmidt
number, or ii) numerical simulations in which simultaneous, small-scale velocity and
scalar statistics could be recorded, because experimentally measuring all three scalar
gradients and all nine velocity ones remains an exceedingly difficult task.
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