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Recent experiments demonstrated that chiral symmetry breaking at an exceptional point (EP) is a viable route to 
achieve unidirectional laser emission in microring lasers. By a detailed semiconductor laser rate equation model, 
we show here that unidirectional laser emission at an EP is a robust regime. Slight deviations from the EP 
condition can break preferential unidirectional lasing near threshold via a Hopf instability. However, above 
a “second” laser threshold, unidirectional emission is restored. 

1. INTRODUCTION

Microdisk/microring lasers are attracting continuous and in-
creasing attention as key elements of future photonic integrated
circuits [1–4]. Such lasers can support clockwise (cw) and
counterclockwise (ccw) traveling-wave modes with chiral sym-
metry. In nongyromagnetic materials, they are degenerate
because of time-reversal symmetry, and spurious feedback in
the cavity couples them [5]. As a result, the emission of an
active microring cavity with time-reversal symmetry is usually
not unidirectional, and different dynamical regimes can be
observed, which arise from linear and nonlinear mode
coupling [6–9].

Several works have demonstrated that unidirectional laser

emission at an EP is based on the chiral nature of the linear
resonator modes at the EP [19,20,23]. However, deviations
from exact EP operation as well as the impact of nonlinear
mode coupling on directional laser emission above threshold
have been mostly eluded so far. Some preliminary numerical
results based on a laser rate equation model, reported in an
earlier work [21], indicate that unidirectional lasing is
expected to be stable near the EP operation. However, some
instability may arise when the microring design deviates from
exact EP operation.

In this work, we extend our preliminary numerical results
of Ref. [21] and provide a more comprehensive theoretical
study of the impact of nonlinear mode coupling in the
dynamical behavior of the EP-based semiconductor microring
laser. Our theoretical study explains the origin of instability
and provides general laser design criteria for stable unidirec-
tional mode operation. By means of a phase analysis of semi-
conductor laser rate equations based on asymptotic methods
(not reported in previous work [21]), we can analytically
show by linear stability analysis that at exact EP operation,
unidirectional laser emission is always a stable regime above
threshold. Near EP operation, the phase analysis shows
that deviations from exact EP operation can destabilize uni-
directional emission near threshold via a Hopf instability.
However, above a second laser threshold, preferential continu-
ous-wave unidirectional lasing is restored. The phase analysis
also shows that, as expected [6,7], chiral symmetry and bista-
ble laser output in either one of the two counterpropagating
traveling-wave modes (TWMs) occur at high driving currents
as a result of nonlinear mode dynamics.

emission can be forced by breaking chiral symmetry [10–21] 
without resorting to nonreciprocal elements, which are chal-
lenging to realize at the microscale and the nanoscale. A viable 
route to obtain chiral modes and unidirectional laser emission 
is to introduce asymmetric couplings between cw and ccw 
modes, as originally suggested in Ref. [11]. Under asymmetric 
coupling, the mode circulating in the direction that receives 
more cross coupling is the preferred lasing mode [11]. 
Interestingly, when one of the two couplings vanishes (unidi-
rectional coupling), one operates at the so-called exceptional 
point (EP) [22,23], where maximal chirality is obtained and 
complete unidirectional laser emission is observed [19–21]. 
Partial or complete directional lasing based on EP operation 
in microlasers has been demonstrated in a few recent works by 
use of two Rayleigh scatterers [19,20] or by combined index 
and loss gratings [21]. The prediction of perfect unidirectional
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2. MICRORING LASER AT EP: RATE-EQUATION
MODEL AND PHASE ANALYSIS

A. Semiconductor Laser Rate Equations
The semiconductor laser rate equations that describe the
dynamics of two counterpropagating TWMs in a ring cavity
read as [6,7,24,25] [Fig. 1(a)]

dE1

dt
� κ�1� iα��N �1 − sjE1j2 − cjE2j2� − 1�E1

� iκ1E2; (1)

dE2

dt
� κ�1� iα��N �1 − sjE2j2 − cjE1j2� − 1�E2

� iκ2 exp�iΘ�E1; (2)

dN
dt

� γ�μ − N − N �1 − sjE1j2 − cjE2j2�jE1j2

− N �1 − sjE2j2 − cjE1j2�jE2j2�; (3)

where E1;2�t� are the slowly varying normalized amplitudes of
cw and ccw TWMs, respectively,N �t� is the carrier density, κ is
the field decay rate, γ is the decay rate of the carrier population,
α is the linewidth enhancement factor, and μ is the normalized
injection current (μ ∼ 0 at transparency, μ ∼ 1 at lasing thresh-
old). The two counterpropagating modes interact both in a lin-
ear and nonlinear fashion. Linear mode coupling is described
by the coupling strengths κ1;2 > 0 and the relative phase Θ of
the coupling. For reactive (Hermitian) coupling, κ1 � κ2 and
Θ � 0. In a general non-Hermitian coupling scheme, κ1, κ2,
and Θ can take arbitrary values, with the EP condition corre-
sponding to κ2 � 0. In experiments, control of κ1, κ2, andΘ in
a microring can be realized by the use of two Rayleigh scatterers
[19, 20] [Fig. 1(b)] or by a combination of phase-shifted index
and loss gratings [21] [Fig. 1(c)]. Here we will focus our atten-
tion on laser operation near an EP, with a vanishing or small
value of coupling κ2 as compared to κ1. Nonlinear mode cou-
pling, arising from self- and cross-saturation effects, is described
by self- and cross-saturation parameters s and c. In a typical
semiconductor laser, the self-and cross-saturation parameters
satisfy the condition c � 2s [6–9], and therefore we will
typically consider the case c � 2s. However, as shown in pre-
vious works [7], the qualitative dynamical behavior of semicon-
ductor ring lasers does not depend on the specific values of s
and c, provided that the condition c > s is fulfilled. Such a
point will be also clear by the phase analysis of laser rate
Eqs. (1)–(3) presented in the next subsection.

B. Phase Analysis
Preliminary numerical results of the laser rate Eqs. (1)–(3) re-
ported in the Supplementary Material of our previous work
[21] showed that unidirectional laser emission at an EP is a
stable regime well above threshold. However, an oscillatory in-
stability near threshold is observed when considering deviations
from exact EP operation. To provide some analytical and physi-
cal insights into the laser dynamics near the EP observed in full
numerical simulations, we present here a phase analysis of the
laser rate Eqs. (1)–(3) using asymptotic methods in the limit
κ∕γ → ∞, which generally applies to semiconductor laser dy-
namics [24,25]. The phase analysis explains the onset of a Hopf
instability for slight deviations from EP operation, restoration
of stable unidirectional emission above a second laser threshold,
and bistable laser emission in either one of the two TWMs at
high current levels as a result of nonlinear mode competition.
The asymmetric coupling regime κ1 ≠ κ2, previously investi-
gated in Ref. [25], gives rise to multistable and excitable laser
behavior. Here we mainly focus on the operational regime close
to the EP operation, where we show that unidirectional
emission is a stable regime, and derive some analytical results
on the second laser threshold and Hopf instability boundaries,
which were not derived in previous works and are of major
relevance for the design of stable unidirectional operation of
the semiconductor microring laser.

In the limit κ∕γ → ∞, an asymptotic analysis of
Eqs. (1)–(3) in the large parameter κ∕γ shows that the carrier
density N remains almost clamped to the saturated value
N ≃ 1, whereas the total intensity jE1j2 � jE2j2 � μ − 1 does
not change with time [24]. After setting

E1 �
ffiffiffiffiffiffiffiffiffiffi
μ − 1

p
cos

�
θ

2
� π

4

�
exp�iϕ1�; (4)

E2 �
ffiffiffiffiffiffiffiffiffiffi
μ − 1

p
sin

�
θ

2
� π

4

�
exp�iϕ2�; (5)

the following coupled equations for the phases θ�t� and
ψ�t� ≡ ϕ2 − ϕ1 can be derived from Eqs. (1)–(3):
dθ

dt
� Jκ1 sin θ cos θ� �1 − sin θ��κ2 sin�ψ − Θ� − κ1 sin ψ �
� 2κ1 sin ψ ; (6)

dψ

dt
� αJκ1 sin θ� κ2 cotg

�
θ� π∕2

2

�
cos�ψ − Θ�

− κ1 tg

�
θ� π∕2

2

�
cos ψ ; (7)

where

J ≡
κ

κ1
c�μ − 1�

�
1 −

s
c

�
(8)

is the normalized pump parameter ( J � 0 at threshold). Note
that within the phase analysis approximation, the laser dynam-
ics depend on the dimensionless parameters J ≥ 0, κ2∕κ1 ≥ 0,
Θ, and α solely. Note also that within the limits of validity
of the phase analysis, the laser dynamics are qualitatively inde-
pendent of the values of self- and cross-saturation parameters
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Fig. 1. (a) Schematic of a microring sustaining cw and ccw TWMs.
Control of linear mode couplings κ1;2 based on the use of (b) two
Rayleigh scatterers (dots) [19,20], and (c) combined phase-shifted
index and loss gratings [21].



provided that the condition c > s is satisfied. In fact, according
to Eq. (8), a change of the ratio c∕s just corresponds to a
renormalization of the pump parameter J.

3. STABLE UNIDIRECTIONAL LASER EMISSION
AT EXACT EP OPERATION

As a first application of the phase analysis, let us analytically
prove that, at exact EP operation, unidirectional laser emission
is always a stable operational regime above the laser threshold.
In fact, at exact EP operation, one has κ2 � 0 and Eqs. (6)
and (7) simplify as follows:

dθ

dt
� Jκ1 sin θ cos θ� κ1�1� sin θ� sin ψ ; (9)

dψ

dt
� αJκ1 sin θ − κ1 tg

�
θ� π∕2

2

�
cos ψ : (10)

The solutions to Eqs. (9) and (10), corresponding to continu-
ous-wave unidirectional laser emission in the cw mode
(E2 � 0, jE1j2 � μ − 1), are given by

θ�t� � −π∕2; ψ�t� � −ακ1Jt: (11)

The stability of such solutions for any normalized pump
parameter J > 0 can be readily demonstrated by standard
linear stability analysis. By letting ψ�t� � −ακ1Jt � δψ�t�
and θ�t� � −π∕2� δθ�t�, the linearized equations for the
perturbations δψ�t� and δθ�t� read as

dδψ�t�
dt

� −
κ1
2
δθ�t� cos�ακ1t�; (12)

dδθ�t�
dt

� −κ1Jδθ; (13)

which yield damped solutions δψ�t�; δθ�t� → 0 for perturba-
tions as t → ∞. Such a result demonstrates that the unidirec-
tional laser emission at an EP is a stable regime, even when
nonlinear mode coupling above threshold is properly taken into
consideration.

Besides the stationary cw unidirectional solution, other
stationary solutions can be found by letting dθ∕dt � 0 in
Eqs. (9) and (10). Such solutions do not correspond to unidi-
rectional emission and are a signature of multistable laser
behavior [8,9]. The diagram of stationary solutions versus J
for a typical value of the linewidth enhancement factor
α � 3 is shown in Fig. 2. Solid curves refer to stable stationary
solutions, whereas dotted curves correspond to unstable solu-
tions. Note that for J < J1 with J1 ≃ 1.05, the unidirectional
cw mode is the only stable solution, whereas for J > J1, bista-
bility is observed between cw and ccw laser emission. Note that,
according to Eqs. (9) and (10), the pump parameter threshold
J1 at which bistability appears is a function of the linewidth
enhancement factor α solely. It can be calculated in a closed
form by considering the steady-state solutions to Eqs. (9)
and (10) with θ ≠ −π∕2 and imposing �dJ∕dθ � 0�. After
some calculations, one obtains

J1 ≃
3.33ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p : (14)

Note that J1 decreases as α increases.

From a physical viewpoint, the appearance of bistable
behavior at high pump levels J > J1 means that the chiral sym-
metry of the microring is restored and laser emission can switch
randomly into either one of the cw or ccw TWM by noise or
external perturbations. Such a restoration of the chiral sym-
metry well above threshold, when the laser operates in the
highly nonlinear regime and the linear coupling κ1 works as
a weak term in the dynamics, is in agreement with previous
studies of mode competition in ring lasers [6,7,26,27].
According to Eqs. (8) and (14), the injection current level μ
above which the bistable regime arises increases as the ratio
κ1∕κ increases. Therefore, to avoid bistable emission, a rela-
tively strong and controllable coupling κ1 is needed, like in
the distributed feedback microring with two phase-shifted in-
dex and loss gratings [21]. Other methods, such as the use of
two Rayleigh scatterers, generally yield low couplings κ1,
and thus the breakdown of unidirectional emission could
be observed at relatively low injection currents above
threshold. For example, assuming c � 2s � 0.01, α � 3,
and κ ≃ 400 ns−1 , which are typical values for parameter range
variation in semiconductor ring lasers [6–8,24], a coupling κ1
larger than 7.6 ns−1 is required to avoid bistable emission for a
pump parameter of μ < 5, i.e., for a current level up to five
times its threshold value.

4. DEVIATION FROM EP OPERATION: HOPF
INSTABILITY AND THE SECOND LASER
THRESHOLD

In a practical design, the control of the couplings κ1 and κ2 is
not perfect and slight deviations in the EP regime can be ex-
pected. One of the main theoretical predictions based on the
phase analysis developed in Section 2.B is that for a nonvanish-
ing value of κ2∕κ1, unidirectional emission in the cw TWM can
be destabilized close to threshold via a Hopf bifurcation. The
most adverse case is observed for a phase of Θ � 0, and there-
fore we will limit to consider such a case. A typical example of
the laser behavior for a nonvanishing value of κ2∕κ1 is shown in
Fig. 3. The figure depicts the diagrams of stable continuous-
wave laser emission for α � 3, Θ � 0, and κ2∕κ1 � 0.5,
i.e., for a considerable deviation from the exact EP operation.
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Fig. 2. Intensity of cw and ccw ring modes versus normalized
pump parameter J at an EP (κ2∕κ1 � 0) for α � 3. Solid and dashed
curves refer to stable and unstable branches of stationary solutions,
respectively. For J < J1, the only stable solution corresponds to uni-
directional laser emission in the cw mode (E2 � 0), whereas for
J > J1, bistable unidirectional emission, with either dominant cw
or ccw modes, is observed. The value of J1 depends on the linewidth
enhancement factor α solely according to Eq. (14).



As one can see, the stationary solution is destabilized near
threshold for J < J2, with J2 ≃ 0.33 for the case of Fig. 3.
In the range of 0 < J < J2 the laser emission is typically oscil-
latory with nonstationary emission in cw and ccw TWMs; to
observe stationary emission with the dominant cw TWM, the
driven current should be increased above the threshold value
( J � 0) such that J > J2. J2 can be thus referred to as the
“second” laser threshold, i.e., the threshold for stable laser emis-
sion in the dominant cw mode. For J2 < J < J1, Fig. 3 shows
that the laser emission is stationary with the cw mode being the
dominant mode. However, deviation from exact EP operation
leads to a nonnegligible excitation of the ccw mode as well. The
deviation from perfect unidirectional emission can be measured
by the directionality parameter D, which is defined as

D � jE1j2 − jE2j2
jE1j2 � jE2j2

; (15)

with D ≤ 1 and D � 1 for perfect unidirectional emission in
the cw mode. Within the phase approximation of the semicon-
ductor laser rate equations, from Eqs. (4), (5), and (15), one
readily obtains a simple expression of the directionality as a
function of the phase θ�t�

D � −sin θ: (16)

The directionality can be thus computed from the steady-state
solutions of Eqs. (6) and (7). The directionality smoothly de-
creases as κ2∕κ1 increases, starting from D � 1 at the exact EP
operation (θ � −π∕2). Figure 4 shows the behavior of the di-
rectionality D versus κ2∕κ1 for α � 3 close to the second laser
threshold, i.e., for the normalized pump parameter J � J�2 .
As expected, the directionality is degraded as κ2∕κ1 increases;
a directionality larger than 0.9 is required to keep κ2∕κ1
smaller than 0.065. Similar behavior of directionality versus
κ2∕κ1 is obtained for other values of the linewidth enhance-
ment factors.

According to the phase analysis, the second laser threshold
J2 is a function of κ2∕κ1 and α solely, with J2 → 0 as
κ2∕κ1 → 0, i.e., at exact EP operation. Figure 5 shows the nu-
merically computed behavior of the second laser threshold J2
versus κ2∕κ1 and of the bistability boundary J1 for a few values
of the linewidth enhancement factor α. At J < J2, the station-
ary solution corresponding to the dominant cw mode is

destabilized via a Hopf bifurcation, whereas for J > J1, the
laser can switch into the other stable solution corresponding
to bistable emission in almost cw or ccw modes. The normal-
ized pump parameter J1 of the bistability boundary is always
larger than the normalized pump parameter J2 of the second
laser threshold, and its value slightly decreases from the one
predicted by Eq. (14) as κ2∕κ1 increases above zero. An analysis
of the phase equations indicates that J1 → J�2 as κ2∕κ1 → 1−,
i.e., when mode coupling becomes symmetric—in this limit,
the stability domain of dominant cw mode laser emission, cor-
responding to the range � J2; J1� of the normalized pump
parameter, shrinks and chiral symmetry is fully restored.

The instability of the dominant cw mode solution for
J < J2 is a Hopf (oscillatory) instability, as one can analytically
prove by a standard linear stability analysis of Eqs. (6) and (7).
Let θ0, ψ0 be the stationary solutions to Eqs. (6) and (7),
corresponding to laser oscillation in the dominant cw stationary
mode; the values of θ0 and ψ0 can be obtained as the roots of
transcendental equations, in which ψ0 and J are parametrized
by θ0 as follows:

tg ψ0 �
cos θ0

h
κ2 cotg

�
θ0
2
� π

4

�
− κ1 tg

�
θ0
2
� π

4

�i
2ακ1 − α�κ1 − κ2��1 − sin θ0�

; (17)

J � �κ1 − κ2��1 − sin θ0� sin ψ0 − 2κ1 sin ψ0

sin θ0 cos θ0
: (18)
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Fig. 3. Same as Fig. 2 but for κ2∕κ1 � 0.5, Θ � 0, and α � 3. For
J < J2 ≃ 0.33, all stationary solutions are unstable and the unidirec-
tional TWM emission is destabilized by a Hopf instability. Laser emis-
sion in the dominant cw mode is realized in the pump parameter range
of J2 < J < J1.
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calculated close to the second laser threshold, i.e., for J � J�2 .
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Small perturbations δθ�t� and δψ�t� around the steady-state
solution evolve according to the linearized system

d

dt

�
δθ
δψ

�
�

�
M11 M12

M21 M22

��
δθ
δψ

�
; (19)

where the elements of the stability matrix M are given by

M11 � J cos�2θ0� − �κ2 − κ1� cos θ0 sin ψ0; (20)

M12 � �κ2 − κ1��1 − sin θ0� cos ψ0 � 2κ1 cos ψ0; (21)

M21 � αJ cos θ0 −
κ2 cos ψ0

2 sin2
�
θ0
2 � π

4

�

−
κ1 cos ψ0

2 cos2
�
θ0
2 � π

4

� ; (22)

M22 � κ1 sin ψ0 tg

�
θ0
2
� π

4

�

− κ2 sin ψ0 cotg

�
θ0
2
� π

4

�
: (23)

An instability arises whenever the real part of either one of the
two eigenvalues λ1;2 of the stability matrix M becomes posi-
tive. Analytical results can be gained by considering the laser
operation near the first threshold, i.e., for J → 0. In this limit,
an asymptotic analysis of Eqs. (17)–(23) in the small parameter
J can be performed. The calculations show that the real part of
one of the two eigenvalues is positive, and its imaginary part is
given by

ωHopf � 2
ffiffiffiffiffiffiffiffiffi
κ1κ2

p
: (24)

Therefore, for κ2∕κ1 ≠ 0 close to the first laser threshold
J � 0, the stationary cw mode solution is destabilized via a
Hopf (oscillatory) instability, where the frequency of the
Hopf instability is given by Eq. (24).

To get an idea of the value of the Hopf instability frequency
at first laser threshold and the current level of the second laser
threshold, let us consider typical parameters of a semiconductor
ring laser with α � 3, κ � 400 ns−1, and c � 2s � 0.01 [24];
assuming linear mode couplings κ1 � 20 ns−1 and κ2∕κ1 �
0.1, the second laser threshold corresponds to a normalized
injection current μ � 1� J2κ1∕�κ�c − s�� ≃ 1.37, whereas the
Hopf instability frequency close to threshold is νHopf �
�1∕π� ffiffiffiffiffiffiffiffiffi

κ1κ2
p ≃ 2 GHz.

We checked the validity of the phase analysis and break-
down of unidirectional emission via a Hopf instability as
κ2∕κ1 ≠ 0 by direct numerical simulations of the full laser rate
Eqs. (1)–(3), i.e., without adiabatic elimination of the carrier
density from the dynamics. As an example, in Fig. 6(a) we show
a numerically computed bifurcation diagram of Eqs. (1)–(3)
for parameter values α � 3, κ � 400 ns−1, γ � 0.5 ns−1,
c � 2s � 0.01 [24], κ1 � 20 ns−1, κ2∕κ1 � 0.1, and
Θ � 0. According to the phase analysis, for a normalized in-
jection current μ > 1� J2κ1∕�κ�c − s�� ≃ 1.37, i.e., above
the second laser threshold, stable emission in the cw mode is
observed, whereas for μ < 1.37, the laser emission is oscillatory.

Figure 6(b) shows typical examples of temporal behavior of mo-
dal intensities for the cw and ccw TWMs for increasing values
of the normalized injection current μ from the oscillatory
(μ < 1.37) to the stationary (μ > 1.37) regimes. Note that
close to first laser threshold (μ � 1.05), the mode intensity os-
cillates in time with a frequency very close to the predicted
value of νHopf ≃ 2 GHz, which is defined by Eq. (24). At
higher currents (μ � 1.2), complex oscillatory dynamics
are observed until the oscillations are damped and a stable
stationary state is found (μ � 1.4) above the “second” laser
threshold.

5. CONCLUSION

Recent experiments nicely showed that chiral symmetry break-
ing at an EP provides a viable route for unidirectional laser
emission in microlasers [19–21]. By a detailed phase analysis
based on a laser rate equation model for a semiconductor
microring, we have extended preliminary numerical results
reported in previous work [21] and proven that at exact EP
unidirectional laser emission is a stable and robust regime
and that bistable unidirectional oscillation, corresponding to
restoring of the chiral symmetry via nonlinearity, can be
observed but at high current levels. Deviations from the EP
condition can break unidirectional lasing near threshold via
a Hopf instability. However, a “second” laser threshold does
exist above which unidirectional stable emission is restored.
Our results thus indicate the robustness of unidirectional
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Fig. 6. (a) Numerically computed bifurcation diagram showing the
extreme (maxima/minima) of amplitudes jE1;2�t�j for cw and ccw
TWMs versus normalized injection current μ. Parameter values are
given in the text. For μ ≳ 1.37, a stationary regime, corresponding
to almost unidirectional emission in the cw mode, is observed, whereas
for μ ≲ 1.37, the dynamics are oscillatory. (b) Numerically computed
time evolution of mode intensities jE1;2�t�j2 for cw (thin solid line)
and ccw (thick solid line, with lower amplitude) for increasing values
of the normalized injection current μ. The laser is switched on at
time t � 0, with the initial condition corresponding to small random
amplitudes of E1 and E2 and N � 0.



emission based on EP operation and are expected to provide
important guidelines for the design of unidirectional
microlasers.
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