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Abstract 

The need of an univocal language for geometrical product specification considering all steps of the 

product life-cycle such as design, manufacturing, and inspection is inevitable. Most models for 

computer aided tolerancing proposed by researchers and used in industry do not fully conform with 

standards. Moreover, most of them make severe assumptions on observable geometric deviations and 

can therefore hardly handle all kinds of 3D tolerances. 

These lacks inspired the idea and the development of a discrete geometry framework that is capable 

of considering geometric deviations of different stages of the product life cycle and is versatile 

regarding current and future tolerancing standards. This work uses a point cloud-based geometry 

representation scheme to implement the pattern left on the surfaces by a manufacturing process; then 

this scheme has been inserted in a variational approach for tolerance analysis. Moreover, gravity and 

friction among the parts to assemble have been simulated too. In this way a new Computer Aided 

Tolerancing (CAT) simulation tool has been developed; it approaches reality more than existing 

software packages do. 

To verify the effectiveness of the new CAT simulation tool, it has been applied to two case studies. 

The obtained results have been compared with those due to a geometrical model that has been 

developed by simulating what happens among the parts in the actual assembly. The obtained results 

show how the new CAT simulation tool gives results nearer to reality than literature models do. 

Keywords: tolerance analysis, manufacturing signature, friction, gravity, variational model. 



1. Introduction 

Even though modern manufacturing processes achieve an increasingly high accuracy, geometric 

deviations are observable on every manufactured part. Geometric deviations have huge influence on 

both the function behaviour and on the customers' quality perception of the product (Schleich et al. 

2014). To control and to manage these geometric deviations along the product life-cycle, the first step 

is to consider during the design stage the tolerance specification, the tolerance allocation and the 

tolerance analysis (Armillotta and Semeraro 2011). 

In the context of Computer-Aided Tolerancing (CAT), various models for the representation of 

dimensions and geometric tolerances and for the solution of the tolerance chains have been developed, 

such as vector loop (Gao et al. 1998), variational (Gupta and Turner 1993), matrix (Desrochers and 

Rivière 1997), Jacobian (Clemént et al. 1998), torsor (Rivest et al. 1994, Ledoux and Teissandier 

2013), unified Jacobian-torsor (Desroschers et al. 2003), Polytopes (Homri et al. 2015) and the T-

Map® (Davidson et al. 2002, Ameta et al. 2011). Many commercial CAT software packages support 

the product development in these activities for geometric product specification and tolerancing, such 

as 3-DCS of Dimensional Control Systems®, VisVSA of Siemens®, CETOL®, and so on (Prisco and 

Giorleo 2002, Shah et al. 2007). However, there is a growing interest in considering working 

conditions and operating windows in CAT (Anselmetti et al. 2010). These computer models for 

tolerance simulation and analysis make severe simplifications about observable geometric deviations, 

since they are reduced to rotational and translational feature defects (Polini 2012, Ameta et al. 2011). 

This leads to results with large ranges of uncertainty and a discrepancy between the virtual models 

and the observed reality (Charpentier et al. 2012). Furthermore, the tolerancing tasks in design as well 

as all other activities of geometric variations management should be incorporated in a complete and 

coherent tolerancing process (Mathieu and Ballu 2007, Dantan et al. 2003). As a response to these 

needs, Skin Model concept was proposed (Schleich et al. 2014, Schleich and Wartzack 2015). It is a 

model of the physical workpiece surface in contrast to the nominal model that is a "simple" model of 

the intended workpiece not taking into account inevitable geometric deviations (Schleich et al. 2014). 



The research contribution of this paper is to show how to modify the variational tolerance analysis 

model of the literature to include the manufacturing signature and the assembly conditions, such as 

gravity and friction. The present paper connects a skin model scheme to a manufacturing process, in 

order to bring closer the CAT simulation tools to reality. The discrete geometry framework of the 

skin model has been represented by the pattern left on a surface by a manufacturing process. The 

manufacturing process leaves a pattern on the manufactured surface; this pattern is a geometrical 

correlation among the neighbouring points on the manufactured surface that is called signature; it has 

been inserted in the framework of the skin model.  

To demonstrate the effectiveness of considering manufacturing signature, the variational skin model 

has been applied to a case study made up of three parts: a rigid box and two profiles that fit within it. 

The case study has been chosen simple to be solved manually, but representative since it allows to 

consider both dimensional and geometrical tolerances applied to the same profile. The obtained 

results have been compared with those due to the use of the variational model of the literature. To 

verify the results obtained in this way, since the experimental validation is not compatible with the 

2D nature of the case study, a geometrical model has been developed. It numerically reproduces what 

happens in the actual assembling and it has been considered as the reference case. It adopts a point 

cloud-based geometry representation scheme. Finally, to validate the methodology used and applied 

to a simple 2D case study, a 3D case study has been considered for a further validation. 

Matlab® and Minitab® software packages have been used to carry out the tolerance analysis and the 

statistical analysis of the obtained results respectively. 

The paper is organized as follow: in Sec. 2, the modified variational model with manufacturing 

signature has been implemented on a 2D case study. In Sec. 3, the numerical validation is described 

by means of a geometrical approach with and without considering the manufacturing signature. In 

Sec. 4, the results are compared and discussed. Finally, in Sec. 5, a final validation of the methodology 

developed in previous Sections is applied on a 3D case study. 



2.Variational model with manufacturing signature 

The variational model proposed in (Marziale and Polini 2010, Polini 2016) has been considered and 

implemented in this study. The basic idea of a variational model is to represent the variability of an 

assembly, due to the tolerances and the assembly conditions, through a set of parameters of a 

mathematical model.  

To create an assembly, the designer has to define the nominal shape and the dimensions of each 

assembly component (these information are usually contained in CAD files). Then, the designer 

identifies the features of each component which affect the functional requirements (functional 

features) and the designer assigns the dimensional and geometrical tolerances to them. Each feature 

has its local Datum Reference Frame (DRF), while each component and the whole assembly have 

their own global DRF. In nominal condition, the homogeneous transformation matrix (called ) 

that allows to pass from a DRF to another is known. When real features are machined, they depart 

from nominal (see Figure 1). Assuming that real features maintain their nominal form (i.e. form 

deviations are neglected), the location of a real feature deviates from nominal, this deviation is 

expressed by parameters that constitute a differential homogeneous transformation matrix . To 

pass from the global DRF of the part i ( ) to the local DRF of a feature j of part i ( ), it is enough 

to multiply the two matrices: 

 (1) 

where is the total transformation matrix to pass from the global DRF of the part i to the local 

DRF of feature j of part i; is the nominal transformation matrix to pass from the global DRF 

of the part i to the local DRF of feature j of part i; is the differential transformation matrix of 

the feature j of part i. 

If a feature may not be directly referred to the global DRF, it is reported to it through a chain of 

features. To calculate the total matrix, it is enough to make the product of the single contributions as 

shown in Figure 2 that is valid for the case of two transformations. 
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Once modeled the variability of the components, they have to be assembled together. The relative 

location of the parts is expressed by means of parameters (that are called small kinematic adjustments) 

which constitute the differential homogeneous transformation matrix (the transformation matrix 

is indicated by the letter A=assembly to distinguish it from the matrix that is for the part). The 

total transformation to pass from the global DRF of part i ( ) to the global DRF of part l ( ), is 

simply obtained by means of the following equation (see Figure 3): 

 (2) 

where: is the assembly matrix between part i and part l, is the assembly matrix 

between part i and part l in nominal condition,  is the differential assembly matrix between 

part i and part l, is the differential assembly matrix between the feature j of part i and the 

feature k of part l, is the nominal transformation matrix to pass from the global DRF of part 

i to the local DRF of feature j of part i, is the differential transformation matrix of feature j of 

part i, is the differential transformation matrix of feature k of part l, and is the nominal 

transformation matrix to pass from the global DRF of the part l to the local DRF of feature k of part 

l. The differential assembly matrix and are hard to evaluate, since they depend by 

both the tolerances, that are applied to the components in contact, and the assembly conditions.  

Some are the works in the literature to evaluate these differential matrices. A strategy is to model the 

join between the coupled parts by reconstructing the coupling sequence between the features (Li and 

Roy 2001). Another possibility is to impose some analytical constraints on the assembly parameters 

(Bernam 2005). The idea of this work is to use the manufacturing signature and the operating 

conditions to estimate the form parameters of the differential matrices. When all the transformation 

matrices are obtained, it is possible to express all the features in the same global DRF of the assembly 

(R); then the functional requirements on the assembly can be modelled. They appear as: 

 (3) 
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where: FR is a functional requirement of the assembly, p1,…,pn are the model parameters, and f is the 

stack-up function (that is usually not linear) in the model parameters. 

In order to illustrate how the manufacturing signature and the operating conditions may be inserted 

inside the variational model, a simple assembly composed of three parts and a synoptic scheme to 

highlight the procedure are shown in Figure 4 and in Figure 5 respectively. Part 1 is a hollow 

rectangular box. Parts 2 and 3 are two circular profiles that fit within it. A two-dimensional tolerance 

analysis has been carried out and the circular profiles have been considered with and without 

considering the manufacturing signature. The gravity and the friction have been considered during 

the assembly of the circular profiles with the box. The aim is the measurement of the gap g between 

the second circular profile and the top side of the box as a function of the tolerances applied to the 

components. 

The manufacturing signature due to a turning process has been represented by means of an 

autoregressive (AR) moving-average (MA) model with exogenous (X) variable (ARMAX model), as 

proposed in (Moroni and Pacella 2008), where the manufacturing signature was mainly affected by 

both bi-lobe and three-lobe contours, as shown in Figure 6. This model combines a harmonic term, 

that stands for the systematic pattern left by the turning process on the manufactured surface, with a 

second-order autoregressive of the noise term, that represents the random contribution that may not 

be expected. Therefore, the parametric model of the identified process signature is given by: 

 (4) 

where t=1,2, . . . ,N represent the index of data points in the sampled profile, B is the backshift 

operator, N is the number of equally spaced points measured on that profile. For each index t, Yt 

represents the radial distance between the actual point and the least square substitute circle, measured 

at angular position θt=2πt /N. Each term of the first part of Eq. (4) represents the i-th harmonic (i=2, 

3), characterized by i undulations per revolution, by an amplitude equal to and by 
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a phase equal to . The constant term is introduced to use normalized harmonic 

predictors. The parametric model in Eq.(4) is a special case of a general ARMAX model and assumes 

that the signature may be modelled as a weighed combination of independent predictor variables that 

are assumed known and constants. The parameters' vector in Eq. (4) forms a stochastic vector that 

has a multivariate normal distribution with the mean vector and the variance-covariance matrix, 

respectively, reported in Table 1. The term εt in Eq. (4) was modelled as Gaussian white noise with 

standard deviation equal to 0.374 µm. 

The gap g has been evaluated by means of the following analytical equation, while all the details to 

obtain the equation are reported in Appendix: 

 (5) 

where r1 and r2 are the model parameters, due to the dimensional tolerance, of the first and second 

circular profile respectively, di is the model parameters due to the form tolerance applied to the points 

i=A, B, C, D and E of two circular profiles in Figure 4. 

This variational model has been modified to insert the manufacturing signature and the operating 

conditions. To do so, at first the developed approach generates two nominal circular profiles to insert 

into the hollow rectangular box. The circular profiles are constituted by a set of evenly distributed 

points, as shown in Figure 7. The amplitude of this set is equal to 7150, since this value ensures to 

reach a g-gap equal to the nominal value (1.2702 mm) when the circular profiles are considered 

nominal. Moreover, this value seems to be large enough to simulate the assembly without numerical 

simulation being too slow. To each point of the circular profile the following model has been applied: 

  (6) 

where Pi is the generic point of the circular profile, O is the centre of the circle, R is the nominal value 

of the radius of the circular profile, r is the value due to the dimensional tolerance applied to the 

circular profiles, and d is the value due to the manufacturing signature represented by means of the 
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ARMAX model. The r parameter has a Gaussian density function with mean value equal to zero and 

standard deviation equal to a sixth of the dimensional tolerance range. 

Once the circular profiles are generated, the first step of assembly is to insert the first circular profile 

into the hollow rectangular box. The developed model takes the first generated circular profile and 

casually rotates it. Then, it analyses the x and y coordinates of the points forming the first circular 

profile to identify the points of contact with the bottom and the left sides of the box (A and B in Figure 

8a). Finally, the model brings the first circular profile into contact with the box in the identified points 

of contact.  

The second step of the assembly is to insert the second circular profile into the box. The developed 

model takes the generated second circular profile and randomly rotates it. Then, it analyses the x and 

y coordinates of its points to identify the contact point with the right side of the box (D in Figure 8a). 

To search the contact point with the first circular profile, the model identifies the zones on the two 

circular profiles where the probability of contact is the highest (they are called contact zones and are 

shown in Figure 8a). Then, it calculates the distance between each couple of faced points that have 

the same x-coordinate on the two contact zones. The minimum distance (called dmin in Figure 8a) 

identifies the couple of points that are the contact points between the two circular profiles. Therefore, 

all the points of the second circular profile are shifted to the minimum distance along the y-axis to 

bring the second circular profile into contact with the first circular profile just inserted in the box, as 

shown in Figure 8b. The number of points equally distributed on each profile, influences the search 

of the contact-point between the circular profiles. In fact, larger the number of points, more accurate 

the searching of the contact will be between the circular profiles but, larger the number of points, 

longer the simulation time. However, 7150 points seem to be a good compromise. 

Once assembled, the developed model evaluates the stability of the circular profiles' positions by 

taking into account the effect of the gravity on the circular profiles and the effect of the friction force 

on the contact points. If the direction of gravity force is oriented downwards (- y-axis), this analysis 

can be considered as a static equilibrium. The system of forces that has to be equilibrated is composed 



by weight force, reaction force, and friction force applied to the points of contact among the circular 

profiles and the box. Therefore, to solve the balance it is necessary to translate the effect of those 

forces into terms of assembly specification. The general position of each circular profile is unstable 

if the friction force, due to the vectorial composition of the weight and the reaction forces, is close to 

the normal vector on the wall of the box. The angles of tilt between the reaction forces and the normal 

vectors are the βi angles. If those angles’ values remain smaller than the friction limit angle, the 

circular profile's position is stable. Otherwise, if the values of βi become larger than the friction limit 

angle, the circular profile rotates until the values become smaller. From Figure 9, it is possible to see 

that the values of those angles and of variable g are a function of the assembly parameters α1 and α2 

(i.e. of the random angles chosen for the rotation of the profiles to be assembled in the box) and of 

the values due to the dimensional and form tolerances. 

Therefore, it is possible to know the stable and unstable positions of the two profiles under the action 

of the gravity force and the range of variability of the objective function g. To do this, the following 

hypotheses have been adopted to simplify the analysis: 

• The friction between the parts is a static friction type. In this way, dynamic effects are ignored. 

Its action is expressed by means of the friction limit angle φst. Generally, this value is given 

by the material nature of the surfaces in contact. If the parts are made of steel which is a 

material typically machined by turning without considering a lubricant, the realistic values of 

the friction limit angle are 1.5°–2.5°. 

• The inertial effects are ignored; when a position becomes unstable, the first stable position 

has been reached without overcoming it due to the inertial effect. 

• The positioning of the second profile depends on the positioning of the first profile. 

Once verified that the positions of the two circular profiles are stable, the value of the form deviation 

of the actual points of contact among the two circular profiles and the box have been obtained. The 

values of the parameters di of the points of contact have been substituted into Eq. (5). The value of R 

remains equal to 20 mm, while r is still a random variable following a Gaussian probability density 



function with means equal to 0 mm and standard deviation equal to one sixth of the dimensional 

range. The value of the g gap is estimated using the Eq. (5). 

Moreover, the case study has been solved also with the classical variational method of literature 

shown in the Eq. (5) by means of a statistical approach that considers the model parameters as 

statistical independent variables following Gaussian probability density functions. The value of R 

remains equal to 20 mm, while r1, r2 and di are random variables following a Gaussian probability 

density function with means equal to 0 mm and standard deviation equal to one sixth of the 

dimensional and form tolerance respectively, as shown in Figure 4. 

3. Numerical validation 

To verify the results obtained by means of the proposed model, a geometrical model has been 

developed for the case study. It numerically reproduces what happens in the actual assembling.  

The geometrical model, which has been developed in the Matlab® environment, starts by generating 

two circular profiles with the manufacturing signature. Those circular profiles are randomly rotated 

and they are assembled into the box by means of the actual points of contact, as done in the previous 

paragraph. Once verified that the positions of the two circular profiles are stable, by taking into 

account the weight and the friction forces applied to the circular profiles, as done in the previous 

paragraph, the value of the g gap is estimated as the distance between the upper side of the box and 

the top side of the circular profile. An example of the profiles generated in this case is shown in Figure 

9 where it is possible to see the typical form of profiles, when the manufacturing signature is applied 

on them, and the evaluation of the βi angles as done in the previous paragraph. 

The same geometrical approach has been applied without considering the manufacturing signature 

either. In this case, the approach assigns to the parameter d of Eq. (6) a Gaussian distribution with 

mean equal to zero and standard deviation equal to a sixth of the form tolerance (six-sigma approach). 

In this approach, the points of the two profiles vary independently from each other thus generating a 



sudden oscillation of the profiles. An example of the circular profiles generated in this case is shown 

in Figure 10. 

4. Results comparison and discussion 

Monte Carlo simulation has been carried out by implementing 50000 runs; this value has been chosen 

after performing a sensitivity analysis. In particular, the sensitivity analysis has been carried out on 

all models by varying the number of Monte Carlo simulations and considering a scale factor F=1. 

The results about the standard deviations due to the sensitivity analysis are shown in Figure 11. It is 

evident that results are very stable if 50000 runs of Monte Carlo simulation are carried out. 

Four factors F (1, 10, 50 and 100) have been used to scale the applied tolerance ranges in order to 

have four sets of geometrical conditions. Factor 1 involves the tolerance ranges of Figure 4, while 

factor 10 implies tolerance ranges ten times larger, factor 50 implies tolerance ranges fifty time larger 

and so on. 

The normality of the obtained distributions of the gap g has been evaluated by means of Anderson-

Darling test. The results are reported in Table 2 for variational models and in Table 3 for geometrical 

models, together with mean and standard deviation, Skewness, Kurtosis and simulation time. 

The results of Table 2 and Table 3 show that increasing the tolerance ranges, when the scale factor F 

passes from 1 to 100, involves a decrease of the mean value and an increase of the standard deviation 

of the g gap. Even, the geometric model without manufacturing signature (model 2 in Table 3) reaches 

a negative mean value of the g gap, when F is equal to 100. This ongoing is due to the fact that when 

the tolerance ranges increase, the sudden oscillation of the circular profiles makes the point of contact 

between the circular profiles move to the peak; the next effect is the shift of the second circular 

profiles towards the upper side of the box up until exiting from the box. This aspect is shown in Figure 

10. 

The mean value of the gap g due to the variational model without and with manufacturing signature 

(models 3 and 4 in Table 2) is very near to the nominal value of 1.2702 mm for both the values of F 



factor (1 and 10). The same thing happens comparing the geometrical approach with manufacturing 

signature (model 1 in Table 3) with the nominal value for the same values of F factor mentioned 

previously. 

The geometrical approach without manufacturing signature (model 2) carries out a mean value of the 

gap that is significantly lower than the nominal value, for both the values of the F factor (1 and 10). 

The standard deviation of the gap g due to the variational model with manufacturing signature (model 

4) is very near to that due to the geometrical approach with manufacturing signature (model 1) for 

both the values of F factor (1 and 10). It happens because the two models use the same method to find 

the actual points of contact among the components during the assembly, and they consider in the 

same way both the weight and the friction forces. Models 2 and 3 give values of the standard deviation 

that are significantly lower than those due to model 1: 

model 2:   (7) 

model 3:   (8) 

since those models consider nominal contact points among the components during the assembly and 

they do not take into account the weight and the friction forces. Model 4 gives values of the standard 

deviation of the g gap that are nearest to model 1: 

model 4:   (9) 

These results are testified by the Levene test that has been carried out on the results (see Figure 12). 

The boxplots of Figure 13 show results of the measured gap g for all the models (model 1 is the 

geometrical approach with manufacturing signature, model 2 is the geometrical approach without 

manufacturing signature, model 3 is the variational model without manufacturing signature and model 

4 is the variational model with manufacturing signature) and for the two scale factors. The same figure 

reports the nominal value of the gap g (equal to 1.2702 mm), the boxplots of the gap g as a result of 

the Monte Carlo simulations and the tolerance range due to the worst case approach (classical 
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approach in tolerance analysis). All the four models give a distribution of the gap g completely 

contained inside the worst-case tolerance range. 

Models 1, 2 and 4 have comparable simulation times that are 600 times higher than the time required 

for simulation 3. In particular, the model 3 appears a good choice in terms of simulation time, if it is 

possible to neglect a decrease of about 19% in the estimation of gap g. It is evident that model 4 is 

the nearest to reference model 1. 

5. Final validation on a 3D case study 

To validate the used methodology a further 3D case study has been considered. The considered 3D 

case study is constituted by three components: a hollow box and two spheres, as shown in Figure 14. 

The aim is the measurement of the gap g between the upper sphere and the top side of the box as a 

function of the tolerances applied to each component. The manufacturing signature on each sphere 

has been represented by means of a Simultaneous Autoregressive Model of first order SAR(1). 

Traditional time series models, as the ARMAX model adopted in the 2D case, can represent 

correlation only along a single direction. The SAR(1) model instead can consider the spatial structure 

of the lattice defined by the triangulation of the points on the surface of the sphere at their nominal 

coordinates to generate a spatially correlated set of deviations from perfect sphericity. 

In a SAR(1) model the deviations from perfect sphericity are simulated by means of the following 

equation: 

  (10) 

where I is the identity matrix, G is a weight matrix and ε~N(0,σ2I) is a white noise with σ is equal to 

0.0024 mm. In particular, G = ρW, where ρ is a correlation coefficient. Higher values of ρ denote a 

higher degree of spatial correlation among nearby points. Its value is 0.9. W is a neighbourhood matrix 

defined based on the triangulation of the points on the surface of the sphere. In particular, 

( )
1

d I G e
-

= -



  (11) 

in which dij is the Cartesian distance between the Pi and the Pj points of the sphere, and Iij is an 

indicator variable, which denotes whether points i and j are neighbours, that is 

  (12) 

The gap g has been evaluated by means of the following analytical equation: 

  (13) 

where r1 and r2 are the model parameters, due to the dimensional tolerance, of the first and second 

sphere respectively, di is the model parameters due to the form tolerance applied to the points i=A, B, 

C, D, E, F and G of two spheres in Figure 14. The Eq. (13) was obtained with the same approach 

reported in Appendix and used on the 2D case study but considering the third dimension in the 

equations of features and constraints. 

This variational model has been modified to insert the manufacturing signature. To do so, at first the 

developed approach starts by generating spheres. Each sphere has been simulated by a set of evenly 

distributed points. The amplitude of this set is equal to 235822. To each point of the sphere it has 

been applied the model of Eq. (6). Also in this case, Pi and O are the generic point and the centre of 

the sphere, R is the nominal value of the radius of the sphere, r is the value due to the dimensional 

tolerance applied to the sphere, and d is the value due to the manufacturing signature represented by 

means of the SAR(1) model. The r parameter has a Gaussian density function with mean value equal 

to zero and standard deviation equal to a sixth of the dimensional tolerance range. 

ij

ij

ij
kj

k

kj

I

d
W

I

d

=

S

{1, if point i and j belong to a same triangle
0, otherwise                                                ijI =

[ (

( ) ( ) ( )

( ) ( ) ( )

1 1

1 2 2 1 2 1 1 1 1 2 1

1 2 2 2 1 1 1 2 1

2 2

1 1 1 1 1

1.2702 3200 60 40 40 60 100 40

40 80 80 100 2 2 2 2 2

2 2 40 40 2 2 2

2 2 2 2 2 2

A B c E F B

C D D D D B C D D

D D c B B B

C c c B B C D

g d r d d d d r d

d d d r d d d r d r d r d r

d r d r d r d r rr d d r

d d r r d r r d r d d d

= - + + + + - + + - +

- + + + + - - + + +

+ + + + - - - + - - - +

+ + + + - - - - - +

( ) ( ) ) ]

2 2 2

1 2 1

2 2 0.52

2 1 1 2
1700 58.73 20

D

c B G

d r

r d r d r r d

+ - +

+ - + - + + - - - - -



Once the spheres are generated, these spheres are randomly rotated around the Xi, Yi and Zi axes of 

a reference system that is placed in the centre of gravity of each sphere that has been calculated by 

the arithmetic mean of all the points' coordinates. Then, an absolute X-Y-Z reference system is placed 

at the intersection among the left, the back and the bottom sides of the box, as shown in Figure 14. 

The coordinates of the points constituting the first sphere are analyzed then the first sphere is brought 

into contact with the bottom, the left and the back sides of the box (A, B, C in Figure 14). 

Therefore, the coordinates of the points constituting the second sphere are analyzed to identify the 

points of contact with the sides of the box, for example with the right and the back sides of the box 

(F and E in Figure 14). To identify the point of contact with the first sphere, the zones on the spheres, 

where the probability of contact is the highest, are defined. They are a surrounding of the nominal 

point of contact. Then, the couples of faced points have been identified, as those points having the 

same x and z coordinates on the two contact zones. The minimum distance between each couple of 

faced points (called dmin in Figure 15a) defines the couple of points that are the points of contact 

between the two spheres. All the points of the second sphere are shifted by the minimum distance 

along Y-axis to bring the second sphere into contact with the first sphere just inserted in the box, as 

shown in Figure 15b. Once assembled, it is evaluated if the general position of each sphere is stable. 

The condition of balance among the forces is expressed by requiring that they pass through the same 

point. Therefore, considering the weight force applied in the centre of gravity of the clouds (G1 and 

G2 in Figure 15b), the reactions are applied to the points of contact and they are directed toward the 

centre of gravity of the sphere. The angles among these reactions and the normal vectors to the 

surfaces are β1, β2, β3, β4, β5, β6, as shown in Figure 15b. These six angles should have a value smaller 

than the static friction limit angle in order to have a stable position of the sphere as explained in Sec. 

2. Once verified that the positions of the two spheres are stable, the coordinates of the contact points 

are transformed into coordinates associated to the DRF of each sphere. Then, they are used to enter 

inside the array of the generated point-cloud to read the corresponding form deviations. The values 

of the model parameter of the points of contact have been substituted into Eq. (13). Finally, the value 



of the gap g is estimated as the distance between the upper side of the box and the top side G of the 

second sphere. 

The 3D case study has been solved also with the classical variational method of literature shown in 

the Eq. (13) by means of a statistical approach that considers the model parameters as statistical 

independent variables following Gaussian probability density functions. The values r1, r2 and di are 

random variables following a Gaussian probability density function with means equal to 0 mm and 

standard deviation equal to one sixth of the dimensional and form tolerance respectively, as shown in 

Figure 14. 

Also in this case, a geometrical model has been developed for the 3D case study. The geometrical 

model starts by generating two spheres with the manufacturing signature. Those spheres are randomly 

rotated and they are assembled into the box by means of the actual points of contact. Once verified 

that the positions of the two spheres are stable, by taking into account the weight and the friction 

forces applied to the circular profiles, the value of the g gap is estimated as the distance between the 

upper side of the box and the top side of the sphere. 

Monte Carlo simulation has been carried out by implementing 10000 runs and considering only a 

scale factor F=1. The results are reported in Table 5 together with mean, standard deviation, 

Skewness, Kurtosis and simulation time. 

All the three models give a distribution of the gap g completely contained inside the worst case 

tolerance range (1.2702±0.0997). The normality of the obtained distributions of the gap g has been 

evaluated by means of Anderson-Darling test. The variational model with manufacturing signature is 

very near to the geometrical model in terms of both mean value and standard deviation. The 

variational model overestimates slightly the mean value of the gap g, even if it is negligible. It 

underestimates the standard deviation of about 13% because the variaional model does not take into 

account the correlation among the points of the spheres. 

The geometrical model and the variational model with manufacturing signature have comparable 

simulation times (108000 s) that are significantly higher than the time required for simulation the 



variational model (few seconds). Therefore, this last one appears a good choice in terms of simulation 

time, if it is possible to neglect a decrease of about 13% in the estimation of gap g. 

6. Conclusions 

The first effort of this work was to integrate the manufacturing signature in a model of the literature 

for tolerance analysis: the variational one, in order to bring closer a CAT simulation tool to reality. 

The second effort was to develop a geometrical model to simulate the assembly of parts with 

geometrical deviations that are correlated according to the manufacturing process signature, in such 

a way to satisfy the Geometric Dimensioning and Tolerancing (GD&T) standards, and in presence of 

the agents operating during the assembly, such as friction and gravity.  

On the 2D case study, the results show that the variational model with the manufacturing signature 

and the operating conditions allows to better reproduce the actual assembling of machined circular 

profiles in presence of weight and friction forces. In fact, the mean value and the standard deviation 

of this model are statistically equal to those of the geometrical approach that considers the 

manufacturing signature and the operating conditions. The variational model of literature without the 

manufacturing signature underestimates the tolerance range of the gap g by about 19%, even if its 

simulation time is only 19 s. The geometrical approach without manufacturing signature does not 

reproduce what happens in reality; it is due to the rapid variation of the discretized profiles, due to 

the considered Gaussian distributions of the dimensional and geometrical deviations. The variational 

model has a general structure that may be easily applicable to any kind of assemblies by requiring a 

short computational time, at the same time guaranteeing a good agreement with the reference 

geometrical model. The geometrical model, that has been built to validate the variation model with 

and without manufacturing signature and operative conditions, requires a consistent modelling effort 

and cannot be easily implement in CAT software. 

Same conclusions have been obtained on the 3D case study as a further validation of the methodology 

used. 



This work represents a first step towards the integration of design and manufacturing, since it tries to 

integrate in a design tool, such as the tolerance analysis, a typically manufacturing signature, an innate 

property of every manufacturing process that characterizes the correlation among the points of the 

same profile. The manufacturing signature and the operating conditions may influence the tolerance 

range of the functional requirement drastically also in simple case studies as those used in this work. 

The drawback of all the models that involves the manufacturing signature and the operating 

conditions is the simulation times, which may be overcome by parallel computing techniques, which 

are currently object of further study. 

Appendix 

The linear features of the box have been called L1, L2, L3, and L4, while C1 and C2 are the two circular 

profiles. The DRFs (Datum Reference Frame) assigned to the features of the parts and to the whole 

assembly are shown in Figure 16. The assembly DRF is the global DRF of the box. It is possible to 

evaluate the nominal transformations matrices that allow passing among the different DRFs and, 

giving the model parameters, evaluating the differential transformation matrices to pass from the 

nominal local DRF to the local real DRF. In a previous work, all differential transformation matrices 

were presented in detail (Polini and Moroni 2015). Consequently, it is possible to evaluate the 

equations of the features in the DRF of the part. The equations of the features are: 

L1:  (A1) 

L2:   (A2) 

L3:   (A3) 

L4:   (A4) 

C1:   (A5) 

C2:   (A6) 

( )1 1 1
25 0z z yr X Y r t- + + - =

( )2 2 2
50 40 0z y zX r Y t r- - + - + =

( )3 3 3
80 25 0z y zr X Y t r- + - - =

( )4 4 4
40 0z z yX r Y r t+ - + =

( ) ( ) ( )
2 2 2

12 12 12 12 1 1 1X Y
X X O Y Y O R r d-D - + -D - = + +

( ) ( ) ( )
2 2 2

13 13 13 13 2 2 2X Y
X X O Y Y O R r d-D - + -D - = + +



where rzi and tyi are the rotation and the translation parameters of the generic side Li of the box 

measured in theirs DRF respectively, R1 and R2 are the nominal values of the circular profiles’ radius. 

The model parameters, due to the dimensional tolerance, of the first and second circular profile are r1 

and r2 respectively, d1 and d2 are the model parameters due to the form tolerance applied to the points 

A, B, C, D and E of two circular profile. (O12X, O12Y) and (O13X, O13Y) are the centres nominal 

coordinates of two circular profiles. ΔX12 and ΔY12 are the assembly parameters of the first profile on 

the rectangular box, ΔX13 and ΔY13 are the assembly parameters of the second profile on the previous 

parts. 

The assembly issue is solved by applying the assembly conditions to the obtained expressions of all 

the features in the global DFR. The functional requirement is evaluated between the feature L3 of the 

box and the feature C2 of profile 2, as shown in Figure 4. Profile 1 is assembled to the box by means 

of two constraints of the cylinder slider type: the first between the feature C1 and the feature L1, and 

the second between the feature C1 and the feature L4. For this type of constraint, the related 

mathematical expression is (Polini and Moroni 2015): 

 (A7) 

Therefore, the two equations of constraint are: 

C1-L1:  (A8) 

C1-L4:  (A9) 

By solving system of Eqs (A8)-(A9), it results: 

 (A10) 

 (A11) 

which are the solutions of the assembly problem between profile 1 and the box. 

( ) 0x x y y x x y yn t n t c n c n c d r+ + + + - + =

( ) ( ) ( )1 12 12 1 1 1 1
20 20 25 20 0z z yr X Y r t r d- D + + D + + - - - - =

( ) ( ) ( )12 4 12 4 4 1 1
20 20 40 20 0z z yX r Y r t r dD + + D + - + + + + =

( ) ( )12 4 1 4 1 1 1 1 4
40 5 / 1y B z z y A z zX t r d r r t r d r ré ùD = + + + + - - - +ë û

12 1 12 1 1 1
5z z y AY r X r t r dD = D - + + +



The profile 2 is assembled on the subassembly box-profile 1 by means of a constraint of cylinder 

slider type between the feature C2 and the feature L2 and by means of a constraint of cylinder-cylinder 

type between the features C2 and C1. For this last constraint, the assembly equation is: 

 (A12) 

Therefore, the two equations of constraint are: 

C2-L2:  (A13) 

C1-C2:  (A14) 

By solving system of Eqs (A13)-(A14), it results: 

 (A15) 

 (A16) 

where a, b, and c are: 

 (A17) 

 (A18) 

 (A19) 

That is the solution of the assembly problem between profile 2 and the subassembly box-profile 1. 

Now, by evaluating the smallest oriented distance between a profile with centre (cx, cy) and radius r, 

and a line of equation , it is possible to evaluate the functional requirement g: 

 (A20) 

 (A21) 

The parameters rzi and tyi of the sides of the box are equal to zero, since the box has been considered 

nominal. Therefore the Eq. (A21) becomes: 

 (A22) 

( ) ( ) ( ) ( ) ( )
22 22 2

2 1 2 1 2 1 2 1 1 2 1 2
2 2 0x y x x x y y y x x y yt t c c t c c t c c c c r r d d+ + - + - + - + - - + + + =

( ) ( ) ( )13 2 13 2 2 2 2
30 58.73 50 40 20 0z y zX r Y t r r d- D + - D + + - + - - - =

( ) ( ) ( )
2 2

13 12 13 12 1 1 2 2
10 38.73 40 0X X Y Y r d r dD -D + + D -D + - + + + + =

13 2 13z
X r Y aD = - D -

( )2

13
Y b b cD = + -

2 2 2
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( ) ( )22 12 12 2
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z z
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2 2 2 2
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Figure captions 

Figure 1. Nominal, real and substitute features. 

Figure 2. Model of a stack-up function in a part. 

Figure 3. Model of a stack-up function between two parts. 

Figure 4. Case study (all dimensions and tolerances are in mm). 

Figure 5. Scheme of the new point cloud variational model with operating conditions. 

Figure 6. Comparison between a nominal circular profile and bi-lobe and tri-lobe profiles. 

Figure 7. Discretization of the two circular profiles. 

Figure 8. Approach to bring the two circular profiles into contact: a) contact zone and minimum 

distance between two circular profiles; b) contact in C point. 

Figure 9. Tilt angles of the two circular profiles. 

Figure 10. Example of circular profiles without manufacturing signature (amplified 100 times). 

Figure 11. Results of the standard deviations due to the sensitivity analysis by considering a scale 

factor F=1 in all models. 

Figure 12. Tests for equal variances. 

Figure 13. Boxplots of the obtained results (average value ± 3 estimated standard deviation). 

Figure 14. 3D case study (all dimensions and tolerances are in mm). 

Figure 15. Approach to bring the two spheres into contact: a) contact zone and minimum distance 

between two circular profiles; b) tilt angles of the two spheres. 

Figure 16. Local and global DRFs and features of the case study. 
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Figure 3. Model of a stack-up function between two parts.  



 

Figure 4. Case study (all dimensions and tolerances are in mm). 

  



 

Figure 5. Scheme of the new point cloud variational model with operating conditions. 



 

Figure 6. Comparison between a nominal circular profile and bi-lobe and tri-lobe profiles. 

  



 

Figure 7. Discretization of the two circular profiles. 

  



 

Figure 8. Approach to bring the two circular profiles into contact: a) contact zone and minimum 

distance between two circular profiles; b) contact in C point. 

  



 

Figure 9. Tilt angles of the two circular profiles. 

  



 

Figure 10. Example of circular profiles without manufacturing signature (amplified 100 times). 

  



 

Figure 11. Results of the standard deviations due to the sensitivity analysis by considering a scale 

factor F=1 in all models. 

  



 

Figure 12. Tests for equal variances. 

  



 

Figure 13. Boxplots of the obtained results (average value ± 3 estimated standard deviation). 

  



 

Figure 14. 3D case study (all dimensions and tolerances are in mm). 

  



 

Figure 15. Approach to bring the two spheres into contact: a) contact zone and minimum distance 

between two circular profiles; b) tilt angles of the two spheres. 

  



 

Figure 16. Local and global DRFs and features.  



Table captions 

Table 1. ARMAX model parameters. 

Table 2. Simulation results of variational model (50000 runs). 

Table 3. Simulation results of geometrical model (50000 runs). 

Table 4. Comparison among models (50000 runs). 

Table 5. Comparison among models on the 3D case study (10000 runs). 

  



Table 1. ARMAX model parameters. 

       

(a) −0.0341 0.0313 0.0080 −0.0322 0.3714 0.2723 

(b) 0.0004 −0.0002 0.0001 0 0.0001 0.0003 

 −0.0002 0.0004 0.0001 0 0.0001 −0.0002 

 0.0001 0.0001 0.0002 0 0.0001 0 

 0 0 0 0.0003 0.0003 0.0003 

 0.0001 0.0001 0.0001 0.0003 0.0072 0.0012 

 0.0003 −0.0002 0 0.0003 0.0012 0.0036 
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Table 2. Simulation results of variational model (50000 runs). 

Model F 
Mean 

[mm] 

Standard 

Deviation 

[mm] 

A-

squared 

p-

value 
Skewness Kurtosis 

3 

Variational 

model 

WITHOUT 

manufacturing 

signature 

1 1.2701 0.0143 0.470 0.247 0.004 -0.039 

10 1.2693 0.1447 0.350 0.467 0.015 0.023 

50 1.2713 0.7250 0.420 0.320 0.009 0.015 

100 1.2707 1.4467 0.470 0.249 0.029 0.025 

4 

Variational 

model WITH 

manufacturing 
signature 

1 1.2701 0.0177 0.430 0.307 0.011 -0.038 

10 1.2690 0.1783 0.830 0.033 -0.014 -0.026 

50 1.2400 0.8920 0.640 0.098 -0.001 -0.024 

100 1.1400 1.7663 2.000 <0.005 0.054 -0.022 

 

  



Table 3. Simulation results of geometrical model (50000 runs). 

Model F 
Mean 

[mm] 

Standard 

Deviation 

[mm] 

A-

squared 

p-

value 
Skewness Kurtosis 

1 

Geometrical 

model WITH 

manufacturing 

signature 

1 1.2699 0.0177 1.870 <0.005 -0.013 -0.057 

10 1.2693 0.1773 0.280 0.653 -0.018 -0.018 

50 1.2557 0.8887 1.220 <0.005 0.004 -0.061 

100 1.2153 1.7757 1.180 <0.005 0.004 -0.061 

2 

Geometrical 

model 

WITHOUT 

manufacturing 

signature 

1 1.2533 0.0160 102.28 <0.005 0.017 -0.072 

10 1.0571 0.1583 0.380 0.401 0.015 0.010 

50 0.0830 0.7767 0.700 0.068 0.010 0.059 

100 -1.185 1.5307 0.870 0.025 0.027 0.055 

 

  



Table 4. Comparison among models (50000 runs). 

Model F 
Mean 

[mm] 

Standard 

Deviation 

[mm] 

Simulation 

time 

1 
Geometrical model WITH 

manufacturing signature 

1 1.2699 0.0177 
3 hours 

10 1.2693 0.1773 

2 
Geometrical model 

WITHOUT manufacturing 

signature 

1 1.2533 0.0160 
2,5 hours 

10 1.0571 0.1583 

3 
Variational model 

WITHOUT manufacturing 

signature 

1 1.2701 0.0143 
19 s 

10 1.2693 0.1447 

4 
Variational model WITH 

manufacturing signature 

1 1.2701 0.0177 
3 hours 

10 1.2690 0.1783 

 

  



Table 5. Comparison among models on the 3D case study (10000 runs). 

Model 
Mean 

[mm] 

Standard 

Deviation 

[mm] 

A-

squared 

p-

value 
Skewness Kurtosis 

Simulation 

time 

Geometrical 

model WITH 

manufacturing 

signature 

1.2605 0.0166 1.940 0.005 -0.241 1.666 30 hours 

Variational 

model 

WITHOUT 

manufacturing 
signature 

1.2702 0.0144 0.430 0.309 0.017 -0.001 20 s 

Variational 
model WITH 

manufacturing 

signature 

1.2632 0.0163 0.620 0.108 -0.005 -0.127 30 hours 

 


