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Abstract

The increased complexity of manufacturing systems makes the acquisition of the system

performance estimate a black-box (e.g., simulation tools). The efficiency of most black-box

optimization algorithms is affected significantly by initial designs (populations). In most

population initializers, points are spread out to explore the entire domain, e.g., space-filling

designs. Some population initializers consider also the exploitation to speed up the opti-

mization process. However, they are either application-dependent or require an additional

budget. This paper proposes a generic method to generate, without an additional budget,

several good solutions in the initial design. The aim of the method is to optimize the quan-

tile of the objective function values in the generated sample set. The proposed method is

based on a clustering of the solution space, feasible solutions are clustered into groups and

the budget is allocated to each group dynamically based on the observed information. The

asymptotic performance of the proposed method is analyzed theoretically. The numerical

results show that, if proper clustering rules are applied, an unbalanced design is generated in

which promising solutions have higher sampling probabilities than non-promising solutions.

The numerical results also show that the method is robust to wrong clustering rules.

keyworks: Budget Allocation, Quantile Minimization, Initial Designs, Optimization

1 Introduction

As the complexity of manufacturing systems increases, the estimation of the system performance

(e.g., throughput and lead time) becomes extremely difficult, even impossible, to be represented

by a closed-form analytical formula. Some tools for complex system performance evaluation have

been proposed and demonstrated their power, such as aggregation methods (Li and Meerkov,

1



2009), decomposition methods (Gershwin, 1987; Dallery et al., 1988, 1989) and simulation

models. In these cases, the acquisition process of the system performance estimates is a black

box.

To find the optimal or near optimal system configuration, black-box optimization meth-

ods allocate the budget (one budget allocation means one acquisition of the objective function

value) to numerous, even infinite, feasible solutions. Most black-box optimization algorithms

for engineering problems require warm start solutions that, if properly selected, may help to

reduce the computational effort and improve the quality of the solution. Having a good ini-

tial population can increase the convergence speed of population-based searching algorithms,

such as particle swarm optimization (PSO) (Kennedy and Eberhart, 1995) and genetic algo-

rithm (GA) (Srinivas and Patnaik, 1994). Model-based methods, e.g., model reference adaptive

search (MRAS) (Hu et al., 2007) and cross-entropy method (Rubinstein, 1999), can have a

more accurate initial sampling probability distribution, if the initial design points are properly

allocated. In surrogate-based methods, e.g., efficient global optimization (EGO) (Jones et al.,

1998), the quality of the initial surrogate model also depends on the initial design.

Currently, uniform sampling and space-filling designs (e.g., the Latin Hypercube Sampling

(McKay et al., 1979), the minimax and maximin distance design (Johnson et al., 1990)) are

the most utilized initial designs. In addition, in the field of evolutionary algorithms, several

population initialization techniques are used to increase the diversity, or uniformity, of the

generated design, such as chaotic maps (dos Santos Coelho and Mariani, 2008; Alatas, 2010),

quasi-random sequences (Maaranen et al., 2004), the Centroidal Voronoi Tessellation (Richards

and Ventura, 2004) and the simple sequential inhibition (Maaranen et al., 2007). A review of

population initializers can be found in Kazimipour et al. (2014). In the field of surrogate-based

optimization algorithms, some criterion-based designs are proposed for specific estimators, e.g.,

the D-optimal design (Smith, 1918) minimizes the confidence ellipse volume of the regression

parameters of least-square estimators, and the maximum entropy design (Santner et al., 2003)

maximizes the entropy difference of Gaussian-Process estimators’ parameters before and after

experiments. All these designs are trying to decentralize initial design points to explore the

space, i.e., only exploration is considered.

Indeed, exploring the entire space helps the algorithm to maintain a global perspective.

However, the efficiency of the optimization algorithms is critical in reality, such as in real-time

optimization problems. A good solution, which may not be the optimum, is required in a short
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time. In this case, initial designs taking into account the exploitation, i.e., having good solutions

in the initial population, can help to speed up the optimization process. Some application spe-

cific methods have been proposed to create good solutions in the initial population to improve

the evolutionary algorithms’ efficiency, such as Zhang et al. (2011) and Pezzella et al. (2008) for

flexible job-shop scheduling problems, Deng et al. (2015) for symmetric traveling salesmen prob-

lems. These methods are developed based on the features of the studied problems, which may

be inapplicable in other problems. Some methods generate an original population randomly

and update the population using the objective function as a guideline before it is used as the

initial population in evolutionary algorithms. For example, Rahnamayan et al. (2007a) apply

the opposition based learning (Tizhoosh, 2005) to replace the original points by their opposite

points that have better fitness; instead of opposite points, quasi-opposite points are used in

Rahnamayan et al. (2007b); de Melo and Delbem (2012) re-sample the initial population apply-

ing a machine-learning technique. In these methods, a pre-optimization process is performed

to replace old points with new sampled points having better fitness. This means non-negligible

additional computational effort (i.e., an additional budget in addition to the initial population

size) is required, if the acquisition of the objective function is expensive.

The problem investigated in this paper is to develop a generic population initializer in

deterministic optimization problems in which the objective function is a black box. A small

computational budget is allocated to a broad feasible domain, with goal of identifying promising

alternatives from which the search for the optimum will start. We address the situation in which

the acquisition of the objective function is time-consuming. For example, a long simulation

length is required to estimate the quantile of the order tardiness due to the high variability

of the system. No extra budget, except for the initial design size, is available. A user-defined

number of good solutions are expected to be contained in the generated design. More specifically,

we try to optimize the corresponding quantile of the objective function values in the created

design.

This paper proposes a budget allocation method to create designs based on an existing

clustering on the solution space. The feasible solutions are clustered into groups according

to specific clustering rules. The budget is allocated to each group dynamically according to

the observed group information, i.e. this is a sequential design problem. Different clustering

rules can be applied, such as partitioning the feasible domain into several regions evenly or

clustering feasible solutions using techniques like the k-means method (MacQueen, 1967). The
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clustering can also be executed in transformed spaces. For example, in the problem where the

acquisition of the objective function is time-consuming (high-fidelity models) but the objective

function can also be roughly and quickly estimated by analytical methods (low-fidelity models),

the alternative solutions can be clustered based on their low-fidelity outputs. The knowledge

embedded in low-fidelity methods may help to separate promising solutions from bad solutions.

Similar idea appears in MO2TOS (Xu et al., 2016), in which the original solution space is

transformed into a one-dimensional ordinal space based on a queuing model.

There are two other classic types of budget allocation problems. One is the multi-armed

bandit problem, in which the budget needs to be allocated to competing choices. Each selection

provides a random reward from an unknown distribution specific to the selected choice. The

goal of the budget allocation policy is to maximize the cumulative reward. The policy will

face a dilemma: allocating more budget to the current best choice, i.e., the choice having

the current highest average payoff, to gain more (exploitation); or allocating more budget to

search for the real best choice (exploration). The ε-greedy method (Sutton and Barto, 1998)

selects the current best choice with probability 1 − ε, while with probability ε, other choices

are randomly selected. Wiering (1999) combines the ε-greedy method with SoftMax function

assigning weights to choices that are not the current best one. The UCB family (e.g., UCB1,

UCB-Tuned (Auer et al., 2002) and KL-UCB (Maillard et al., 2011)) and Thompson sampling

(Thompson, 1933; Russo et al., 2018) are also frequently used to solve this problem type. A

survey on multi-armed bandit can be found in Burtini et al. (2015).

The Ranking and Selection (R&S) procedures are applied to deal with the other type of

budget allocation problems. Budget is allocated to a set of alternative solutions, which have

stochastic performance, to select the best one. The Probability of Correct Selection (PCS) is

commonly constrained. The goal of the budget allocation policy is to separate the real best

solution from the others. In classical R&S, the best solution refers to the solution with the

lowest (or highest) performance expectation. Optimal Computing Budget Allocation (OCBA),

proposed by Chen et al. (2000), allocates a simulation budget of a certain size to maximize

the approximate probability of correctly selecting the best solution. Some other algorithms to

handle this problem type are Expected Value of Information (EVI)(Chick and Inoue, 2001),

Knowledge Gradient (KG) procedure (Frazier et al., 2009), Indifference-zone procedure (Hong

and Nelson, 2005). Recently, several approaches have been proposed to deal with this type of

problems with different definitions of the best solution. For example, in Linz et al. (2016) and
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Peng et al. (2019), the best solution is defined as the one with the optimal quantile.

The goal of the proposed budget allocation method in this paper is to minimize the quantile

of the sampled values (i.e., the objective function values of the sampled solutions). This is

different from the goals of the multi-armed bandit problem and the R&S, which are maximizing

the cumulative sampled values and separating the best group (considering one group is one so-

lution with stochastic performance) from other groups, respectively. The research contributions

of this paper are summarized below:

1. A generic population initializer is proposed to generate an unbalanced design in which

more budget is allocated to promising regions. Currently, most initial designs consider

only exploration by decentralizing design points. Some existing methods are able to exploit

the promising regions, but they are either application specific or require additional budget

in addition to the initial design size.

2. Closed-form formulas are developed to allocate budget to existing groups of different

solutions in order to minimize the quantile of the sampled solutions’ objective function

values. So the developed algorithm is easy to be implemented in practice.

3. The asymptotic performance of the proposed method and its robustness to wrong clus-

tering rules are analyzed theoretically.

The proposed method is tested in designed cases and applied to a transfer line buffer allocation

problem and a multi-stage manufacturing system server allocation problem. Numerical results

show that, in the studied cases, the proposed method behaves as expected and improves the

performance of the applied searching algorithms.

The proposed budget allocation method can be used as a population initializer for opti-

mization problems in several fields of engineering. It can also be used as a strategy to allocate

budget to competitive choices in other problems aiming at minimizing a certain quantile, or

the minimum, of all the obtained values. For instance, budgets with different sizes can be

allocated to search different neighborhoods according to the quality of the regions in multi-

start algorithms; different numbers of solutions can be sampled from different sub-regions in

partition-based searching algorithms, e.g., nested partition (NP) (Shi and Ólafsson, 2000; Shi

and Olafsson, 2009).

This paper is organized as follows. Section 2 describes the problem in a mathematical way.

Section 3 describes the proposed method and analyzes its asymptotic performance. Section 4
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applies the proposed method to cases designed for testing purposes. Section 5 presents appli-

cations of the proposed method to a transfer line buffer allocation problem and a multi-stage

manufacturing system server allocation problem. Finally, conclusion and guidelines for future

developments are drawn in section 6.

2 Notation and Problem Description

A minimization problem, in which the objective function y(·) is a black box, is considered in

this paper. The objective function is deterministic, i.e., no noise is involved in the acquisition of

the objective function values. The decision variable vector x = [x1, · · · , xd]T is a d-dimensional

vector and D is the feasible domain. An optimization algorithm (e.g., GA, PSO), in which an

initial design is created at the first step, is applied to find the (near) optimal solution.

Assume that all the feasible solutions have been clustered into K groups according to spe-

cific clustering rules. A budget of size N is allocated to these K groups applying a budget

allocation policy S = [n1, · · · , nK ], where nk is the total budget size allocated to group k. A

corresponding number of solutions are sampled from different groups to create the initial design

S(n1, · · · , nK , ξ), where ξ presents the random noise caused by the sampling. The policy used

inside one group to sample new solutions is user-defined. Denote the i-th solution sampled from

group k as xk,i. We introduce the following assumption:

Assumption 1. The objective function values of solutions sampled from group k, i.e., y(xk,i), ∀i,

are absolutely continuous random variables, which are independently and identically distributed

with probability density function (pdf) fk(·) and cumulative distribution function (cdf) Fk(·),

where fk(·) is positive and differentiable at any point.

A user-defined number, denoted as r (r < N/2), of good solutions are expected to be

contained in the generated sample set S(n1, · · · , nK , ξ). This means that the objective function

value of the r-th best solution in the sample set, which is the r/N -quantile of the objective

function values in the created sample set, is expected to be minimized. Let α = r/N , where

α < 0.5, and qα(S(n1, · · · , nK , ξ)) be the α-quantile of the objective function values in the
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created initial design, the problem investigated in this paper can be formulated as follows:

min
n1,··· ,nK

E(qα(S(n1, · · · , nK , ξ)))

s.t.
K∑
k=1

nk = N

nk ∈ N,∀k,

(1)

where

qα(S(n1, · · · , nK , ξ)) = min
τ

{
τ

∣∣∣∣ K∑
k=1

nk∑
i=1

I{x|y(x)≤τ}(xk,i) ≥ αN ; τ ∈ R

}
,

and I{x|y(x)≤τ}(·) is the indicator function. The objective function of the problem in expression

(1) is the expectation of the α-quantile. The first constraint shows the budget constraint. The

second constraint indicates that nk,∀k are non-negative integers.

For the sake of simplicity, notations used in the proposed method are listed below.

N : the total budget size

K : number of groups clustered

nk : the total budget size allocated to group k,
∑K

k=1 nk = N

S(n1, · · · , nK , ξ) : the final sample set

α : the fraction of good solutions in S(n1, · · · , nK , ξ), α = r/N

Ns : the total allocated budget size after stage s

ns,k : the total allocated budget size in group k after stage s

µ̂k, σ̂
2
k : the sample mean and sample variance of y(·) in group k

b̂ : the current best group

τ̂ : the estimated threshold

3 Budget Allocation for Quantile Minimization

The problem in expression (1) is difficult to solve due to the calculation of the order statistic

expectation of samples from different distributions. Therefore, we approximate the problem

to a simpler one. According to the definition of the qα(S(n1, · · · , nK , ξ)) in section 2, r =

αN solutions in the final sample set have objective function values smaller than or equal to

qα(S(n1, · · · , nK , ξ)). Instead of minimizing the expectation of qα(S(n1, · · · , nK , ξ)) like in

expression (1), we propose an effective approximate formulation, which is minimizing a threshold

τ so that expected αN solutions in the final sample set have objective function values less than
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or equal to τ :

min
τ,n1,··· ,nK

τ

s.t. E

(
K∑
k=1

nk∑
i=1

I{x|y(x)≤τ}(xk,i)

)
= αN

K∑
k=1

nk = N

τ ∈ R, nk ∈ N, ∀k,

(2)

where I{x|y(x)≤τ}(·) is the indicator function, xk,i is the i-th solution sampled from group k and

y(xk,i) is the objective function value at xk,i. The first constraint limits the expected number

of solutions in the final sample set whose objective function values are under the threshold τ .

The second constraint shows the budget constraint. The third constraint indicates that τ is real

and nk, ∀k are non-negative integers. The above problem approximation moves the expectation

from the objective function to the constraint. In this way, the calculation of the order statistic

expectation is avoided, which makes this problem easier to be solved. Under Assumption 1,

the approximated problem can be further simplified as shown in Proposition 1 and the proof

of Proposition 1 can be found in Appendix A. Numerical results show that the problem in

expression (3) is a reasonable approximation of the problem in expression (1) (more details can

be found in Appendix B).

Proposition 1. Under Assumption 1, the problem in expression (2) can be simplified as

min
τ,n1,··· ,nK

τ

s.t.
K∑
k=1

nkFk(τ) = αN

K∑
k=1

nk = N

τ ∈ R, nk ∈ N, ∀k.

(3)

In the following, section 3.1 presents the optimal budget allocation solution of the approx-

imated problem in expression (3) when the group information, i.e., Fk(·),∀k, are known in

advance. Section 3.2 proposes a heuristic algorithm to allocate budget to each group dynam-

ically when the group information are unknown, and analyzes the asymptotic performance of

the proposed heuristic algorithm as the budget size increases.
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3.1 Optimal Policy When Group Information are Known

After the clustering, if Assumption 1 holds and we know all the group information in advance,

the optimal solution of the approximated problem in expression (3) has a closed form as shown

in Theorem 1.

Theorem 1. If Assumption 1 holds, all the group α-quantiles, i.e., F−1k (α),∀k, are known and

F−1i (α) 6= F−1j (α), ∀i 6= j, where F−1k (·) is the inverse function of Fk(·), the optimal solution of

the approximated problem in expression (3) is



b = arg mink F
−1
k (α)

τ∗ = F−1b (α)

n∗b = N

n∗k = 0, ∀k 6= b

,

i.e., allocating all the budget to the best group b, which has the smallest group α-quantile.

The problem in expression (3) is a mixed-integer problem. To prove Theorem 1, we firstly

relax the integer constraints on nk. In the relaxed problem, only one solution satisfies the Fritz

John conditions (Bazaraa et al., 2013), which is the one provided by Theorem 1. Therefore,

if this relaxed problem has a local optimum, it must be this solution. Then, we use the KKT

second order sufficient conditions (Bazaraa et al., 2013) to prove that this solution is a strict

local optimum of the relaxed problem, which is also the global optimum since it is the only

local optimum. This solution also satisfies the relaxed integer constraints. Thus, it is the global

optimal solution of the problem in expression (3).

Proof of Theorem 1. Relax the integer constraints in expression (3) from nk ∈ N,∀k to

nk ≥ 0, nk ∈ R,∀k. The decision variables of the relaxed problem are defined in the real number

set. Under Assumption 1, the objective function and the constraints of the relaxed problem

are all continuously differentiable at all feasible solutions. Denote the equality constraints as

hi(·) = 0, i = 1, 2 and the inequality constraints as gk(·) ≥ 0, k = 1, · · · ,K:

h1(τ, n1, · · · , nK) =
K∑
k=1

nkFk(τ)− αN,

h2(τ, n1, · · · , nK) =

K∑
k=1

nk −N,
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gk(τ, n1, · · · , nK) = nk, ∀k.

The gradients of the above equations are

∇h1(τ, n1, · · · , nK) =

[
K∑
k=1

nkfk(τ), F1(τ), · · · , FK(τ)

]T
,

∇h2(τ, n1, · · · , nK) = [0, 1, · · · , 1]T ,

∇gk(τ, n1, · · · , nK) = ek+1,∀k,

where ek+1 is a (K+1)-dimensional vector whose (k+1)-th element is one and the rest elements

are zero.

If [τ∗, n∗1, · · · , n∗K ]T is a local optimum of the relaxed problem, it must satisfy the Fritz

John conditions (Bazaraa et al., 2013), i.e, it exists a non-zero vector λ = [λ0, λk,∀k ∈

Ia, λK+1, λK+2]
T , in which Ia = {k : n∗k = 0} and λk ≥ 0,∀k ∈ Ia ∪ {0}, such that:

λ0∇f(τ∗, n∗1, · · · , n∗K)−
∑
k∈Ia

λk∇gk(τ∗, n∗1, · · · , n∗K)−
∑
i=1,2

λK+i∇hi(τ∗, n∗1, · · · , n∗K) = 0,

where ∇f(τ∗, n∗1, · · · , n∗K) = e1 is the gradient of the objective function of the relaxed problem.

From the Fritz John conditions and the constraints of the relaxed problem, we have the

following equations:



λ0 − λK+1

(
K∑
k=1

n∗kfk(τ
∗)

)
= 0 (4a)

λk + λK+1Fk(τ
∗) + λK+2 = 0, ∀k ∈ Ia (4b)

λK+1Fk(τ
∗) + λK+2 = 0, ∀k /∈ Ia (4c)∑

k/∈Ia

n∗kFk(τ
∗)− αN = 0 (4d)

∑
k/∈Ia

n∗k −N = 0 (4e)

n∗k > 0,∀k /∈ Ia (4f)

n∗k = 0,∀k ∈ Ia (4g)

λk ≥ 0, ∀k ∈ Ia ∪ {0} (4h)

∃k ∈ Ia ∪ {0,K + 1,K + 2}, s.t.λk 6= 0. (4i)

fk(·) is positive for all feasible solutions in the relaxed problem under Assumption 1. From
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equations (4a)(4b)(4c)(4h)(4i), we have λ0 > 0 (i.e., a regularity condition holds for all feasi-

ble solutions, the Fritz John conditions are equivalent to the KKT conditions), λK+1 > 0 and

λK+2 < 0. From equations (4c)(4d)(4e), we have Fk(τ
∗) = α,∀k /∈ Ia. Because of the unique-

ness assumption on the group quantiles, only one element, denoted as b, is not in the set Ia, i.e.,

Ia = {k|k 6= b}, n∗b = N,n∗k = 0, ∀k 6= b and τ∗ = F−1b (α). From equations (4b)(4c)(4h) and the

uniqueness assumption of group quantiles, we have λk > 0, F−1k (α) > τ∗, ∀k ∈ Ia. Therefore,

we have only one solution that satisfies the Fritz John conditions:



b = arg mink F
−1
k (α)

τ∗ = F−1b (α)

n∗b = N

n∗k = 0, ∀k 6= b

.

This solution is a KKT point and λk > 0,∀k ∈ Ia. The objective function and the constraints

of the relaxed problem are all twice differentiable under Assumption 1. To prove this solution

satisfies the KKT second order sufficient conditions (Bazaraa et al., 2013), we define the cone:

G =

d
∣∣∣∣∣∣∣∣∣∣
d 6= 0

∇gk(τ∗, n∗1, · · · , n∗K)Td = 0, ∀k 6= b

∇hi(τ∗, n∗1, · · · , n∗K)Td = 0, i = 1, 2

 .

G is an empty set, which means this solution satisfies the KKT second order sufficient conditions

and it is the strict and the only local optimum, i.e., the global optimum, of the relaxed problem.

In addition, this solution satisfies the relaxed integer constraints, so it is also the global optimal

solution of the problem in equation (3). Theorem 1 is proved.

3.2 Allocation Strategy When Group Information are Unknown

In practice, it is unlikely to know in advance the group information before a large amount

of observation is available. In this situation, the most intuitive approach is estimating the

group quantiles by allocating a trial budget to each group at the first stage. Then, all the

remaining budget is allocated to the current best group according to the observed information.

Nevertheless, this approach has two drawbacks: 1. numerous samples are required to estimate

a quantile whereas only a small budget is available for the initial design; 2. the estimated

group information could be biased due to the sampling noise, which means, under a certain
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probability, this approach will allocate all the remaining budget to a wrong group.

To simplify the estimation of the group quantiles and reduce the sample size required, we

further restrict Assumption 1 as follows:

Assumption 2. The objective function values of solutions sampled from group k, i.e., y(xk,i),

are independently and identically distributed as normal distribution with mean µk and positive

variance σ2k, in which µk and σk are unknown.

Under Assumption 2, the best group in Theorem 1 has a closed-form expression: b =

arg mink{µk+zασk}, where zα is the α-quantile of the standard normal distribution. In this way,

non-parametric quantile estimation can be avoided and the best group can be easily estimated,

with few samples, using the group sample means µ̂k and group sample variances σ̂k:

b̂ = arg min
k
{µ̂k + zασ̂k}. (5)

Despite Assumption 2 is quite strong, the numerical results show that the proposed budget

allocation method works well even if Assumption 2 is not satisfied. From equation (5), we can

find that the selection of the α value reflects the preference among the group mean and the

group variance. If a low α value is used (i.e., only few good solutions are required), groups with

a high variance are regarded as good groups, i.e., the proposed method will take risk to search

in the group with a high mean but also a high variance in order to have the chance of getting

a very good solution. If a high α value is used (i.e., nearly half of the initial solutions are of

interest), groups with a low mean are regarded as good groups, i.e., the proposed method will

behave conservatively to ensure that most of the sampled solutions are acceptable.

The current best group, estimated from the first stage sampling, may be wrong due to

the small sample size. Therefore, we are facing a dilemma similar to the multi-armed bandit

problem: to allocate more budget to the current best group, or to allocate more budget to search

for the real best group. The difference between our problem and the multi-armed problem is

the definition of the best group. We are interested in the group having the smallest quantile

whereas the multi-armed problem is looking for the group having the highest mean. To cope

with this dilemma, a simple idea is put forward: let the total budget size allocated to group k

be proportional to the posterior probability that group k is the best group b, given the observed

information.

A heuristic algorithm is developed to allocate the remaining budget dynamically taking into
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account the noise introduced by previous samplings. At a new stage (denoted as s), a fixed size

(denoted as ∆) of budget is added into the total budget size:

Ns = min{Ns−1 + ∆, N},

and the estimated group means µ̂k, the group variances σ̂2k and the current best group b̂ are

updated. Under Assumption 2, from Theorem 1 we have σk > 0, ∀k and τ∗ = µb + zασb ≤

µk + zασk,∀k, i.e., µb − τ∗ = −zασb and µk − τ∗ ≥ −zασk, ∀k. Since α < 0.5 (i.e., zα < 0),

we have 0 < σb
µb−τ∗ = − 1

zα
and 0 < σk

µk−τ∗ ≤ −
1
zα
,∀k, i.e., the real best group b has the

largest σk
µk−τ∗ . Therefore, we firstly estimate the value of the optimal threshold τ∗, based on

the information estimated from previous sampling, as:

τ̂ = min
k
{µ̂k + zασ̂k} = µ̂b̂ + zασ̂b̂. (6)

Then, let ns,k be proportional to the posterior probability that group k has the largest σk
µk−τ̂ :

ns,k = Ns · P
(

σk
µk − τ̂

≥ σi
µi − τ̂

,∀i 6= k

∣∣∣∣µ̂j , σ̂j , ns−1,j ,∀j) , (7)

where ns,k is the total budget size allocated to group k after stage s and µ̂j , σ̂
2
j are the sample

mean and sample variance of group j based on ns−1,j previous observations. Proposition 2

provides an approximate way to estimate expression (7) when there are only two groups.

Proposition 2. If only two groups are available, i.e., K = 2, Assumption 2 holds and 0 <

σk
µk−τ̂ < 0.33, k = 1, 2, the ratio of the total budget sizes allocated to these two groups according

to expression (7) can be approximated as

ns,1
ns,2
≈ F (C1,2;ns−1,1 − 1, ns−1,2 − 1)

F (C2,1;ns−1,2 − 1, ns−1,1 − 1)
,

where

Ci,j =
1 + 1

ĉ2j
− 1

ns−1,j

1 + 1
ĉ2i
− 1

ns−1,i

, i, j = 1, 2,

ĉk =
σ̂k

µ̂k − τ̂
, k = 1, 2,

F (·; v1, v2) is the cdf of the F-distribution with degrees of freedom v1, v2 and µ̂k, σ̂
2
k, k = 1, 2 are

the group sample means and group sample variances based on ns−1,k observations.
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Proposition 2 is proved based on the McKay’s chi-square approximation for the coefficient

of variation (McKay, 1932).

Proof of Proposition 2. Let random variables

Xk = y(xk,i)− τ̂ , k = 1, 2.

Under Assumption 2,

Xk ∼ N(µk − τ̂ , σ2k) and ck =
σk

µk − τ̂

is the coefficient of variation of the random variable Xk. McKay’s approximation (McKay, 1932)

shows that if 0 < ck < 0.33, the statistic

Wk =

(
1 +

1

c2k

)
(ns−1,k − 1)ĉ2k

1 + (ns−1,k − 1)ĉ2k/ns−1,k

is approximately distributed as the χ2 distribution with degree of freedom (ns−1,k − 1), where

ĉk = σ̂k/(µ̂k − τ̂) is the estimate of the coefficient of variation based on ns−1,k observations.

Under the assumption of independence, we can say that when 0 < ci, cj < 0.33,

Wi,j =
Wi/(ns−1,i − 1)

Wj/(ns−1,j − 1)
= Ci,j ·

1 + 1
c2i

1 + 1
c2j

is approximately distributed as the F-distribution with degrees of freedom (ns−1,i − 1) and

(ns−1,j − 1), where

Ci,j =
1 + 1

ĉ2j
− 1

ns−1,j

1 + 1
ĉ2i
− 1

ns−1,i

.

Therefore,

P

(
σi

µi − τ̂
≥ σj
µj − τ̂

∣∣∣∣µ̂i, σ̂i, ns−1,i, µ̂j , σ̂j , ns−1,j) =P (ci ≥ cj |ĉi, ns−1,i, ĉj , ns−1,j)

=P (Wi,j ≤ Ci,j |ĉi, ns−1,i, ĉj , ns−1,j)

≈F (Ci,j ;ns−1,i − 1, ns−1,j − 1),

where F (·; v1, v2) is the cdf of the F-distribution with degrees of freedom v1 and v2. When only
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two groups are available, we have

ns,1
ns,2

=

Ns · P
(

σ1
µ1−τ̂ ≥

σ2
µ2−τ̂

∣∣∣∣µ̂i, σ̂i, ns−1,i, i = 1, 2

)
Ns · P

(
σ2

µ2−τ̂ ≥
σ1

µ1−τ̂

∣∣∣∣µ̂i, σ̂i, ns−1,i, i = 1, 2

) ≈ F (C1,2;ns−1,1 − 1, ns−1,2 − 1)

F (C2,1;ns−1,2 − 1, ns−1,1 − 1)
,

i.e., Proposition 2 is proved.

When K = 2, Figure 1 shows the percentage of the total budget that should be allocated

to Group 1 after stage s, according to Proposition 2. As shown in the left figure, when both

groups have the same budget size after the previous stage (ns−1,k = 5,∀k), more budget should

be allocated to the group with a larger σ̂k
µ̂k−τ̂ (i.e., higher σ̂k and lower µ̂k). In the right figure,

when the σ̂k
µ̂k−τ̂ of both groups are the same, more budget should be allocated to the group with

a smaller ns−1,k since less data are observed. Nevertheless, the gap becomes insignificant as

both budget sizes increase.

Figure 1: The percentage of the total budget allocated to Group 1. K = 2. In the left figure,
ns−1,k = 5, k = 1, 2 and in the right figure, σ̂k

µ̂k−τ̂ = 0.1, k = 1, 2.

When more than two groups are available, i.e., K > 2, we extend Proposition 2 by using

the budget size allocated to the current best group b̂ as the reference:

ns,k
ns,b̂

=
F (Ck,b̂;ns−1,k − 1, ns−1,b̂ − 1)

F (Cb̂,k;ns−1,b̂ − 1, ns−1,k − 1)
,∀k 6= b̂, (8)

ns,b̂ = Ns/

(
K∑
k=1

F (Ck,b̂;ns−1,k − 1, ns−1,b̂ − 1)

F (Cb̂,k;ns−1,b̂ − 1, ns−1,k − 1)

)
, (9)

where

Ci,j =
1 + 1

ĉ2j
− 1

ns−1,j

1 + 1
ĉ2i
− 1

ns−1,i

, ∀i, j, (10)
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ĉk =
σ̂k

µ̂k − τ̂
, ∀k

and F (·; v1, v2) is the cdf of the F-distribution with degrees of freedom v1 and v2. ns,k, ∀k are

rounded to integers. Then, additional max{0, ns,k − ns−1,k} new solutions are sampled from

group k in the order of the additional sample size descending.

Algorithm 1 describes in detail how to implement the proposed method. A small trial budget

is allocated to each group to estimate the group performance at the first stage sampling. At

each new sampling stage, the total budget size increases by a fixed size. The estimated group

means, group variances, the current best group and the estimated threshold are updated. The

new budget is allocated according to equations (8) (9) (10). Given the group budget sizes,

uniform sampling or other sampling methods considering exploration can be applied to sample

new solutions from each group. This process is repeated until the budget is exhausted.

Algorithm 1

N,K,α, n1,k, ∀k,∆ ← User-defined parameters.
Cluster the feasible solutions into K groups.
s = 1.
for k = 1 to K do

Sample ns,k solutions from group k.
Calculate group sample mean µ̂k and group sample variance σ̂2k.

end for
Ns =

∑
k ns,k.

Calculate b̂ and τ̂ using equations (5) and (6).
while N −Ns > 0 do
s = s+ 1.
Ns = min{Ns−1 + ∆, N}.
Calculate ns,k,∀k using equations (8) (9) and (10).
Sample max{0, ns,k − ns−1,k} solutions from group k, ∀k.
Update group sample mean µ̂k and group sample variance σ̂2k.

Update b̂ and τ̂ using equations (5) and (6).
end while

3.2.1 Asymptotic performance

The sampling noise is considered in Algorithm 1 for the situation that group information are

unknown. Theorem 2 shows that, under Assumption 2, Algorithm 1 converges to the optimal

budget allocation policy in Theorem 1, in which the exact groups information are known in

advance, when the number of sampling stages approaches to infinity.

Theorem 2. Under Assumption 2, if α < 0.5, µi + zασi 6= µj + zασj , ∀i 6= j and the number

of sampling stages approaches to infinity, Algorithm 1 converges to the optimal allocation policy
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in Theorem 1, which is allocating all the budget to the group having the smallest α-quantile:

lim
s→∞

ns,b/Ns = 1,

where b = arg mink{µk + zασk}.

We firstly prove that, as the number of sampling stages approaches to infinity, the budget

sizes allocated to all groups nk,∀k approach to infinity. This involves that the current best

group b̂ approaches to the real best group b. Then, we prove that as the number of sampling

stages approaches to infinity, the ratio of the budget size allocated to the current best group b̂

to the total budget size Ns approaches to 1. The detailed proof can be found in Appendix A.

3.2.2 Robustness to wrong clustering

When an inappropriate clustering rule is applied, it is possible that all the groups have similar

group performance, i.e., the clustering rule cannot separate the promising solutions from bad

ones. Theorem 3 shows that when all groups have the same means and the same variances,

Algorithm 1 tends to allocate equal budget sizes to all groups as the number of sampling stages

approaches to infinity. This means that if all groups have the same performance, instead of

exploiting one of the groups, Algorithm 1 focuses more on the exploration searching all the

groups. The detailed proof can be found in Appendix A.

Theorem 3. If α < 0.5, µk = µb, σk = σb, ∀k and the number of sampling stages approaches to

infinity, Algorithm 1 converges to allocating equal budget sizes to all the groups, i.e.,

lim
s→∞

ns,k/ns,b̂ = 1, ∀k 6= b̂.

4 Numerical Results

The proposed method is tested in designed cases to analyze its performance under different cir-

cumstances and the influence of the user-defined parameters. Then, it is applied to a Griewank

function to show the effect of the applied clustering rules.
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4.1 Comparison of budget allocation strategies among groups

In this section, we assume that all the feasible solutions are already clustered. We would like to

investigate the benefit of using Algorithm 1 to allocate the budget among groups. The following

five budget allocation strategies are applied:

BAQM: Budget Allocation for Quantile Minimization. The budget is allocated using Algo-

rithm 1, i.e., the proposed method.

AATB: Allocate all the added budget to the current best group b̂ at each stage s:

ns,b̂ − ns−1,b̂ = Ns −Ns−1 and ns,k − ns−1,k = 0,∀k 6= b̂.

Modified ε-greedy: The new budget is allocated to the current best group b̂ with probability

1− ε and allocated to other groups with probability ε. The ε-greedy method is frequently

used for classic multi-armed bandit problems. It is applied here with the definition of

the best group modified using the quantile instead of the mean as the criterion. The

aforementioned AATB method can be regarded as an extreme ε-greedy method with

ε = 0. In the following experiments, the ε value is selected as 0.1 according to preliminary

analysis.

OCBA: Optimal computing budget allocation. The budget is allocated, at each stage s, using

the OCBA formulas proposed by Chen et al. (2000):

ns,i
ns,j

=

(
σ̂i/(µ̂b′ − µ̂i)
σ̂j/(µ̂b′ − µ̂j)

)2

,∀i 6= j 6= b′

and

ns,b′ = σ̂b′

√√√√∑
i 6=b′

n2s,i
σ̂2i

,

where b′ = arg min{µ̂k, ∀k}. The OCBA method is frequently applied to stochastic prob-

lems to maximize the approximate probability that the selected design b′ is the best design

(the design having the lowest mean). From another perspective, the OCBA method is

trying to separate the mean of the current best group from the other groups, which is dif-

ferent from the goal of our paper. However, the OCBA method also assigns more budget

to the group with a higher variance and a lower mean, which is similar as our algorithm.

Thus, it is also applied in the experiments as a budget allocation pattern reference.
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EBA: Equal budget allocation. The budget is allocated equally to all groups:

nk = N/K,∀k = 1, · · · ,K,

where the indivisible budget is allocated arbitrarily.

The first four strategies are applied dynamically with a fixed budget size added to the total

budget size at each sampling stage. The EBA is applied in one stage. The EBA is used as a

benchmark in the following experiments.

In the following experiments, 10000 replications are executed. For the sake of simplicity, the

first stage sampling sizes are assumed to be the same among all groups, i.e., n1,i = n1,j , ∀i, j.

4.1.1 Effect of group parameters

Six cases are considered in this section. In each case, five groups are clustered. Assump-

tion 2 holds, i.e., the objective function values in each group are independently and normally

distributed. Group means and group standard deviations are presented in Table 1. These

parameters are designed to test the behavior of different strategies in different conditions. A

budget of N = 100 is available and the first stage sampling sizes are n1,k = 3, ∀k. We are

interested on the α-quantile (α = 0.05) of the objective function values in the final sample set,

i.e., the fifth smallest observation, and only one budget size is added at each stage (i.e., ∆ = 1).

Under the given α value, the first group is the best group in all the cases except the last one in

which the second group is the best group.

Table 1: The distribution parameters of each group.
System ID µ σ

1 [10, 15, 20, 25, 30] [4, 4, 4, 4, 4]
2 [10, 15, 20, 25, 30] [6, 6, 6, 6, 6]
3 [10, 15, 20, 25, 30] [3, 4, 5, 6, 7]
4 [10, 15, 20, 25, 30] [7, 6, 5, 4, 3]
5 [10, 10, 10, 10, 10] [7, 6, 5, 4, 3]
6 [10, 15, 20, 25, 30] [1, 5, 5, 5, 5]

Figure 2 shows the average total budget sizes allocated to different groups, i.e., nk, using

different budget allocation strategies (the left figures) and the empirical cdf of the α-quantile of

the objective function values in the final sample set among 10000 replications (the right figures).

The first conclusion is that the first four strategies all allocate, on average, most of the budget

to the best group, except the OCBA in Case 3, the AATB and the modified ε-greedy in Case 6.
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Case 3 Case 4

Case 5 Case 6

Case 1 Case 2

Figure 2: The average group budget size (left) and the empirical cdf of the α-quantile (right).
N = 100, α = 0.05, n1,k = 3,∀k,∆ = 1. 10000 replications are executed.

In most cases, the AATB behaves slightly better than the BAQM under a certain probability

(the first part of the AATB’s empirical cdf is on the left side of the BAQM’s). This is because the

AATB will not waste budget exploring other groups once it identifies the best group. However,

under a certain probability, the AATB does not identify the real best group and allocate most

of the budget to a wrong group. This is the reason why the tail of the AATB’s empirical cdf

collapses. As shown in Case 2 and Case 4, the AATB has more difficulty to identify the best

group when the performance of good groups have large variability. Compared to the AATB,

the BAQM wastes a smaller budget for exploring but significantly reduces the probability that

poor designs are generated, especially when the group performance are highly varied.

It can be found that compared to the AATB, the modified ε-greedy also tries to improve the

identification of the best group by using some budget for exploration. The performance of the

modified ε-greedy is highly sensitive to the selection of the ε value. A large ε value can improve
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the situation that the tail of the empirical cdf collapses, but it will waste too much budget once

the real best group is identified. The modified ε-greedy can be improved by reducing the ε

value as the sampling stage increases. Nevertheless, additional effort are required to determine

the adaptive function and to tune the adaptive parameter for the ε. The BAQM has better

performance than the modified ε-greedy when good groups have large variability, like in Case

2, Case 4 and Case 6. When the variability of good groups is small, the BAQM can achieve

similar performance as the modified ε-greedy without the tuning of the parameters.

The OCBA does not perform well when the best group has small variability. In Case 3, the

OCBA allocates more budget to the second group whereas the first group is the best group.

Indeed, the goal of the OCBA is separating the mean of the best group from the other groups’

means. In this case, the variance of the first group is small. Allocating more budget to the

second group enables this goal to be achieved more quickly. This is also the reason why the

OCBA has good performance in Case 6, in which the best group is the group that has the

largest variance and a small mean.

4.1.2 Effect of algorithm parameters

In this section, we investigate the effect of the user-defined parameters (N,α, n1,k, ∀k,∆) in the

proposed budget allocation method.

In Figure 3, the proposed method is applied to Case 2 with parameters α = 0.05, n1,k =

3,∀k,∆ = 1 and different total budget sizes N . The y-axis shows the proportions of the total

budget being allocated to different groups, i.e., nk/N . As the total budget size increases, the

proportion of the total budget allocated to group 1 (the best group) climbs quickly at the first

iterations, then slowly tends to one. This is consistent to Theorem 2 that, as the number of

sampling stages increases, the proposed method tends to allocate more budget to the real best

group and converges to the optimal budget allocation in Theorem 1.

In Figure 4, Case 6 is considered, in which group 1 has the lowest mean and a much

smaller variance compared to other groups. The proposed method is applied with parameters

N = 100, n1,k = 3, ∀k,∆ = 1. The average budget size allocated to each group by the proposed

method with different α values is presented in the figure. A higher budget size is assigned to

group 1 (the group with the lowest mean) when the α value is large. When the α value is

small, the method focuses more on group 2 (the group with the second lowest mean but a larger

variance). This is consistent with the discussion about the selection of the α value in section
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3.2.
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Figure 3: The proportions of the total budget al-
located to different groups as N increases. α =
0.05, n1,k = 3,∀k and ∆ = 1. 1000 replications
are executed.
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Figure 4: The average group budget sizes
with varying α values. N = 100, n1,k =
3,∀k and ∆ = 1. 10000 replications are
executed.

In Figure 5, the proposed method is applied to Case 2 with parameters N = 100, α = 0.05,

n1,k values varying between 2 and 18, and ∆ value varying between 1 and 90. The color presents

the average budget size allocated to the best group among 10000 replications. The lighter the

color, the higher the budget size assigned correctly.
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Figure 5: The average budget size allocated to the best group with varying n1,k and ∆ values.
N = 100 and α = 0.05. 10000 replications are executed.

A small ∆ value helps to allocate budget correctly independent of the first stage sampling

sizes n1,k. Nevertheless, a small ∆ value , i.e., many sampling stages, may be a drawback in

some cases, such as a fixed setup time is required to start a simulation model or when extensive

parallel computing power is available. Given the ∆ value, the selection of the first stage sizes

n1,k also affects the budget allocation results. Large n1,k values waste budget in the first stage

sampling whereas small n1,k values may result in wrong allocation in the following stages because

of the biased estimated group information. As the selected ∆ value increases, the corresponding

optimal n1,k values increase as well.
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4.1.3 Effect of group distribution types

In this section, we investigate the effect of the group distribution types in the proposed budget

allocation method. The goal is to test the impact of Assumption 2.

We keep the same group means and group variances as in Case 2 and change the distribution

type of the values in each group. Six new cases are considered. Table 2 shows the distribution

types of different cases and Figure 6 shows the pdf shapes of the values in group 1 in different

cases. In Case 9 and Case 10, the beta distributions are scaled to meet the same group means

and group variances as in Case 2. Multi-modal distributions are considered in Case 11 whose

pdf presents the shape of two triangular connected together as shown in Figure 6. In Case

12, the five groups follow different distribution types, which are the distribution types from

Case 7 to Case 11, respectively. Same as in previous analysis, all the strategies are executed

dynamically with N = 100, α = 0.05, n1,k = 3,∀k,∆ = 1.

Table 2: The distribution types in different cases.
Case ID Distribution Type

7 Symmetric triangular distribution
8 Uniform distribution
9 Scaled beta(1,2)
10 Scaled beta(2,1)
11 Multi-modal distribution
12 Mixed distribution type among groups

0 10 20 
0

0.05

0.1

pd
f

Case 7
Case 8
Case 9
Case 10
Case 11

Objective function values in Group 1

Figure 6: The pdf of the objective function values in Group 1 in different cases.

Figure 7 shows the empirical cdf of the α-quantile of the objective function values in the

final sample set in different cases. Compared to the AATB, the BAQM reduces significantly

the probability that poor designs are generated by wasting few budget for exploration. In most

cases, the BAQM performs better than the modified ε-greedy. It also has better behavior than

the OCBA if the group distribution types are unimodal. If the group distribution type has a

shape that is particularly significant opposite to the normal distribution, the BAQM identifies
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the wrong best group under a certain probability, but it is still more robust than the AATB.

Overall, even if Assumption 2 does not hold, the proposed budget allocation method works well.

Case 7

Case 10

Case 8 Case 9

Case 11 Case 12

Figure 7: The empirical cdf of the α-quantile. N = 100, α = 0.05, n1,k = 3,∀k,∆ = 1. 10000
replications are executed.

4.2 Effect of Clustering Rules

In this section, the proposed budget allocation method is applied to the Griewank function:

y = 1 +
1

4000
x21 +

1

4000
x22 − cos(x1) cos

(
x2√

2

)
,

and the goal is to minimize the Griewank function in the feasible domain [x1, x2]
T ∈ [−4, 4]2.

In this case, two clustering rules are applied by partitioning the original solution space into

different regions as shown in Figure 8. In the left figures, the objective function values at

different locations are presented by different colors (blue indicates promising regions) and the

numbers are the groups’ labels. The right figures show the box-plot of the total budget size

allocated to each group among 10000 replication, using the proposed method with parameters

N = 100, α = 0.05, n1,k = 3,∀k,∆ = 1.

The first clustering rule partitions the feasible domain into four regions which have similar

objective function performance. This partitioning cannot separate good solutions from bad ones

and no region (group) dominates other regions. The proposed method allocates, on average,

equal budget size to each group. This is consistent to Theorem 3. The proposed method focuses
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Figure 8: The clustering rules on the contour of the Griewank function (left) and their corre-
sponding budget allocation information (right). In the left figures, the objective function values
at different locations are presented by different colors. 10000 replications are executed.

more on the exploration in this situation.

The second clustering rule partitions the feasible solution space into nine regions which

almost separate promising areas from non-promising ones. The proposed method allocates, on

average, most of the budget to group 5 which is the best group. Group 1,3,7,9 also have higher

budget sizes than the other four groups since better performance are identified.

5 Applications on Manufacturing Systems

In this section, the proposed method is tested on a buffer allocation problem of a transfer

line and a server allocation problem of a multi-stage manufacturing system with re-entries to

generate initial designs for selected black-box optimization algorithms. In addition, an example

of using multi-fidelity information to cluster feasible solutions is presented in section 5.2.

5.1 A Transfer Line Buffer Allocation Problem

This section is to test the impact of using the proposed method as a population initializer in

optimization problems. In the experiments, a transfer line is considered with data collected

from a vehicle injector assembling line. It is composed of 13 stations that are connected by

buffers with capacities denoted as x = [x1, · · · , x12]T . The block after service rule is applied.

It is assumed that the first station is never starved and the last station is never blocked. The
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processing times are deterministic and the line is well balanced in terms of the processing time,

i.e., the processing times on all stations are close. For the sake of simplicity, we assume that

the processing times are all equal to the average processing time and this time is taken as the

time unit. Each station has a probability pi that it will stop in one time unit, and the repair

probability in one time unit is denoted as ri. Table 3 presents the estimated pi, ri values and

the availability of each station ei,∀i. The mean throughput of the studied line is evaluated by

the DDX algorithm (Dallery et al., 1988), denoted as thDDX(x).

Table 3: The stoppage information of each station.
Station ID S5 S7 S8 S1-S4, S6, S9-S13

pi 0.0038 0.0044 0.0022 0.0009
ri 0.0209 0.0542 0.0444 0.0976

ei = ri/(ri + pi) 0.846 0.925 0.953 0.991

The problem investigated in this section is to minimize the total buffer capacity with a

throughput satisfaction: thtarget = 0.83. We formulate the problem using a penalty function:

min
x

{
12∑
i=1

xi + h(thtarget − thDDX(x))+

∣∣∣∣∣
12∑
i=1

xi ≤ 400, xi ≥ 3, xi ∈ N,∀i

}
,

where h(thtarget − thDDX(x))+ indicates that the value of the penalty function is equal to zero

if the throughput target is satisfied and equal to the gap multiplied by a large value h, if the

throughput target is not satisfied. The value of h is selected as 5000 in the experiments. Similar

results can be found with the h value varying from 4500 to 10000. The upper bound of the

total buffer capacity is set to narrow down the searching space. The lower bound of each buffer

is set to avoid errors in the execution of the DDX method. Genetic Algorithm (GA) is applied

to search for the optimal buffer allocation with population size N = 50 and other settings as

default in Matlab.

The initial population is generated using the proposed method with α = 0.2, n1,k = 3, ∀k,∆ =

1. Feasible solutions are clustered into 2 groups, 10 groups and 16 groups in different experiments

according to two criteria: i) whether the capacity of each buffer in the solution is correlated to

the mean availability of the adjacent machines; ii) which range the total buffer capacity of the

solution belongs to. More details can be found in Appendix C. Uniform sampling is applied

within a group.

The best solution found during the experiments is x∗ = [3, 3, 8, 17, 46, 44, 26, 4, 3, 3, 3, 3] with

objective function value 163.6 and throughput 0.8299. Figure 9 shows the average of the current
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best objective function values at different generations in the GA algorithm. 200 replications

are executed and the initial population is re-sampled in each replication. The label “2 groups”

indicates that in the proposed method, the feasible solutions are clustered using only the first

criterion. Compared to uniformly sampling the initial population, using the initial population

generated by the proposed method improves the efficiency of the GA algorithm significantly in

the studied case, even though only the first criterion is used for clustering. Further separating the

solutions based on the total buffer capacity (e.g., label “10 groups”) can make the characteristics

of good solutions more specific, which also helps the optimization. However, if there are too

many groups (e.g., “16 groups” in Figure 9), this advantage is counterbalanced by the loss

of ability for exploitation in the proposed method, because most of budget is used for the

exploration in the first stage sampling.
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Figure 9: The average of the current best objective function value as the number of generations
increases. 200 replications are executed.

5.2 A Multi-Stage Manufacturing System Server Allocation Problem

The proposed budget allocation method is applied to a server allocation problem of a multi-stage

manufacturing system with re-entries to generate the initial design. A fixed number of servers

are assigned to six workstations to minimize the 80% quantile of the order lead times. The order

lead time quantile is estimated by a high-detailed simulation model (high-fidelity model) and its

execution is time-consuming. Two analytical methods (low-fidelity models), which can provide

fast but biased estimates on the order lead time, are used to cluster the feasible solutions.

In real world systems, it is common that the acquisition of the high-fidelity estimation of the

system performance (high-detailed simulation response or data from the field) is expensive (or

time-consuming). Low-fidelity estimates (from analytical methods or low-detailed simulation

models) are biased but easy and fast to be obtained. In this section, we present a way to cluster
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feasible solutions in this kind of application and show the benefits of using the proposed method

as a population initializer in searching algorithms.

5.2.1 System Description

A multi-stage manufacturing system composed by six workstations is producing two types of

parts. Each workstation has several identical servers (machines or operators) and each part

type passes through different workstations following a specific sequence. Table 4 presents the

production sequence of each part type, the mean and the standard deviation of their processing

time at each workstation. The processing times are independently and lognormally distributed.

The transportation times between workstations are assumed to be negligible and the buffer

capacities in between are assumed to be infinite. First come first served rule is applied to each

workstation.

Table 4: The production sequence, the mean and the standard deviation of the processing times.

Part Type 1 Part Type 2

Workstation Mean (h) Std (h) Workstation Mean (h) Std (h)

1 2 0.25 2 5 0.8
3 1.6 0.2 4 4.5 0.19
4 3.5 0.15 3 2.5 0.28
5 4 0.25 1 2.2 0.25
6 3.5 0.4 6 3 0.45
3 2.5 0.28 - - -

Orders arrive in batches. A single order contains only one part type. Once an order arrives,

the system starts to produce this part type and when all the parts in this order are produced,

they are delivered at the same time. The arrival rates of different part types are 1/130 and

1/70 with batch sizes 150 and 100, respectively. The inter-arrival times of the orders are

independently and exponentially distributed.

The key performance indicator is the order lead time, i.e., the duration between the order

arrival time and the order delivering time. The goal of this problem is assigning total 65 servers

to these six workstations to minimize the 80% quantile of the order lead times. Denote the

decision variables, i.e., the server numbers at different workstations, as x = [x1, · · · , x6]T . In

order to satisfy the demands, server numbers have lower bounds, which are [6, 8, 9, 11, 5, 9] for

the six workstations, respectively. Therefore, a total of 26334 assignment solutions are feasible.

The objective function (i.e., the 80% quantile of the order lead times) is calculated using
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a high-detailed simulation model, denoted as yh(·), with simulation length 1 × 107h, warm-up

length 1.5 × 105h and 10 independent replications. The average length of the half confidence

interval of mean lead time is about two percent of its estimate. All the feasible solutions are

evaluated and their simulation responses are regarded as the exact objective function values in

the following experiments, i.e., we assume the objective function is deterministic in execution.

On the average, it takes about 9.5 minutes to obtain a simulation output in a laptop (Intel(R)

Core(TM) i7-6600U CPU @ 2.6GHz 2.81 GHz, RAM 16GB), which means about 174 days to

evaluate all the feasible solutions.

In addition to the simulation model, two kinds of analytical method are also applied. One is

an Open Jackson Network, denoted as yl1(·), which assumes all inter-arrival times and processing

times are independently and exponentially distributed. Also, the parts in the same order are

assumed to arrive one by one rather than in batches. The M/M/c formulas are used in the

Open Jackson Network and the average system time is used as the estimation of the objective

function. The other analytical method, denoted as yl2(·), is developed assuming there is no

interaction between different orders and the processing times are deterministic. Compared to

the simulation model, these two analytical methods are fast in execution. They require about

total 5 seconds and 0.5 seconds to run all the feasible solutions in the same laptop, respectively.

In the analyzed case, the optimal solution is x∗ = [8, 11, 12, 14, 8, 12]T with high-fidelity

estimate of the 80% quantile of the order lead times yh(x∗) = 222h. The low-fidelity estimates

of the optimal solution are yl1(x∗) = 18h and yl2(x∗) = 69h.

5.2.2 Effect of low-fidelity information

K = 4 groups are clustered based on the two analytical methods described above as well as a

third low-fidelity model which is defined as

yl3(x) = 50− yl1(x).

The scatter plots of the analytical method outputs (the x-axis) versus the simulation responses

yh (the y-axis) and the clustering information are as shown in Figure 10 (top figures), in which

the numbers from “1” to “4” indicate the group IDs. Notice that Assumption 2 does not hold

in the analyzed case.

As shown in Figure 10, yl1 shows a significant positive correlation with yh and provides
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Figure 10: The clustering rules (top figures) and their empirical sampling pdf on the simulation
responses (bottom figures). Clustering rules (a) (b) and (c) are based on the low-fidelity models
yl1 , yl2 and yl3 , respectively. The numbers from “1” to “4” indicate the group IDs. N = 100, α =
0.05, n1,k = 2,∀k,∆ = 1. 10000 replications are executed.

a good reference for the selection of promising solutions. However, this knowledge cannot be

known in advance and it could vary case by case. The selected low-fidelity models may give

useless information, like yl2 , or worse, erroneous information is provided, such as yl3 . In this

situation, poor initial designs will be generated if we pick up solutions with good low-fidelity

estimates.

The bottom figures in Figure 10 show the empirical sampling pdf on the simulation responses

when different budget allocation methods are applied. The proposed method is applied with

parameters N = 100, α = 0.05, n1,k = 2,∀k,∆ = 1 and uniform sampling is applied within a

group. The label “Uniform Sampling” means solutions are uniformly sampled from the whole

feasible domain.

Using the proposed budget allocation method enables the solutions with a lower objective

function value to have higher sampling probabilities, while less promising solutions are less

likely to be sampled, if proper clustering rules are applied, such as clustering rule (a) and (c).

The average budget sizes allocated to different groups in clustering rule (a) and (c) are around

[88.8, 3.7, 3.6, 3.9] and [3.9, 3.6, 3.7, 88.8], respectively. The case of clustering policy (c) shows

that the proposed method can also have good performance even if the selected low-fidelity
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provides a wrong ranking on the feasible solutions.

If the selected clustering rule does not provide much help, the proposed method tends to

allocate similar budget sizes to all groups and behaves similarly to uniform sampling, such as

clustering rule (b). The average budget sizes allocated to different groups in clustering rule (b)

are around [31,35,23,11].

5.2.3 Benefit of Good Initial Designs

A local search algorithm is applied to this problem to find the optimal server allocation with

total simulation budget size 800 for the optimization. At the first step, N = 20 initial points

are sampled according to a specific sampling policy. The sampled points are selected as starting

points in the order of their high-fidelity performance ascending. When a starting point is

selected, the algorithm searches its neighborhood and moves to the best of its neighbor points

in each iteration until it reaches a local optimum. Then, the algorithm moves to the next starting

point and repeat the local searching procedure until the simulation budget is exhausted. The

neighborhood of a point x0 is defined as:

N(x0) = {x|x = x0 + ei − ej , ∀i, j, s.t.||i− j|| = 1}

where ei is a six-dimensional vector whose i-th element is one and the rest elements are all zero.

The performance of the applied local search algorithm with starting points sampled by

the proposed budget allocation method is compared to that with starting points uniformly

sampled from the feasible domain. The proposed sampling method is applied with parameters

N = 20, α = 0.05, n1,k = 2,∀k,∆ = 1 and the feasible solutions are clustered using clustering

rule (a) as shown in Figure 10. The experiment is repeated 5000 times and the starting points

are re-sampled in each replication.

Figure 11 shows the median of the current optimal objective function value among the 5000

replications, as the simulation budget increases. Compared to uniformly sampling the starting

points, using the proposed budget allocation method in the applied local search algorithm can

save about 29% of simulation budget, according to the median value among the 5000 replications,

if proper clustering rules are applied.

Figure 12 shows the histogram of the total simulation budget required to reach the global

optimum among the 5000 replications. The last column indicates the number of replications in
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which the global optimum is not found within the given simulation budget. Using the proposed

budget allocation method in this case can save the budget required to reach the global optimum.

It also reduces the frequency that the global optimum is not found within the given budget.
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5.3 A Note on Application

The proposed method is useful when a clustering strategy, which is developed based on some

knowledge on the studied problem, is applicable but the goodness of the groups cannot be

guaranteed. The proposed method can identify which groups are good in terms of the quantile

of the objective function values and allocate larger evaluation budgets, which are expensive, to

better groups.

Using low-fidelity models, i.e., coarse but fast estimators, is an effective way to cluster the

feasible solutions when the high-fidelity budget is expensive, e.g., Xu et al. (2016). In practice, it

may happen that multiple low-fidelity models are available for the studied problem and suggest

different clustering strategies (like in section 5.2). In this case, we can use all the low-fidelity

models for the clustering, i.e, cluster the solutions in a transformed multidimensional space in

which each dimension is the output of one low-fidelity model. The useless low-fidelity models

will be finally ignored by the proposed method as the number of observations increases.

In practice, too many groups may result in wasting budget in the first stage exploration while

not enough groups may be not able to separate the good solutions from bad ones. Therefore,

when the simulation budget size is low, a more effective way is using few groups at the beginning.

Then, good groups, i.e., groups have higher budget sizes, can be further partitioned during the

sampling process.
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6 Conclusion

This paper proposes a method to allocate budget to existing clusters of the solution space.

The goal of the budget allocation is to minimize the quantile of the objective function values

among all the sampled solutions. The proposed method can be easily applied, since closed-

form formulas are provided. It can be used to generate good solutions in the initial design

for optimization problems, in which the efficiency is critical, i.e., a good solution but not the

optimum is needed in a short time. It can also be applied to other problems in which budget is

allocated to competitive choices in order to minimize the quantile of all sampled values.

The proposed method is tested in designed cases and applications. The numerical results

show that the proposed method works well even if the given assumptions are not satisfied. It

also shows that using the method as the population initializer can improve the performance of

the applied searching algorithms in the studied cases, when proper clustering rules are used.

In addition, an example of how to cluster solutions using low-fidelity information (e.g., outputs

from analytical methods) is provided.

The future works have several directions. One is extending the proposed method to stochas-

tic problems. Currently, it is applied considering the objective function is deterministic, i.e.,

no randomness is involved in the estimation of the objective function. The second direction is

to develop a dynamic clustering strategy while sampling with the proposed method so that the

promising groups can be further exploited.
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Appendix A Proofs

Proof of Proposition 1. Given the group budget size nk and a threshold τ , for any solution

xk,i sampled from group k, the probability that its objective function value is smaller than or

equal to τ is Fk(τ) under Assumption 1. Therefore,

E(I{x|y(x)≤τ}(xk,i)) = Fk(τ)

and the expected number of the solutions in the final sample set S(n1, · · · , nK , ξ) whose objective

function values are smaller than or equal to τ is

E

(
K∑
k=1

nk∑
i=1

I{x|y(x)≤τ}(xk,i)

)
=

K∑
k=1

nk∑
i=1

Fk(τ) =
K∑
k=1

nkFk(τ).

Thus, the problem in expression (2) becomes the problem in expression (3). Proposition 1 is

proved.

Lemma 1. If a random variable X follows the F-distribution F (v1, v2), the random variable

v1X follows the Chi-square distribution χ2(v1) as v2 approaches to infinity and

lim
v2→∞

F (x; v1, v2) = Fχ2(v1x; v1)

where F (·; v1, v2) is the cdf of the F-distribution with degrees of freedom v1, v2 and Fχ2(·; v1) is

the cdf of the Chi-square distribution with degree of freedom v1.

Lemma 2. If a random variable X follows the F-distribution F (v1, v2),

lim
v1,v2→∞

V ar(X) = lim
v1,v2→∞

2v22(v1 + v2 − 2)

v1(v2 − 2)2(v2 − 4)
= 0,
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lim
v1,v2→∞

E(X) = lim
v1,v2→∞

v2
v2 − 2

= 1,

which means that limv1,v2→∞ F (x; v1, v2) = 0,∀x < 1.

Proof of Theorem 2. Since τ̂ = µ̂b̂ + zασ̂b̂ ≤ µ̂k + zασ̂k, ∀k, α < 0.5 (i.e., zα < 0) and

σ̂k > 0,∀k, then,
σ̂b̂

µ̂b̂−τ̂
= − 1

zα
and σ̂k

µ̂k−τ̂ ≤ −
1
zα
,∀k, i.e., the inequality 0 < ĉk ≤ ĉb̂ = − 1

zα

always holds as the number of sampling stages s approaches to infinity.

At least one group, denoted as γ, has infinite budget size when the number of sampling

stages approaches to infinity, i.e., lims→∞ ns−1,γ → ∞. If the series {ns,b̂} is bounded, then

∃nc|2 ≤ nc <∞, s.t. lims→∞ ns−1,b̂ ≤ nc and using equation (10) we have

1 <
1 + 1/ĉ2γ

1 + 1/ĉ2
b̂
− 1/nc

≤ lim
s→∞

Cb̂,γ = lim
s→∞

1 + 1/ĉ2γ − 1/ns−1,γ

1 + 1/ĉ2
b̂
− 1/ns−1,b̂

≤
1 + 1/ĉ2γ

1/2 + 1/ĉ2
b̂

<∞.

Denote lims→∞Cb̂,γ as C∞
b̂,γ

and lims→∞ ns−1,b̂ as n∞
b̂

. According to Lemma 1, we have

0 < lim
s→∞

F (Cb̂,γ ;ns−1,b̂ − 1, ns−1,γ − 1) = Fχ2

(
(n∞
b̂
− 1)C∞

b̂,γ
;n∞

b̂
− 1
)
< 1.

Then, using equation (8) we have

lim
s→∞

1/ns,b̂
1/ns,γ

= lim
s→∞

F (Cγ,b̂;ns−1,γ − 1, ns−1,b̂ − 1)

F (Cb̂,γ ;ns−1,b̂ − 1, ns−1,γ − 1)

= lim
s→∞

1− F (Cb̂,γ ;ns−1,b̂ − 1, ns−1,γ − 1)

F (Cb̂,γ ;ns−1,b̂ − 1, ns−1,γ − 1)

=
1

Fχ2

(
(n∞
b̂
− 1)C∞

b̂,γ
;n∞

b̂
− 1
) − 1 > 0.

The two series {1/ns,b̂} and {1/ns,γ} are infinitesimals of the same order, which contradicts the

assumption that {ns,b̂} is bounded. Therefore, lims→∞ ns,b̂ →∞. Similarly, we can prove that

lims→∞ ns,k →∞, ∀k 6= b̂, since lims→∞ ns,b̂ →∞.

The group sample means and group sample variances approach to the real group means and

real group variances as the total budget sizes allocated to all the groups approach to infinity.

Thus, ĉk converges to ck, ∀k and the current best group b̂ converges to the real best group b as

the number of sampling stages approaches to infinity.

Since lims→∞ ns−1,k →∞, ∀k and µi + zασi 6= µj + zασj ,∀i 6= j,

lim
s→∞

Ck,b̂ = lim
s→∞

1 + 1/ĉ2
b̂
− 1/ns−1,b̂

1 + 1/ĉ2k − 1/ns−1,k
=

1 + 1/c2b
1 + 1/c2k

< 1, ∀k 6= b̂.
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According to Lemma 2 we have

lim
s→∞

F (Ck,b̂;ns−1,k − 1, ns−1,b̂ − 1) = 0, ∀k 6= b̂.

Therefore, according to equation (9),

lim
s→∞

ns,b̂/Ns = lim
s→∞

1/

(∑
k

F (Ck,b̂;ns−1,k − 1, ns−1,b̂ − 1)

F (Cb̂,k;ns−1,b̂ − 1, ns−1,k − 1)

)

= lim
s→∞

1/

1 +
∑
k 6=b̂

F (Ck,b̂;ns−1,k − 1, ns−1,b̂ − 1)

1− F (Ck,b̂;ns−1,k − 1, ns−1,b̂ − 1)


= 1.

In summary, when the number of sampling stages approaches to infinity, Algorithm 1 con-

verges to allocating all the budget to the current best b̂ while the current best group converges

to the real best group b, i.e., lims→∞ ns,b/Ns = 1. Theorem 2 is proved.

Lemma 3. As both the degrees of freedom v1, v2 approach to infinity, the cdf of the F-distribution

has the following properties: limv1,v2→∞|v1<v2 F (1, v1, v2) > 0.5; limv1,v2→∞|v1=v2 F (1, v1, v2) =

0.5; limv1,v2→∞|v1>v2 F (1, v1, v2) < 0.5.

Proof of Lemma 3. When the argument is equal to 1, the cdf of the F-distribution with

degrees of freedom v1, v2 can be transformed to the cdf of the beta distribution as follow:

F (1, v1, v2) = FB

(
v1

v1 + v2
,
v1
2
,
v2
2

)
,

where FB
(
·, v12 ,

v2
2

)
is the cdf of the beta distribution with shape parameters v1

2 ,
v2
2 . An ap-

proximate closed-form of the median of the beta distribution with both shape parameters larger

than one is provided by Kerman (2011):

FB

(
v1
2 −

1
3

v1
2 + v2

2 −
2
3

,
v1
2
,
v2
2

)
≈ 0.5,

and the error rapidly decreases to zero as the shape parameters increase. If 1 < v1 < v2,

v1
v1 + v2

−
v1
2 −

1
3

v1
2 + v2

2 −
2
3

=
2(v2 − v1)

(v1 + v2)(3v1 + 3v2 − 4)
> 0.
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Then,

lim
v1,v2→∞|v1<v2

F (1, v1, v2) > lim
v1,v2→∞

FB

(
v1
2 −

1
3

v1
2 + v2

2 −
2
3

,
v1
2
,
v2
2

)
= 0.5.

Similarly, limv1,v2→∞|v1=v2 F (1, v1, v2) = 0.5 and limv1,v2→∞|v1>v2 F (1, v1, v2) < 0.5. Lemma 3

is proved.

Proof of Theorem 3. It is proved in the proof of Theorem 2 that, lims→∞ ns−1,k → ∞, ∀k,

which means ĉk/ĉb̂,∀k 6= b̂ approach to 1 since µk = µb, σk = σb, ∀k. Therefore, using equation

(10) we have

lim
s→∞

Cb̂,k = lim
s→∞

1 + 1/ĉ2k − 1/ns−1,k
1 + 1/ĉ2

b̂
− 1/ns−1,b̂

= 1,

and according to equation (8),

lim
s→∞

ns,k
ns,b̂

= lim
s→∞

F (Ck,b̂;ns−1,k − 1, ns−1,b̂ − 1)

F (Cb̂,k;ns−1,b̂ − 1, ns−1,k − 1)

= lim
s→∞

1

F (Cb̂,k;ns−1,b̂ − 1, ns−1,k − 1)
− 1

= lim
ns−1,k,ns−1,b̂→∞

1

F (1;ns−1,b̂ − 1, ns−1,k − 1)
− 1,∀k 6= b̂.

Combined with Lemma 3, if lims→∞
ns−1,k

ns−1,b̂
< 1, lims→∞

ns,k
ns,b̂

> 1; if lims→∞
ns−1,k

ns−1,b̂
> 1,

lims→∞
ns,k
ns,b̂

< 1; if lims→∞
ns−1,k

ns−1,b̂
= 1, lims→∞

ns,k
ns,b̂

= 1. In addition,

lim
s→∞

ns−1,k
ns−1,b̂

= lim
s→∞

ns−1,k
ns−1,b̂ + ∆

≤ lim
s→∞

ns,k
ns,b̂
≤ lim

s→∞

ns−1,k + ∆

ns−1,b̂
= lim

s→∞

ns−1,k
ns−1,b̂

.

Therefore, lims→∞
ns,k
ns,b̂

= 1,∀k 6= b̂. Theorem 3 is proved.

Appendix B Numerical Analysis on Approximation (3)

Numerical experiments are executed to support the goodness of the problem approximation in

expression (3). Given a problem of expression (1) and its approximation in expression (3) (i.e.,

fix N,α,K, values and Fk,∀k distributions), for any solution ni (i.e., an nk, ∀k combination),

its ranking according to the objective function value in expression (1) is denoted as r
(1)
i and its

ranking according to the objective function value in expression (3) is denoted as r
(3)
i . The main

idea is to show that the sequences {r(1)i } and {r(3)i } are highly correlated. If the correlation

coefficient is equal to one, the solution rankings in expression (1) and in expression (3) are

the same, which includes that the optimal solution in expression (3) is the optimal solution
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in expression (1). If the correlation coefficient is closed to one, it means that the optimal

solution in expression (3) may not be the optimal solution in expression (1), but it still has

good performance in expression (1), i.e., it is a near optimal solution.

An example, in which 500 solutions are randomly sampled, is presented in Figure 13 with the

objective function values and the solution rankings of the sampled solutions. In this problem,

N = 50,K = 5, α = 0.1427 and the group distributions are U(40.59,218.21), N(-73.71,796.77),

Tria(19.93,136.46,155.35) and two piecewise linear distributions with 2 pieces, respectively. The

expectation of the qα, i.e., the objective function value of the original problem, is estimated

using Monte Carlo method with 50000 replications. It is possible to see, in Figure 13, that

the objective function values of the original problem (i.e., E(qα(S(n1, · · · , nK , ξ)))) and the

approximated problem (i.e., τ :
∑K

k=1 nkFk(τ) = αN) are highly correlated, especially for good

solutions, i.e., the points with smaller E(qα) values.

Figure 14 presents the average of the correlation coefficient between r
(1)
i and r

(3)
i . Every

point is obtained with 500 problems. In each problem, α,K, Fk, ∀k are randomly selected and

500 different solutions are sampled. The K value is chosen from 2 to 10 and the α value

varies from 0.0001 to 0.45. The Fk is randomly selected from Normal distribution N(µ ∈

[−100, 100], σ2 ∈ [0, 2500]), Uniform distribution U(a, b;−250 ≤ a < b ≤ 250), Triangular

distribution Tria(a, b, c;−250 ≤ a < b < c ≤ 250) and piecewise linear distribution composed

by 2 to 5 pieces within [−250, 250].

As shown in Figure 14, a significant correlation is observed even though the N value is small

(the average correlation coefficient is larger than 0.97 even if N = 10). Furthermore, the average

correlation coefficient converges to one rapidly as the total budget size N increases, which means

that the solution rankings in the original problem and in the approximated problem tend to be

the same as the total budget size increases.

In addition, 400 randomly selected problems are tested with N varying from 10 to 30, K

varying from 3 to 5, the other settings the same as above and the optimal solution identified

through enumeration. In 92.75% of the tested problems, the optimal solution is the solution

in Theorem 1. In the rest of 29 problems, the minimal group quantile and the second minimal

group quantile are quite close and the optimal solution is that some budget are allocated to

the group with the second minimal quantile. In these 29 problems, the mean absolute relative

difference between the objective function value of the optimal solution and that of the solution in

Theorem 1 is only 2.9% (including the sampling noise). Therefore, expression (3) is a reasonable
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Figure 13: The scatter plots of the objective
function values and the solution rankings in
a problem. N = 50,K = 5, α = 0.1427.
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Figure 14: The average correlation coefficient

of {r(1)i } and {r(3)i } and its 95% confidence
intervals.

approximation of expression (1).

Appendix C Clustering rule for BAP

This appendix describes in detail how the feasible solutions are clustered in section 5.1 and the

algorithm used to sample solutions.

First, two clusters are generated. The buffer capacity of the solutions in the first cluster

is correlated to the average availability of the corresponding adjacent machines, whereas the

solutions in the second cluster do not have any specific pattern. Then, each cluster is further

divided into more groups based on the range to which the total buffer capacity belongs. Table

5 shows the categories of total buffer capacity ranges when different numbers of groups are

required.

Table 5: The categories of total buffer capacity ranges.
Number of groups Categories

2 [36,400]
10 [36,108], [109,181], [182,254], [255,327], [328,400]
16 [36,81], [82,126], [127,172], [173,218], [219,263], [264,309], [310,354], [355,400]

During the sampling phase, the value of the total buffer capacity is firstly sampled, then the

combination of each buffer slot is randomly generated. The sampling probability of the total

buffer capacity is proportional to the corresponding total number of combinations of the buffer
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slots, i.e., high values have high probabilities to be sampled.

Algorithm 2 describes how the solutions, in which the buffer capacity is correlated to the

machine availability, are generated in section 5.1. For each new solution, the m value, which

controls the ratio of the highest buffer capacity to the lowest buffer capacity, is randomly selected

from [1,16]. The total buffer capacity is sampled considering the number of combinations of

buffer slots. The capacity of each buffer is determined in proportion to the weight calculated

based on the machine availability. Finally, noise is added to increase the randomness of the

sampling.

Algorithm 2 Buffer capacity sampling algorithm

n ← Number of solutions to be sampled
d ← Number of buffers in each solutions
for i = 1 · · ·n do

Sample the total buffer capacity Btot
i .

Randomly select mi ∈ [1, 16].
for j = 1 · · · d do

Calculate the reciprocal of the mean availability of the adjacent machines: ci,j = 2
ej+ej+1

.

Calculate the initial weight of each buffer: w0
i,j = ci,j − miminj{ci,j}−maxj{ci,j}

mi−1 .

Add noise to the weight: wi,j = (1 + ui,j)w
0
i,j where ui,j is randomly selected from

[-0.1,0.1].
Determine the capacity of buffer j: xi,j = bBtot

i ∗ wi,j/
∑

j wi,jc and the rest buffer
capacity is allocated arbitrarily.

end for
end for
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