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Abstract 

Coaxial imaging of melt pool dynamics provides several 

advantages over other monitoring methods in SLM. The 

ability to track the processing zone ensures the 

possibility to observe defect formation dynamics mainly 

related to melting and solidification. Commonly, the 
melt pool dynamics are observed by means of process 

emission. In process emission images, geometrical 

information of the melt pool are not directly available 

and their extraction would require the use of a calibrated 

sensor in order to measure the temperature levels; as a 

consequence commonly an arbitrary threshold is 

applied to the image. The use of external illumination 

for monitoring purposes allows for suppressing the 

process emission and observing the melt pool geometry 

by means of the reflected light. On the other hand, the 
obtained images show lower contrast and can be 

difficult to process by means of image processing 

algorithms. Accordingly, this work proposes the 

complementary use of external illumination and process 

emission for characterizing the melt pool dynamics in 

SLM. For the purpose, an open SLM platform with an 

inhouse designed coaxial monitoring module is used. 

Images with external illumination were used to estimate 

the melt pool size for AISI 316L. The information was 

used to set a threshold value for determining the melt 

pool size observed at the near infrared emission band. 

The proposed strategy proved promising for real time 

monitoring and control applications and can represent a 

feasible solution for industrial systems. 

I. Introduction 

Selective laser melting (SLM) has recently gained 

attention from the industrial scenario thanks to the 

flexibility and the ability of realizing complex shapes. 
Albeit the SLM technology results as established in 

some industrial fields such as aerospace, there are still 
several open issues that compromises the 

reproducibility of produced parts. To name a few, 

delamination, residual stresses, pores formation and 

cracking. The possibility to detect defect formation 

during the process is highly desired, in order to develop 

proper control actions for their prevention or correction. 

This paper focuses on the use of both external 

illumination and process emission images to estimate 

the melt pool dimensions. As known, the use of external 

illumination with an adequate external lighting source 

offers the chance to observe the melt pool geometry. 

Then, its dimensions can be estimated with adequate 

algorithms. The main limitations of such approach rely 

on the high cost of proper lighting sources and on the 

design of the image analysis algorithm. As a result, this 

technique is usually adopted in the context of 

understanding the physical behaviour of the process 

and/or the mechanisms of formation of defects [1], [2]. 

On the other hand, process emission offers different 

information that are usually related with defects 

formation or particular process behaviours [3]. Different 

emission bands can be used to highlight different 

phenomena such as spatter emission or melt pool shape 

[4-5].  

The proposed strategy combines external illumination 

and process emission for fast geometrical 

characterization of the melt pool. Melt pool length, 

width and area are estimated from process emission 

images after a calibration with externally illuminated 

ones is performed. The novelty of that approach is 

twofold:  

• externally illuminated images are taken as 

reference as in [6-7] but quantitative 

estimation of geometrical features is 

performed;  

• an optimization is run to make estimates 

coming from externally illuminated images 

and process emission ones match in average 

sense. 

The final method combines the advantages of both 

sources of information: geometrical identification of the 

melt pool and fast computation thanks to the application 

of simple image analysis. The presented monitoring 

architecture is promising for achieving real time 

performances and, thanks to the limited cost of the 

equipment, this technique could be implemented also in 



industrial systems to monitor and control melt pool 

shape. 

II. System and materials 

A. Selective laser melting platform 

In this work, an open and custom-made SLM system 

was used [8-9]. The powder bed, placed in a sealed 

chamber, has a working area of 60x60mm2 and can 

process small amount of powder (less than 0.5kg); An 

inertization procedure is performed three times before 

to processing; it consists in a cycle of vacuum till −950mbar followed by Ar pumping until a pressure of 

10mbar is reached. The powder bed movement and the 

pressure control are implemented in LabVIEW 

environment (National Instruments, Austin, TX) where 

the machine status is monitored. Finally, the other 

process parameters, namely, scan path trajectory, laser 

power and scan speed are set using SCANMASTER 

software (Cambridge Technologies, Bedford, MA). 

The laser source is a single mode fiber laser with 250W 
maximum power (IPG Photonics YLR-150/750-QCW-

AC, Cambridge, MA, USA). The collimation lens out 

of the fiber has a focal length of 50mm and the focal 

position is regulated via a zoom optic (VarioScan 20, 

Scanlab GmbH, Puchheim, Germany) placed after the 

collimation lens. The beam is then manipulated by a 

scanner head (HurryScan 14, Scanlab GmbH, 

Puchheim, Germany) and focused by a 420mm f-theta 

lens. Finally, the waist diameter is calculated as 70µm. 

Table 1: Main characteristics of the SLM prototype. 

B. Monitoring module 

The monitoring module is mounted coaxially and is 

inserted between the scanner head and the zoom optic. 

The image plane is fixed and regulated thanks to a 
professional camera lens system (Camera Adapter, 

Scanlab GmbH, Puchheim, Germany) having and 

equivalent focal length of 120mm; the camera lens 

system includes also a dichroic mirror transparent to the 

laser radiation and reflective between 400-1000nm. The 

image plane is set equal to the processing plane and the 

collected light passes through the f-theta lens, the 

scanner head (galvanometric mirrors), the dichroic 

mirror and the camera lens before reaching the sensor. 

Furthermore, optical filters are inserted between the 
camera and the camera lens to capture different process 

emission bands or the band of the external lighting 

source. 

The chosen camera sensor is an industrial CMOS 

camera (Ximea xiQ USB Vision, Münster, Germany) 

based on Si photodetectors with a sensitivity between 

350 − 1000nm. Sensor size and pixel size are 
respectively 1280x1024px2 and 4.8x4.8µm2; the camera 

permits to adjust the region of interest that influences 
both spatial and temporal resolution. Optical 

magnification and pixel number are designed to observe 

a field of view of 4.3x4.3mm2 with 𝑟𝑠 =14µm/pixel as 

spatial resolution; according to the sensor capabilities 

the frame rate is set to 1200fps. Spatial resolution was 

measured using a calibrated metric stage micrometer 

used in common practice to calibrate microscopes 

(Leica 10310345, Wetzlar, Germany). 

An external lighting source emitting at 640nm (Cavitar, 

Cavilux HF, Tampere, Finland) is used to observe the 

melt pool geometry. The lighting source is a low-

coherent source with maximum power of 280W which 

is mounted laterally to the chamber and collimated on 

the working area. Light emission and camera frame 

acquisition are synchronized. To avoid back reflection 

of the processing laser into the monitoring module, a 

short pass filter at 1000nm is inserted before the sensor 

(Thorlabs, FESH1000, Newton, NJ, USA). In addition, 

two different optical filters are used to observe melt pool 
geometry and process emission respectively:  

• a band pass filter at 650 ± 40nm is used to filter 
the reflected external light (Thorlabs, FB650-

40, Newton, NJ, USA);  

• a long pass filter at 850nm (Thorlabs, 

FEL0850, Newton, NJ, USA) is implemented 

to observe NIR process emission [4] in the 

range 850−1000nm and is used without 
external light emission.  

Fig. 1 depicts the system configuration. 

Data analysis is done on a DELL XPS 15” with an Intel 
i7 processor (7-th generation). The code was 

implemented in MATLAB programming language and 

compiled thanks to the MATLAB compiler tool. 

Working volume, DxWxH 60x60x20mm3 

Laser wavelength, λ 1070nm 

Max. laser power, Pmax 250W 

Beam quality factor, M2 1.1 

Nominal waist diameter, d0  70µm 

Vacuum capabilities -950mbar 



C. Materials 

Powder in use is gas atomized AISI 316L stainless steel 

(Cogne Acciai, Brescia, Italy). The powder size 

distribution is D10:19.7µm, D50:29.8µm, D90: 

44.6µm. Finally, the apparent density is 4.07g/cm3. 

III. Experiments 

A simple test geometry is produced as depicted in Fig. 

2. The scan direction is always vertical, i.e. parallel to 

the shorter side of the thin walls. Laser power is set to 

200W and scan speed to 400mm/s. 

Hatch distance and layer thickness were 70m and 

50m respectively. As aforementioned, the laser focal 

position is on the powder bed surface. These parameters 

were determined from preliminary experiments and 

proved to produce fully dense components. Process 

parameters are summarized in Table 2. 

Table 2: Process parameters. 

Laser power 200W 

Scan speed 400mm/s 

Hatch distance 70µm 

Layer thickness  50µm 

 

Video of the process have been acquired switching from 

externally illumination to process emission and vice 

versa layer by layer. Monitoring parameters namely 

frame exposure, optical filtering, power of the external 

light source and pulse duration were adjusted during the 

preliminary tests as well. 

Even if the video acquisition was not simultaneous, 

results of the following sections are considered valid; 

indeed considerations on melt pool measurements are 

done in average sense. Videos that have been compared 

together have been acquired in similar conditions, 

where the process is considered stable. Moreover, only 

layers after the 10th one have been considered during 

the analysis where the melt pool size stabilizes. In the 

first layers, the effect of the build substrate on heat flow 
conditions is relevant [10]. In fact, it features a high 

thermal conductivity, up to two orders of magnitude 

higher than powder material [11]. Conductive 

dissipation of thermal energy through the platform leads 

to a reduced melt pool area, since the energy input is 

brought away from the layer material interaction zone. 

IV. Data Analysis Algorithms 

In this study a method for fast data analysis is 

developed. Externally illuminated images are used at 

first as reference to calibrate estimates extracted from 

process emission images. Geometrical estimates are 

eventually extracted from process emission images 

achieving potentially real time performances. 

Fig. 3 shows the workflow of the proposed method. 

Estimates of the area, length and width of the melt pool 

are initially collected from externally illuminated 

images using the DBSCAN (Density Based Spatial 

Clustering of Applications with Noise) algorithm [12]. 

These estimates are used to set the threshold for the 

Hard Thresholding Based (HTB) algorithm via 

optimization. Finally, temporal behaviours of area, 

length and width of the melt pool are extracted from 

process emission images in a faster and low-demanding 

way. 

A. Analysis of externally illuminated images – 
DBSCAN 

Fig. 4a shows an example of images acquired with 

external illumination. Albeit the melt pool is clearly 

visible as a dark blob, its extraction is not trivial: low 

image contrast makes simple algorithms based on 

gradient analysis and thresholding fail. The melt pool is 

recognized by human eye because it is a localized area 

Figure 1: Schematic of the SLM system with the 

monitoring module employed in this work. 

Figure 2: Schematic of the scanned geometry. 



of the image with similar characteristics. In this 

framework, feature extraction should take into account 

spatial information. Given this type of database, a 

clustering algorithm was chosen because it classifies 

different regions of the image based on proper statistics. 

The DBSCAN algorithm is the reference algorithm for 

what concerns density-based clustering [13]; some of its 

advantages are good clustering performances, limited 

computing time, recognition of arbitrary shape clusters 

and no requirements of data models [13-14]. The main 

idea of density-based algorithms is that a cluster is dense 

of points with similar characteristics. Similar 

characteristics are described thanks to a distance 

function that considers the features of interest (e.g. the 

gray level and closeness of points). In addition, dense 

means that there is a minimum number of close points 

in a localized area. The algorithm needs two parameters: 

the minimum number of elements, minPnts, and the 

maximum distance between two different points, 𝜀. The 

complete description of the DBSCAN algorithm can be 

found in [12]. For sake of briefness details are not 

provided here while the proposed implementation and 

the calculation of the geometrical parameters of the melt 

pool are described. 

An image is a matrix 𝐼 ∈  ℝ𝑚×𝑛, with 𝑚, 𝑛 ∈ ℕ being 

the number of rows and columns respectively. Each 

element of the matrix is a pixel with gray level value 𝑔𝑖,𝑗 ∈ [0,255]. Each pixel can be represented as a vector 𝑝𝑘 ∈ 𝑁𝟛, k ∈ [1, 𝑚 ⋅ 𝑛] defined as 

 pk = ( ijgi,j), (1) 

where i ∈ [1,  m],  j ∈ [1, n] are the rows and columns 

indexes of matrix I identifying the pixel and 𝑔𝑖,𝑗  is its 

gray level (also called intensity in the following 

paragraphs). We are therefore considering a dataset 

composed by points 𝑝𝑘 that represents the two spatial 

coordinates of a pixel and its intensity value. The 

distance function is accordingly defined as the 

Euclidean distance between two points 

 d(h, k) = ‖𝑝ℎ − 𝑝𝑘‖2 . (2) 

The algorithm then proceeds with two fundamental 

steps: neighbor identification and cluster expansion. 
Starting from an arbitrary point 𝑝𝑘, its neighbors 𝑛𝑞 ∈𝒩𝑘 (𝒩𝑘 being the set of neighbors of 𝑝𝑘) are all the 

points of the database satisfying 

 d(k, q) <  ε ∀q ∈ [1, m ⋅ n], q ≠ k. (3) 

If the number of neighbors is higher than minPnts then 𝑝𝑘 is called core point and a new cluster is initialized. 

Otherwise, 𝑝𝑘 is clustered as noise. If 𝑝𝑘 is a core point, 

then the cluster is expanded to include all points that are 

close to each other.  

The algorithm is run two times on two selected subsets 

of the image for the extraction of the melt pool and the 

laser irradiated zone respectively. Once clusters are 

identified some simple rules on cluster area and centroid 

positions have been implemented to identify the melt 

pool and the laser irradiated zone. Finally, the two 

clusters are joined, and the resulting region is filled. An 
example of the algorithm’s output is showed in Fig. 4b. 

Constants minPnts and 𝜀 have been set equal to 150 and 

9.75 respectively. 

(a) (b) 

Figure 4: Example of application of the image analysis 

algorithm based on DBSCAN for feature extraction. 

Figure 3: Example of image acquired with external 

illumination. The melt pool appears as a dark blob. 



Melt pool length is defined as the maximum dimension 
of the melt pool parallel to the scan direction. In the 

application under analysis, the scanning direction is 

always vertical, so the melt pool length is calculated as 

the difference between the maximum and the minimum 

vertical coordinate of the points in the melt pool 

multiplied by the scaling factor 𝑟𝑠 (image resolution) 

 
𝑙 = 𝑟𝑠 (𝑚𝑎𝑥𝑘∈ℳ 𝑝𝑘 (2) − 𝑚𝑖𝑛𝑘∈ℳ 𝑝𝑘 (2)) 

. 
 

(4) 

where ℳ is the set of points that forms the melt pool. 

The melt pool width is defined as the maximum 
dimension of the melt pool perpendicular to the scan 

direction and is calculated as the melt pool length but 

considering the horizontal direction 

 

ŵ = rs (maxk∈ℳ pk (1) −mink∈ℳ pk (1)). 

 

(5) 

The area is finally calculated as the cardinality of set ℳ 

multiplied by the scaling factor squared 

 𝐴̂ = 𝑟𝑠2|ℳ|. 
 

(6) 

B. Analysis of thermal emission images - HTB 

Fig. 5a shows an example of process emission image. 

The gray level of images is related to temperature and 

can be used to identify the boundaries of the melt pool. 

As for the melt pool, it is observed also the emission 

coming from the spatters i.e. small particles of molten 

material ejected from the melt pool. In what follows, the 

algorithm for extracting the melt pool shape and 

isolating it with respect to spatters is explained. 

 Feature extraction is much easier in these conditions 

because of the simplicity of images. Gradient methods 

are not suitable because high gradient values are 

localized nearby the laser irradiated zone and not at the 

melt pool boundaries. Conversely, hard thresholding 

highlights the melt pool and spatters. Hard thresholding 

is defined as 

 𝑔̃𝑖,𝑗 = {1 𝑔𝑖,𝑗 ≥ 𝐶0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

 

(7) 

where 𝑔𝑖,𝑗 is the gray level of the operand image 𝐼, 𝑔̃𝑖,𝑗 

is pixel value of the binary image, 𝐼, resulting from the 

operation and C is the value of the threshold. Once hard 

thresholding is applied to process emission images, the 

melt pool appears as a white blob together with spatters. 

Consequently, an analysis of regions is applied to the 

binary image 𝐼 to identify the melt pool and other 

spatters.  

The region analysis allows us to compute the estimates 

of area, length and width of the melt pool removing the 

disturbances that affect other monitoring techniques 

(i.e. photodiodes), exploiting the advantage of having 

spatial information. Initially, all the connected regions 

of the binary image are identified and classified [15]; in 

other words, all the connected white blobs of the binary 

image are isolated from the whole image and 

enumerated. Afterwards, the melt pool is identified 
among all regions as the region characterized by the 

maximum area and the minimum blob centroid - image 

center distance (coaxial setup). 

Once the melt pool is identified, the binary image 𝐼 is 

cleaned from the other spots and geometrical quantities 

are finally computed. The length of the melt pool is 
calculated as the maximum pixel sum evaluated on the 

columns of image 𝐼 

 𝑙C = 𝑟𝑠 ∑ 𝑔̃𝑖,𝑗nj=1 . 

 

(8) 

In a similar fashion, the width of the melt pool is 

calculated as the maximum pixel sum evaluated on the 

image rows 

 𝑤̂𝐶 = 𝑟𝑠 ∑ 𝑔̃𝑖,𝑗𝑚𝑖=1 . 

 

(9) 

Finally, the melt pool area is calculated as the total pixel 

sum of the image 

 𝐴̂𝐶 = 𝑟𝑠2 ∑ ∑ 𝑔̃𝑖,𝑗𝑛𝑗=1𝑚𝑖=1 . 

 

(10) 

Results of the proposed algorithm are shown in Fig. 5b. 
(a) (b) 

Figure 5: Example of feature extraction of process 

emission images based on hard thresholding. 



C. Calibration of process emission estimates 

The threshold 𝐶 in (7) for the calculation of geometrical 

quantities in (8)-(10) sensibly influences results: the 
bigger the threshold, the smaller the melt pool and vice 

versa. Accordingly, the estimates of area, length and 

width of the melt pool are function of C. Setting the 

threshold is therefore related to the selection of isotherm 

of the temperature that allows the distinction of the melt 

pool from the surrounding powder. As side effect, also 

spatters are identified because of their high temperature. 
This is not a big issue, since as aforementioned by a 

region analysis they can be easily filtered out. 

Estimates of the melt pool computed by the DBSCAN 

algorithm are considered as reference; the target of the 

optimization is to make the estimates from externally 

illuminated images and the estimates from process 

emission images match in average sense. More 

specifically the following objective functions have been 

minimized CA = minC (A̅ − A̅C)2 , Cl = minC (l̅ − lC̅)2
 , Cw = minC (w̅ − w̅C)2 . 

 

(11) 

where (⋅)̅̅̅̅  indicates the average of estimates. The three 

minimizations provide optimal threshold values for 

area, length and width respectively. It is observed that 

this optimization is convex and unconstrained. Since the 

optimization is convex and has converged, we can 

assure that the minimum is a global minimum and that 

it yields the optimum result in minimizing the objective 

function. 

V. Results 

A. Threshold calibration 

Threshold calibration is performed analyzing images of 

a part of the entire geometry going from 1.5mm and 

2.5mm of the total wall length corresponding to 30 

frames. Results of the optimization (11) are shown in 

Fig. 6, where estimates computed with their optimized 

threshold are compared with reference values. As 

expected the minimization makes the two series of 

values match in average sense.  

The threshold values are 𝐶𝐴 = 𝐶𝑙 = 12 and 𝐶𝑤 = 14 

and the difference of melt pool shape is shown in Fig. 7. 

The fact that the three threshold values do not converge 

to the same value means that there is a difference in 

shape between melt pool observed in externally 

illuminated images and process emission ones. Indeed, 

there is an agreement between area and length but not 

with melt pool width which is overestimated when 

keeping the threshold 𝐶𝐴 = 𝐶𝑙. This could be motivated 

as follows: 

1. estimates from DBSCAN algorithm provides a 

width which is slightly underestimated; 

2. process emission at the melt pool tail (i.e. at the 

left) has a slow decay [7]. Estimates from 

process emission images tends to be 

 
(a) 

 
(b) 

 
(c) 

Figure 6: Results of the calibration procedure: the matching 

between reference and calibrated values is shown. 

(a) (b) 

 
(c) 

Figure 7: Differences in melt pool shape for different 

values of thresholds (b-c) compared with real melt pool (a). 

(b) and (c) shows the melt pool shape when 𝐶𝐴 = 𝐶𝑙  or 𝐶𝑤  

respectively are chosen. 



overestimated because of the emission of 

already solidified material. 

Following studies will focus on a deep investigation 

about differences in melt pool shape given by process 

emission images and externally illuminated ones 

acquired simultaneously. 

B. Melt pool dynamics 

Fig. 8-10 show temporal behaviors of the melt pool 

estimates during the entire 27th layer. In Fig.8, local 

minima are related to positions where the laser spot 

changes direction (also called switching points in what 

follows): the algorithm recognizes only the laser 

irradiated zone because of the region analysis and lower 

melt pool emission due to the high laser spot – melt pool 

centroid distance. Furthermore, local maxima are 

related to spatters emission originated in the horizontal 

direction. 

Considering Fig. 9, switching points are related by local 

maxima, whereas local minima are related to points 

where the laser irradiated zone is in central position. 

Furthermore, it observed that the behaviour of melt pool 

length is less nervous with respect to melt pool width. 

This is related to the high sensitivity of the HTB 

algorithm with respect to switching points when 𝐶𝑤 is 

used. To overcome this issue, additional elements (e.g. 

neutral density filters) can be inserted in the optical 

chain to damp process emission in the laser irradiated 

zone [7]; this would result in higher values of threshold 

values and lower sensitivity of the HTB algorithm to its 

variation. It is hypothized that estimation performances 

would increase especially for width estimation. 

The behaviour of melt pool area is depicted in Fig. 10; 

the same issue of sensitivity is observed but it happens 

only once. An increasing trend towards the end of the 

scanned geometry is observed. The effect of that trend 

on final quality has not been studied but can potentially 

lead to different processing conditions. The maximum 

value in the graph is related to a significantly bigger 

melt pool dimension again indicating some change in 

the processing conditions or the formation of a defect in 

that region. Future works will focus on the 

understanding of such behaviour discovering whether 

final quality can be linked with those phenomena. 

Comparing the three temporal behaviours is observed 

that the length of the melt pool stabilizes first to its mean 

value with respect to width and area. This is due to the 

scan path geometry: at each scanned line the full 

geometry length is scanned whereas the width is 

increasing. Accordingly, after few scanned vertical lines 

the length of the melt pool stabilizes at its mean value 

without much dependency of the laser movement. Area 

Figure 10: Melt pool area as a function of time (27th layer). 

The yellow contours in images correspond to melt pool shape 

identified by the HTB algorithm. 

Figure 9: Melt pool length as a function of time (27th layer). 

The yellow contours in images correspond to melt pool shape 

identified by the HTB algorithm. 

Figure 8: Melt pool width as a function of time (27th layer). 

The yellow contours in images correspond to melt pool shape 

identified by the HTB algorithm. 



and width increases until the scanned geometry is large 

enough and then stabilizes (Fig. 11). Length 

stabilization takes about 0.02s while area and width 

stabilization take about 0.05s corresponding to 7 and 17 

scanned vertical lines respectively. 

C. Real time applications 

The average computing time for the HTB algorithm is 

about 0.5ms per frame. This computing time refers to 

the compiled version of the code and can further be 

improved by dedicated hardware setups (e.g. FPGA’s 

[16]). The proposed method can therefore achieve real 

time performance being the time between two 

subsequent frames equal to 0.83ms. This fact opens 

definitely to the concrete possibility of developing 
feedback control schemes based on geometrical 

information. Even if the computing time is lower than 

the sampling period, there are still many questions for 

the design of a feedback control that must be addressed. 

At first, the time required for data transfer has to be 

accounted. Then, control inputs (process parameters 

that are adjusted during the manufacture) have to be 

identified and chosen; the choice may also depend on 

dynamic performance of the SLM system, that have to 

be sufficient for the online adaption of process 

parameters, i.e. input actuation has to be fast enough to 

stay within the sampling period. Usual requirements are 

that control inputs could be controlled one order 

magnitude faster than the sampling rate, i.e. in the range 

of 10kHz. Common CNCs and other industrial control 

units have not such performances, therefore the most 

promising control input is not scan speed, but laser 

power controlled via temporal modulation.  

As an alternative, to improve process repeatability and 

in some way control the manufacture, the application of 

remelting strategies on points detected by in situ real 

time monitoring should be considered. Assuming that 

the implemented sample rate is sufficient to detect 
process stability, the proposed method represents a 

valuable solution both for accuracy and limited cost of 

equipment after calibration is performed. In fact, the 

highest cost of the proposed setup lies in the external 

lighting system; in an industrial scenario, external 

lighting system would be used only by the manufacturer 

and not mounted in all industrial machines. 

As a final remark, the class of process dynamics that can 

be detected is in the range of hundreds of Hz because of 

the sampling frequency is 1200Hz. This means that 

some really fast phenomena strictly related to the melt 

pool (e.g. melt pool oscillations) cannot be observed by 

such system. On the other hand, the possibility to 

inspect melt pool shape and spatter ejection is 

demonstrated. As a result, the method can be used to 

control dimensions of the melt pool, ensure standard 

operating conditions and prevent process drifts. In 

addition, the dependency of melt pool shape with 

respect to scan path can controlled using a feedback 

control scheme in place of ad-hoc process parameters 

allowing for cost reduction. This could be useful 

especially when “thin-walls-like” geometries (Fig. 2) 

are produced where overheating effects cause the melt 

pool being large.  

VI. Conclusions 

The complementary use of external illumination and 

process emission for estimation of the melt pool 

geometry is described. The study presents a new and 

quantitative calibration method based on externally 

illuminated images that offers the possibility to estimate 

melt pool geometry by process emission images. The 

method proposes an information transfer from 

externally illuminated to process emission images; the 

final scheme is based only on process emission images 

and can be implemented in industrial scenarios due to 

the relative low cost of the monitoring system. 

Process dynamics characterization capabilities are 

shown: time trends can capture changes in melt pool 

shape, periodic phenomena, spatter ejection and 

potentially defects formation. In addition, the presented 

strategy offers the possibility of real time monitoring in 

the range of kHz. Due to its computing time 

performances it can possibly become a source of 

information for the development of a feedback control 

or for the implementation of correcting strategies to be 

applied layer wise (e.g. remelting). 

Future work will focus on the following points:  

1. the sensitivity of melt pool geometrical 

estimates with respect to the HTB algorithm 

would be studied to improve reliability. The 

Figure 11: Zoom of the melt pool transient at the beginning of 

the scan geometry (27th layer). 



introduction of additional optical elements will 

be considered to improve image quality;  

2. simultaneous acquisition of both externally 

illuminated images and process emission ones 

will be implemented to improve calibration; 

3. the difference in shape between the results of 

the HTB algorithm and real melt pool 

geometry will be investigated; 

4. the dependency between scan geometry and 

melt pool shape will be investigated;  

5. the relationship between melt pool shape and 

quality of produced pieces will be analysed; 

6. correcting strategies aiming at keeping the 

melt pool shape constant will be introduced 

both in real time and layer wise. 
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