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Abstract

A broad class of planar dielectric media with complex permittivity profiles that are fully invisible,

for both left and right incidence sides, is introduced. Such optical media are locally isotropic, non-

magnetic and belong to the recently discovered class of Kramers-Kronig media [Nature Photon. 9,

436 (2015)], i.e. the spatial profiles of the real and imaginary parts of the dielectric permittivity

are related each other by a Hilbert transform. The transition from unidirectional to bidirectional

invisibility, and the possibility to realize sharp reflection above a cut-off incidence angle, are also

discussed.
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Wave reflection in optical media that show a sharp change of the refractive index is ubiq-

uitous in optics1. Several methods have been devised to avoid reflection, such as the use

of stratified media, antireflection coatings, graded-index and nanostructured interfaces, to

mention a few (see, for instance,2,3). Since the pioneering work by Kay and Moses4, it is well

known that a broad class of dielectric media with specially tailored refractive index profiles

are reflectionless and can thus provide omnidirectional antireflection5,6. However, Kay and

Moses optical media are not invisible albeit they do not scatter any wave. Invisibility and

cloaking devices are generally considered peculiar to metamaterials, which are designed by

transformation optics and conformal mapping methods7–10. Even in certain isotropic inho-

mogeneous dielectric media, i.e. with no features of the magnetic permeability, cloaking

can be realized11. Recent works have considered wave reflection in inhomogeneous media

with a complex dielectric permittivity profile ǫ(x) and showed that they can appear invisible

when probed form one side (unidirectional invisibility)12–21. As compared to metamateri-

als, they require appropriate dispersion engineering in space but all materials are locally

isotropic, non-magnetic and do not rely on negatively refracting media. Important exam-

ples of one-way invisible dielectric media with a complex dielectric permittivity profile ǫ(x)

are PT -symmetric complex crystals13,14,16 and Kramers-Kronig optical potentials19–21. The

latter refer to a rather broad class of inhomogeneous planar dielectric media such that the

real and imaginary parts of the permittivity ǫ(x) are related by Kramers-Kronig relations19,

i.e. ǫ(x) is a holomorphic function of the complex variable x = x′ + ix′′ in a half (upper or

lower) complex plane. Such media are always reflectionless when probed from one side19,

and they turn out to be also invisible when the so-called ’cancellation condition’ is met20,21.

It has been also noticed that some special and exactly-solvable optical potentials19,20, such

as those synthesized by supersymmetry20,22,23, can show bidirectional invisibility, i.e. they

are invisible regardless of the incidence side. Since in such media there is optical gain, some

instability issues might arise20,22. However, to date no general conditions are known for

a complex optical potentials ǫ(x) to show bidirectional (rather than simple unidirectional)

invisibility. In this Letter we introduce a rather broad class of Kramers-Kronig optical po-

tentials that show bidirectional invisibility for both TE- and TM-polarized waves. We also

discuss the transition from unidirectional to bidirectional invisibility and highlight the pos-

sibility to realize sharp reflection above a cut-off angle.

Let us consider the scattering of a monochromatic optical wave at frequency ω = k0c0
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across an inhomogeneous isotropic planar dielectric medium in the (x, y) plane; see Fig.1.

Let ǫ = ǫ(x) be the relative dielectric permittivity profile of the medium, which shows an

inhomogeneity localized at around x = 0, i.e.

ǫ(x) = ǫb + α(x) (1)

where ǫb = n2
b , nb is the refractive index of the substrate and α(x) describes the localized

inhomogeneity, with α(x) → 0 as x → ±∞. If dissipation in the substrate is negligible,

ǫb is real. On the other hand, α(x) is taken complex, i.e. in the inhomogeneous region

the medium displays optical gain and/or dissipation. We further assume that the limits

limL→±∞

∫ L

0
α(x)dx do exist and are finite, which ensures that far from the inhomogeneous

region the scattered states are plane waves20.

The main result of the present work can be stated as follows:

Let

α(x) = β(x) exp(iΘx) (2)

with β(x) holomorphic in the upper half complex plane Im(x) ≥ 0 with β(x) → 0 as |x| →

∞, and Θ ≥ 2k0nb. Then the medium is bidirectionally invisible for TE-polarized waves.

In addition, if ǫ(x) = ǫb + α(x) does not have zeros in the the upper half complex plane

Im(x) ≥ 0, then the medium is bidirectionally invisible for TM-polarized waves as well.

Note that the optical medium satisfying the above requirement is of Kramers-Kronig type,

i.e. the real and imaginary parts of α(x) are related by a Hilbert transform, and that

the Fourier spectrum α̂(k) of α(x), α(x) =
∫

dkα̂(k) exp(ikx), vanishes for k < Θ. A

rigorous proof of such a result is given below. However, it is worth first providing a simple

physical explanation of the bidirectional invisibility. Since the Fourier spectrum of the

scattering potential α(x) does not have any component with negative wave number k, a

forward-propagating wave (left incidence side) can not be back scattered. This is basically

the physical reason of the one-way reflectionless property of Kramers-Kronig optical media

already discussed in Ref.19; invisibility is further ensured by the ’cancellation condition’
∫

∞

−∞
dxα(x) = 020,21, which means that the inhomogeneity does not change the amplitude

and phase of the transmitted wave. For a backward-propagating wave (right incidence side),

there can not be neither forward-propagating scattered waves since the condition Θ > 2k0nb

makes the scattered waves evanescent.

To prove such a result in a rigorous manner, we take the electric and magnetic fields
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FIG. 1. (Color online) Schematic of wave scattering in an inhomogeneous planar dielectric medium

for (a) TE-polarized, and (b) TM-polarized waves.

in the form E(x, y, z, t) = E(x, y) exp(−iωt) + c.c., H(x, y, z, t) = H(x, y) exp(−iωt) + c.c.

with invariance along the z direction. Let us first consider the case of a TE-polarized wave

(Ex = Ey = Hz = 0), with Ez satisfying the Helmholtz equation (∂2x + ∂2y)Ez + k20ǫEz = 0;

Fig.1(a). After setting Ez(x, y) = ψ(x) exp(ikyy), with 0 < ky < k0nb, the electric field

profile ψ(x) satisfies the stationary Schrödinger-like wave equation

− (d2ψ/dx2) + V (x)ψ = k2xψ (3)

with the optical potential given by

V (x) = −k20α(x) (4)

and with kx =
√

k20n
2
b − k2y > 0. Note that the incidence angle θ is given by θ = atan(kx/ky),

with θ → 0 for grazing incidence (Fig.1). With the Ansatz ψ(x) = w1(x) exp(ikxx) +

w2(x) exp(−ikxx) and (dψ/dx) = ikx[w1(x) exp(ikxx)− w2(x) exp(−ikxx)], the local ampli-

tudes w1,2(x) of forward and backward propagating waves satisfy the exact coupled equations

dw1

dx
= V (x)/(2ikx) [w1 + w2 exp(−2ikxx)] (5)

dw2

dx
= −V (x)/(2ikx) [w2 + w1 exp(2ikxx)] (6)

The transmission t(kx) and reflection r(l,r)(kx) coefficients, for left (l) and right (r) inci-

dence sides, are given by t(kx) = w1(∞), r(l)(kx) = w2(−∞) with the boundary conditions

w1(−∞) = 1, w2(∞) = 0, and t(kx) = w2(−∞), r(r)(kx) = w1(∞) with the boundary con-

ditions w2(∞) = 1, w1(−∞) = 0 (the transmission coefficient is independent of incidence

side). To compute the transmission and reflection coefficients, we use the method of spatial

complex displacement21,24, i.e. we introduce the shifted potential V1(x) = V (x + iδ) with

4



δ > 0 arbitrarily large. Then the reflection and transmission coefficients of the original

potential V (x) can be retrieved from those t1(kx), r
(l,r)
1 (kx) of the shifted potential V1(x) via

the simple relations21,24

t(kx) = t1(kx) (7)

r(l)(kx) = r
(l)
1 (kx) exp(−2δkx) (8)

r(r)(kx) = r
(r)
1 (kx) exp(2δkx). (9)

Using Eq.(2), the displaced potential V1(x) can be written as V1(x) = F (x) exp(−δΘ) with

F (x) = −k20β(x+ iδ) exp(iΘx). Since β(x) is analytic in the Im(x) ≥ 0 half complex plane,

F (x) is a limited function for any δ > 0, and thus V1(x) is vanishingly small, at least of

order η ≡ exp(−Θδ), in the large δ limit. Therefore, as δ → ∞, for the vanishing potential

V1(x) we can solve the coupled equations (5) and (6), with V (x) replaced by V1(x), in power

series of η with appropriate boundary conditions for w1(x) and w2(x). At first order (Born)

approximation one obtains

t1(kx) = 1 +O(η) (10)

r
(l,r)
1 (kx) = −η

[

k20
2ikx

∫

∞

−∞

dξβ(ξ + iδ) exp(±2ikxξ + iΘξ)

]

+O(η2) (11)

where on the right hand side of Eq.(11) the upper (plus) sign applies to r
(l)
1 , whereas the

lower (minus) sign applies to r
(r)
1 . Note that, since kx is bounded from above by k0nb and

Θ > 2k0nb, the integral on the right hand side in Eq.(11) can be evaluated by the residue

theorem closing the contour path with a semi-circle of radius R in the Im(ξ) ≥ 0 half

complex plane and using Jordan’s lemma. Since β(ξ + iδ) is holomorphic in the Im(ξ) ≥ 0

half complex plane, using a procedure similar to the one detailed in20 and taking the R → ∞

limit it follows that the integral on the right hand side in Eq.(11) vanishes. Therefore, taking

into account that Θ > 2kx and because δ can be taken arbitrarily large, from Eqs.(7-11) one

concludes that r(l)(kx) = r(r)(kx) = 0 and t(kx) = 1 for any kx > 0.

Let us now consider the case of a TM-polarized incident wave, i.e. let us assume Hx = Hy =

Ez = 0, with Hz satisfying the equation ǫ∂2x(Hz/ǫ) + ∂2yHz + k20ǫHz = 0; Fig.1(b). In this

case, after setting Hz(x, y) =
√

ǫ(x)ψ(x) exp(ikyy), the field amplitude ψ(x) satisfies again

the stationary Schrödinger-like wave equation (3), but with the optical potential V (x) given

by V (x) = −k20αTM(x) where we have set

αTM(x) = α(x)−
3

4k20

(

ǫ̇

ǫ

)2

+
1

2k20

ǫ̈

ǫ
. (12)
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In the previous equation, the dot indicates the derivative with respect to x. Note that, as

compared to the TE-polarized case, the optical potential V (x) is modified by the replacement

α(x) → αTM(x). If we assume for α(x) the form given by Eq.(2) and, additionally, that ǫ(x)

does not have zeros in the Im(x) ≥ 0 half complex plane, then it can be readily shown that

αTM(x) can be written in the form αTM(x) = βTM(x) exp(iΘx) with βTM(x) holomorphic

in the Im(x) ≥ 0 half complex plane. Therefore, likewise for the TE polarization case, it

follows that the optical medium is bidirectional invisible for TM-polarized waves as well.
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FIG. 2. (Color online) Bidirectional invisibility in a Kramers-Krönig planar dielectric medium.

(a) Profile of the dielectric permittivity ǫ(x) defined by Eq.(13). Parameter values are given in the

text. (b) Numerically-computed transmittance |t(kx)|
2, reflectances |r(l,r)(kx)|

2 for left and right

incidence sides, and phase of the transmission coefficient t(kx) for a TE-polarized incident wave.

(c) Same as (b), but for a TM-polarized wave.

As an example, in Fig.2 we show the reflection and transmission coefficients versus kx/k0,
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for either TE and TM polarization states, for the dielectric profile

ǫ(x) = n2
b −A(x+ iσ)−2 exp(iΘx). (13)

The reflection and transmission coefficients have been numerically-computed using a stan-

dard transfer matrix method after truncating the potential at x = ±L. Parameter values

used in the simulations are nb = 1, σk0 = 2, Θ = 2k0, Ak
2
0 = 1 and Lk0 = 30. The figure

clearly shows bidirectional invisibility for both TE and TM polarized waves.

The previous analysis can be extended to show the transition from unidirectional to bidi-

rectional invisibility in Kramers-Kronig optical potentials. To this aim, let us consider the

dielectric permittivity profile ǫ(x) = ǫb + α(x) with α(x) defined again by Eq.(2), but we

just require now Θ > 0 rather than the more stringent requirement Θ ≥ 2k0nb. Since β(x)

is holomorphic in the Im(x) ≥ 0 half complex plane, its Fourier spectrum β̂(k) vanishes for

k < 0. For the sake of definiteness, let us assume that β̂(k) does not vanish in the neighbor of

k = 0+, and let us consider a TE-polarized wave. For Θ → 0+ the medium is invisible for left

incidence side whenever
∫

∞

−∞
dxβ(x) = 0, i.e. β̂(k = 0) = 0, but rather generally reflection

does not vanish for right incidence side19. For Θ > 0, we can again use the method of spatial

complex displacement by introduction of the shifted potential V1(x) = V (x+ iδ), with δ > 0

arbitrarily large. Using Eqs.(7-11), one can conclude that t(kx) = 1 and r(l)(kx) = 0 for any

kx > 0, i.e. for any incidence angle, whereas r(r)(kx) = 0 for 0 < kx < Θ/2. This means

that, for 0 < Θ < 2k0nb, the medium is invisible for left incidence side, whereas for a right

incident wave it is only partially invisible for incidence angle θ below the cut-off value

θcut = atan

(

Θ/
√

4k20n
2
b −Θ2

)

. (14)

It is also interesting to compute the value of r(r)(kx) at kx = Θ/2+, i.e. at the cut off angle

from above. Using Eqs.(9) and (11), one readily obtains

r(r)(kx = Θ/2+) =
ik20
Θ

∫

∞

−∞

dξβ(ξ) exp(−iξ0+)

=
2πik20
Θ

β̂(k = 0+). (15)

Hence, whenever the Fourier spectrum β̂(k) of β(x) does not vanish at k = 0+ (for example

when β(x) shows a first-order pole in the Im(x) < 0 half complex plane), r(r)(kx = Θ/2+)

does not vanish, and thus r(r)(kx) shows an abrupt change at kx = Θ/2, from zero at kx =
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Θ/2− to the value given by Eq.(15) at kx = Θ/2+. On the other hand, whenever the Fourier

spectrum β̂(k) of β(x) vanishes at k = 0+ (for example when the sum of residues of β(x) in

the Im(x) < 0 half complex plane vanishes), one has r(r)(kx = Θ/2+) = r(r)(kx = Θ/2−) = 0,

i.e. the reflectance for right incidence side is a continuous function when the cut-off angle

θcut is crossed. From a physical viewpoint, the different behavior of the reflection coefficient

near the cut-off angle θcut in the two above-mentioned cases stems from the fact that, for

an incident wave with momentum kx ≃ Θ/2, back scattering is provided by the Fourier

component of the scattering potential with spatial frequency 2kx = Θ (elastic scattering).

Therefore, a discontinuity of α̂(k) = β̂(k−Θ) at k = Θ is transferred into an abrupt change

of the reflectivity near the incidence angle θ ∼ θcut. We note that a similar behavior, i.e.

continuous or abrupt change of the reflectance depending on the properties of poles of the

scattering potential, was found in Ref.25 in a different scattering system. As an example,

in Fig.3(a) we show the numerically-computed behavior of the reflectance versus kx for

right incidence side in the dielectric permittivity profile defined by Eq.(13) for the same

parameter values as in Fig.2, except for Θ = k0. Note that the medium is invisible only

for kx < Θ/2 = k0/2. Moreover, according to the theoretical analysis the reflectance is a a

continuous function at kx = Θ/2 since ǫ(x) has a second-order pole at x = −iσ. Figure 3(b)

shows the numerically-computed behavior of the reflectance versus kx for right incidence

side in the dielectric permittivity profile defined by

ǫ(x) = n2
b −A(x+ iσ)−1 exp(iΘx). (16)

with Θ = k0 as in the previous case. Note that the medium is invisible for kx < Θ/2 = k0/2,

however the reflectance shows an abrupt change (discontinuity) at kx = k0/2, in agreement

with the theoretical predictions [note that ǫ(x) has a simple pole at x = −iσ]. For TE-

polarized waves, the numerically-computed discontinuity of the reflectance at kx = k0/2 is

in agreement with the theoretical value predicted by Eq.(15).

As a final comment, it should be noted that in some special Kramers-Kronig potentials,

defined by Eq.(2) with Θ = 0, the medium turns out to be bidirectionally invisible. An

example is provided by the profile defined by Eq.(13), which turns out to be bidirectionally

invisible owing to supersymmetry for Θ = 0 and for special values of the amplitude A, namely

Ak20 = n(n+1) with n = 1, 2, ...20,26. However, at grazing incidence such a potential shows an

unstable growth of the optical power versus y near the interface x = 0, which arises from the
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FIG. 3. (Color online) Partial invisibility in a Kramers-Krönig planar dielectric medium. (a)

Numerically-computed reflectance |r(r)(kx)|
2 for right-side incidence in the permittivity profile

defined by Eq.(13) for parameter values nb = 1, σk0 = 2, Θ = k0 and Ak20 = 1. (b) Same as (a),

but for the the permittivity profile defined by Eq.(16) [nb = 1, σk0 = 2, Θ = k0 and Ak0 = 1].

In (a) the transition from invisibility to reflection at kx = k0/2 is continuous, whereas in (b) it is

sharp. The reflectances for left incidence side (not shown in the figure) are vanishing, whereas the

transmission is unit. In (b) Fabry-Perot like oscillations of reflectance versus kx can be observed,

which arise from the oscillations of the slowly-decaying permittivity profile.
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FIG. 4. (Color online) Reflection of a TE-polarized Gaussian beam at grazing incidence in the

permittivity profile defined by Eq.(13) for (a) Θ = 0, and (b) Θ = 2k0nb. The other parameter

values are given in the text. In (a) a secular growth of a localized mode at the interface x = 0 is

observed, whereas the instability is suppressed in (b).

existence of an exceptional point in the continuum20,26. An example of such an instability is

shown in Fig.4(a), which depicts the propagation of a TE-polarized broad Gaussian beam

across the inhomogeneous region at grazing incidence (incidence angle θ ≃ 0.08 rad) for

the permittivity profile defined by Eq.(13) and for parameter values Ak20 = 2, σk0 = 0.5,

9



nb = 2.5 and Θ = 0. Note the secular growth of a localized mode near the interface

x = 0. By changing the value of Θ from Θ = 0 to Θ = 2k0nb, the potential remains

bidirectionally invisible according to our general theory. Interestingly, with such a change

of Θ the instability turns out to be suppressed, as shown in Fig.3(b).

In conclusion, we have shown that bidirectional invisibility can be observed in a broad

class of Kramers-Kronig dielectric and isotropic optical media, and have discussed the

transition from unidirectional to bidirectional invisibility. Our results provide new insights

into the recently disclosed class of Kramers-Kronig optical media19 and should provide guid-

ance in the development of metamaterials based on judiciously chosen susceptibility profiles.
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