
Learning for Control: a Bayesian Scenario Approach

Simone Garatti and Marco C. Campi

Abstract— The scenario approach is a data-driven method
for uncertain optimization that in recent years has found
many applications in systems and control. In this context,
a decision is built from a sample of observations and the
“risk” is the probability that the scenario decision meets a
shortfall in a new, out-of-sample, case. This paper focuses on the
“complexity of the solution” (as precisely defined in the paper)
and studies the conditional probability distribution of the risk
given the solution complexity. By a fundamental theoretical
limitation (shown in the paper), no conditional results can
be drawn without additional knowledge on uncertainty. This
paper thus introduces a new perspective where prior knowledge
can be incorporated and the main achievement is that strong
conditional results can be established under very mild priors.
This result allows for tight, a-posteriori, evaluations of the risk
and improves the usability of the approach.

I. INTRODUCTION AND PROBLEM POSITION

The scenario approach is a sample-based method to deal
with optimization problems under uncertainty, a condition
which ever more often arises in systems and control design.
In mathematical terms, we consider optimization problems
with convex cost function f(x) and uncertain convex con-
straint x ∈ Xδ , where x ∈ X ⊆ Rd is the optimization
variable and δ is a random element, defined over a prob-
ability space (∆,D,P), that is used to model uncertainty.
All involved sets X and Xδ are assumed to be convex.
Given N ≥ d independent realizations δ1, δ2, . . . , δN of δ, a
scenario program is written as

SPN : min
x∈X

f(x)

subject to: x ∈
⋂

i=1,...,N

Xδi , (1)

that is, in the scenario program only finitely many constraints
given by δ1, δ2, . . . , δN are enforced and used to confine the
choice of the optimization variable x. Scenario programs of
the above type have been much studied over the past decade,
[4], [9], [1], [10], [30], [14], [23], [34], [15], [11], [28]. They
offer a general-purpose methodology that has proven useful
in many contexts, including control systems design, [5], [12],
[19], [29], [2], [21], system identification, [7], [18], machine
learning, [6], [8], [24], [16], and quantitative finance, [25],
[26], [27], [22] to mention but a few. Throughout this paper
it is assumed that program (1) admits solution. If more than
one solution exists, we assume that a solution is singled out
by a convex rule, that is, the tie is broken by minimizing an
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additional convex function t1(x), and, possibly, other convex
functions t2(x), t3(x), . . . if the tie still occurs. An example
of a tie-break function is the norm of x, t1(x) = ‖x‖.
Another example is the lexicographic rule, which consists in
minimizing the components of x in succession, i.e., t1(x) =
x1, t2(x) = x2, . . . , td(x) = xd. After breaking the tie, the
unique solution is denoted by x∗N .

The δ1, δ2, . . . , δN are the so-called scenarios and are in-
terpreted as a record of empirical observations of the random
variable δ coming from past experience. The idea underlying
scenario optimization is that enforcing the satisfaction of
the sole constraints x ∈ Xδi , i = 1, . . . , N , guarantees
robustness against the large part of the possible realizations
of δ ∈ ∆. Moreover, considering only δ1, δ2, . . . , δN lessens
the difficulties that are inherent in managing the wealth of all
the realizations of δ ∈ ∆, which is either not viable because
of computational issues or even impossible because ∆ and
P are unknown to the user. The generalization result which
ties δ1, δ2, . . . , δN to δ ∈ ∆ is reviewed in the following as
it provides a basis of analysis to better understand the results
of the present contribution.

Start by introducing the following definition of violation.
Definition 1 (violation): Given an x ∈ X , the violation of

x is defined as V (x) = P{δ ∈ ∆ : x /∈ Xδ}. F
V (x), which is also called “risk”, quantifies the probability

with which a new randomly selected constraint is violated by
x, and thereby quantifies the level of robustness of x against
the uncertain constraint x ∈ Xδ . V (x) also has an interpre-
tation in terms of repeated experiments as follows. Consider
the infinite product probability space (∆∞,D∞,P∞). By the
law of large numbers, one has

lim
M→∞

1

M

M∑
j=1

1x/∈XδN+j
= V (x), (2)

P∞-almost surely. Hence, V (x) is the long term average of
times where x does not satisfy a sequence of independent
constraints.

When x in V (x) is replaced by the solution of the scenario
program x∗N (which is random given its dependence on
δ1, . . . , δN ), one obtains a random variable V (x∗N ) and, in
applications, one is interested to know how this random
variable distributes to judge the robustness level of x∗N , [9],
[11]. One fundamental result [9] states that the distribution
of V (x∗N ) is always dominated by a Beta(d,N − d + 1)
distribution. That is, irrespective of P it holds that

PN{V (x∗N ) ≤ ε} ≥ 1−
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i. (3)



This result is tight since (3) holds with equality for a
whole class of problems, those called fully-supported in [9].
Moreover, being (3) valid for any P makes this result widely
applicable to situations where knowledge on P beyond the
sample δ1, δ2, . . . , δN is scarce or unavailable.

An inspection of how the result (3) has been proven in [9]
shows the central role played by the concept of support set.

Definition 2 (support set): A sub-sample δi1 , . . . , δik of
the scenarios is said to be a support set if the solution ob-
tained by enforcing the constraints associated to δi1 , . . . , δik
only coincides with x∗N , the solution with all the scenarios
in place. F

In [4], it is shown that the cardinality of the smallest
support set (i.e. a support set with a minimal number of
elements) never exceeds the number of optimization vari-
ables d, and this fact is used to set the upper limit to the
distribution of V (x∗N ) given in (3) which explicitly contains
d. As d increases, the Beta distribution shifts to the right
signifying that the desired event {V (x∗N ) ≤ ε} becomes less
probable. On the other hand, it is not rare that if one a-
posteriori determines the smallest support set after that x∗N
has been obtained,1 fewer scenarios are found in it than
there are optimization variables. This is especially true for
optimization problems in high dimensions where the gap
between the cardinality of the smallest support set and d
is often large (see e.g. [33], [32], [30], [14], [11], [13] for
examples in various contexts). When this happens, it comes
spontaneous to ask whether a better bound than (3) can be
used, and particularly whether in (3) d can be substituted by
the actual cardinality of the smallest support set, say h, and
still obtain a valid bound conditionally on having a smallest
support set with h elements. In formulas, this is written as

PN{V (x∗N ) ≤ ε|s∗N = h} ≥ 1−
h−1∑
i=0

(
N

i

)
εi(1−ε)N−i, (4)

where s∗N is a random variable that returns the cardinality
of the smallest support set for (1) and conditioning is taken
over the event where this cardinality equals h. It is a fact
that this result is incorrect and the extremely negative result
holds that the conditional probability on the left-hand side
of (4) can be any small even for large ε. This is shown in
the next example.

Example 1: Consider a problem where x ∈ R2, cTx =
x2, and Xδ is either V-shaped or U-shaped as depicted in
Figure 1. More precisely, with probability 1 − p Xδ is V-
shaped with vertex uniformly distributed along an horizontal
segment; correspondingly, with probability p Xδ is instead
U-shaped with vertex uniformly distributed along a vertical
segment. V-shaped constraints are all above U-shaped con-
straints. When N constraints are considered, it is clear that
s∗N = 1 happens only if either all the N constraints are U-
shaped or all the seen V-shaped constraints have the same

1In the convex setup, active constraints form a support set and often this
is also minimal. Hence, to compute the smallest support set, it is convenient
to start by checking whether no elements can be further removed from the
active constraints, which is computationally cheap. If this is not so, one can
resort e.g. to the algorithm described in [13].

optimization
direction

Fig. 1. A pictorial representation of V-shaped and U-shaped constraints.
Shadings indicate the forbidden regions.

vertex and coincide. In both cases, the V-shaped constraints
for all possible vertexes are, with the exception of one at
most, all violated by x∗N , and violation V (x∗N ) is no smaller
1− p. Thus,

PN{V (x∗N ) ≤ ε|s∗N = 1} ≤

{
0, ε < 1− p
1, ε ≥ 1− p

. (5)

By taking p close to 0, one sees that even for large ε the
conditional probability on the left can be equal to zero. F

The example proves that no conditional results can be
affirmed without further knowledge on the optimization
problem under consideration. Hence, we in this paper move
on to a setting different from [9] where prior knowledge can
be incorporated. The main contributions of this paper are:

- in Section II, we introduce a new Bayesian setup for
scenario optimization that allows for the computation of
the distribution of the violation conditionally on having
a smallest support set of cardinality h;

- by elaborating upon the achievements of Section II,
in Section III we show that strong conditional results
can be established under very mild priors. This is of
most importance for the usability of the theory. The
computational advantages associated to the use of these
priors are also discussed;

- in Section IV, we consider a flexible family of priors
(the Dirichlet priors) that can accommodate a wide
variety of situations. For this family of priors, explicit
and handy expressions for the conditional distribution
of the violation are provided;

- finally, in Section V a numerical example in control is
presented that illustrates the effectiveness of the findings
of this paper.

II. A BAYESIAN SETUP FOR SCENARIO OPTIMIZATION

To set the mathematical stage for the new Bayesian setup,
consider a probability space (Θ,Q, π) and let Pϑ be a
transition probability function, [3], on Θ×D (recall that D
is the σ-algebra of the probability space (∆,D,P) hosting
the constraint parametrization δ):



i. ∀ϑ ∈ Θ, D → Pϑ(D) is a probability distribution;
ii. ∀D ∈ D, ϑ→ Pϑ(D) is Q-measurable.

The interpretation is that, for any given ϑ ∈ Θ, Pϑ defines
a specific uncertain optimization problem; the optimization
problem at hand is only partially known though, and, to
model this, ϑ is not taken deterministic, but it distributes
according to π. The probability distribution π is regarded as
the prior.

Next, consider the probability space (∆N×Θ,DN⊗Q,P)
where P is the unique probability measure that extends the
definition

P(D̃×Q) =

∫
Q

PNϑ (D̃)π(dϑ), ∀D̃ ∈ DN , Q ∈ Q, (6)

see [31, Chapter 2, Section 9, Theorem 2]. (∆N×Θ,DN⊗
Q,P) is the space that hosts a θ along with a sample of
N independent constraints obtained from a problem where δ
distributes according to Pϑ. In this context, the definition of
violation becomes Vϑ(x) = Pϑ{δ ∈ ∆ : x /∈ Xδ}, and, for
each ϑ, it admits the same long term interpretation as V (x)
in (2). Vϑ(x∗N ) is the violation of the solution to (1) when
δ1, . . . , δN is an i.i.d. sample from from (∆,D,Pϑ) and ϑ is
a realization from (Θ,Q, π). As such, Vϑ(x∗N ) is a random
variable defined over the probability space (∆N×Θ,DN⊗
Q,P). Also s∗N := cardinality of the smallest support set for
(1) is an integer random variable defined over the same space.

Our objective is to evaluate the distribution of Vϑ(x∗N )
conditionally on observing a smallest support set with h
elements, which is

FV (ε|s∗N = h) = P{Vϑ(x∗N ) ≤ ε|s∗N = h}.

FV (ε|s∗N = h) can in principle be calculated once π is given
according the following formula:2

FV (ε|s∗N = h)

= P{Vϑ(x∗N ) ≤ ε|s∗N = h}
= 1− P{Vϑ(x∗N ) > ε|s∗N = h}

= 1− P{Vϑ(x∗N ) > ε ∧ s∗N = h}
P{s∗N = h}

= [use (6)]

= 1−
∫

Θ
PNϑ {Vϑ(x∗N ) > ε ∧ s∗N = h}π(dϑ)∫

Θ
PNϑ {s∗N = h}π(dϑ)

. (7)

Unfortunately, formula (7) has to be regarded as a theoretical
contribution only, with no practical value for the actual
calculation of FV (ε|s∗N = h). The reason is twofold:

1. to model real applications where one has a substantial
lack of knowledge on the problem at hand, Θ need to be
a high dimensional, dramatically complicated, space (in
most situations, Θ is even an infinite dimensional space
of probability distributions!). In this case, the computa-
tion of the integrals appearing in (7) is demanding, if
not impossible;

2In the derivation it is assumed that P{s∗N = h} > 0; if not, FV (ε|s∗N =
h) can be arbitrarily defined.

2. more intrinsically, when Θ is so complicated, a sensible
choice for the prior π can be hard, if not impossible, to
make (e.g. when Θ is an infinite dimensional space of
probability distributions, it is even not always clear how
to endow this space with a π). Hence, in these situations
one lacks the essential information for calculating (7).

In the next section we shall show that tight and useful
bounds for FV (ε|s∗N = h) can be drawn based on partial
knowledge on π. Precisely, let π′ be the distribution of
PNϑ {s∗N = 0},PNϑ {s∗N = 1}, . . . ,PNϑ {s∗N = d} induced by
π. This is a finite-dimensional distribution over the simplex
in dimension d + 1 that describes prior knowledge on the
distribution of the cardinality of the smallest support set. Our
main result is that FV (ε|s∗N = h) can be effectively bounded
based on π′ only. This result is formalized and precisely
stated in the next section.

III. EVALUATION OF THE A-POSTERIORI CONDITIONAL
DISTRIBUTION OF THE VIOLATION

A proper evaluation of FV (ε|s∗N = h) rests upon a suitable
upper-bound of the integrand PNϑ {Vϑ(x∗N ) > ε ∧ s∗N = h}
at the numerator of (7). We have the following lemma.

Lemma 1: For all ϑ ∈ Θ, it holds that

PNϑ {Vϑ(x∗N ) > ε ∧ s∗N = h} ≤ bh(ε), (8)

where
bh(ε) = min

{(
N

h

)
(1− ε)N−h, 1

}
. (9)

Proof: Suppose first that not only the cardinality of the
smallest support set is h, but also that it is formed by the first
h scenarios δ1, . . . , δh. All the N−h constraints associated
with scenarios that are not in the smallest support set must
be satisfied by the solution x∗N , which is determined by
δ1, . . . , δh only. If Vϑ(x∗N ) > ε, this means that δh+1, . . . , δN
must belong to an event whose probability is no more than
1 − ε, and this happens with a probability that is no more
than (1 − ε)N−h since the constraints are independent of
each other. Hence, PNϑ {Vϑ(x∗N ) > ε∧s∗N = h ∧ the smallest
support set is formed by the first h constraints} ≤ (1−ε)N−h.
Now, let us vary which constraints belong to the smallest
support set. Summing over all the

(
N
h

)
possible choices of

h scenarios out of N , we obtain:

PNϑ {Vϑ(x∗N ) > ε ∧ s∗N = h}

≤
(Nh)∑
i=1

PNϑ
{
Vϑ(x∗N ) > ε ∧ s∗N = h ∧ smallest support

set is equal to the i-th group of h constraints
}

≤
(
N

h

)
(1− ε)N−h.

This last inequality, along with the fact that a probability
cannot be greater than one, establishes (8) and (9). �

To properly bound the integrand at the numerator of
equation (7), we shall also use the trivial inequality

PNϑ {Vϑ(x∗N ) > ε ∧ s∗N = h} ≤ PNϑ {s∗N = h},



which together with (8) gives

PNϑ {Vϑ(x∗N ) > ε ∧ s∗N = h} (10)

≤

{
PNϑ {s∗N = h}, if PNϑ {s∗N = h} ≤ bh(ε)

bh(ε), if PNϑ {s∗N = h} > bh(ε)
.

Using (10) in (7) gives

FV (ε|s∗N = h)

≥ 1−

∫
{ϑ: PNϑ {s

∗
N=h}≤bh(ε)} P

N
ϑ {s∗N = h}π(dϑ)∫

Θ
PNϑ {s∗N = h}π(dϑ)

−

∫
{ϑ: PNϑ {s

∗
N=h}>bh(ε)} bh(ε)π(dϑ)∫

Θ
PNϑ {s∗N = h}π(dϑ)

= 1−

∫
{ϑ: PNϑ {s

∗
N=h}≤bh(ε)} P

N
ϑ {s∗N = h}π(dϑ)∫

Θ
PNϑ {s∗N = h}π(dϑ)

−bh(ε)π{PNϑ {s∗N = h} > bh(ε)}∫
Θ
PNϑ {s∗N = h}π(dϑ)

. (11)

Note that in (11) all the integrands depend on ϑ via
PNϑ {s∗N = h} only. Define, thus, pk := PNϑ {s∗N = k},
k = 0, 1, . . . , d, and let p = (p0, p1, . . . , pd) ∈ S where
S is the simplex in Rd+1 (i.e.,

∑d
k=0 pk = 1, pk ≥ 0,

k = 0, 1, . . . , d). p is a random variable because of its
dependence on ϑ. Letting π′ be the probability measure of p
induced by π, a change of variables in (11) yields the sought
bound on FV (ε|s∗N = h) that depends on π′ only.

Theorem 1: It holds that

FV (ε|s∗N = h) ≥ (12)

1−

∫
{ph≤bh(ε)} phπ

′(dp) + bh(ε)π′{ph > bh(ε)}∫
S
phπ′(dp)

.

The bound (12) has a clear computational advantage over
(7) since the integrals appearing in (12) are all defined over
a finite (d+1)-dimensional space and can be computed via
standard techniques in most cases. Besides the computational
aspects, the main thrust of Theorem 1 is that the inference
process to obtain an evaluation of FV (ε|s∗N = h) can be
pursued by directly choosing the prior π′ rather than π. π′

is a probability distribution over a finite-dimensional space
and represents prior knowledge on the distribution of the
cardinality of the smallest support set. π′ is much simpler to
obtain than π and it can also be learned by experience.

IV. DIRICHLET PRIORS

Given that p is defined over a simplex, a rather natural
family of prior distributions for p are the so-called Dirichlet
priors. Specifically,

π′ = Dir(α0, α1, . . . , αd),

where Dir(α0, α1, . . . , αd) is the probability distribution
obtained by endowing p1, . . . , pd with the density

Γ
(∑d

k=0 αk

)
∏d
k=0 Γ(αk)

(
1−

d∑
k=1

pk

)α0−1 d∏
k=1

pαk−1
k

over the support
∑d
i=1 pk ≤ 1, pk ≥ 0, k = 1, . . . , d, and

letting p0 = 1−
∑d
k=1 pk. In this formula, Γ(·) is the Gamma

function and α0 > 0, α1 > 0, . . ., αd > 0 are degrees of
freedom. By tuning them, an extremely rich variety of priors

(a)

(b) (c)

Fig. 2. Density of p1, p2 for a Dirichlet distribution with: (a) α0 = α1 =
α2 = 1; (b) α0 = α1 = 1, α2 = 4; (c) α0 = α1 = α2 = 10.

is obtained, which can accommodate many cases of interest.
Figure 2 displays some of the achievable priors for some
choices of the degrees of freedom when d = 2.

In this section, we give an explicit expression for the
bound on FV (ε|s∗N = h) given in (12) when Dirichlet
priors are used. To this purpose, it is useful to first recall
a well known result on Dirichlet distributions, namely, that
the marginal probability distribution of ph, say π′h, is a Beta
distribution. To be precise, π′h = Beta(αh,

∑
k 6=h αk), where

Beta(αh,
∑
k 6=h αk) is the distribution corresponding to the

density

Γ
(∑d

k=0 αk

)
Γ(αh)Γ(

∑
k 6=h αk)

pαh−1
h (1− ph)

∑
k 6=h αk−1

over the support ph ∈ [0, 1]. Beta(a, b) is another well
known distribution in probability and statistics. Its main
properties are that its mean is equal to a/(a + b), and that
its cumulative distribution function

Ix(a, b) =

∫ x

0

Γ(a+ b)

Γ(a)Γ(b)
ta−1(1− t)b−1dt

is the so-called regularized incomplete Beta function.
The value of Ix(a, b) for any x, a and b can be effi-
ciently computed in most of the available scientific com-
puting environments; for example, through the command
betainc(x,a,b) in MATLAB.

We are now ready to give the main result of this section,
providing an handy and immediate to implement expression
for the bound to FV (ε|s∗N = h) in (12) when a Dirichlet
prior is used.

Theorem 2: If π′ = Dir(α0, α1, . . . , αd), then it holds



that

FV (ε|s∗N = h) ≥ 1−

Ibh(ε)

(
αh + 1,

∑
k 6=h

αk

)
(13)

+ bh(ε) ·
∑d
k=0 αk
αh

1− Ibh(ε)

(
αh,

∑
k 6=h

αk

) .
Proof: The result is simply obtained by evaluating the

integrals appearing in the right-hand side of (12). The integral
at the denominator is easily recognized to be equal to the
mean of Beta(αh,

∑
k 6=h αk):∫

S

phπ
′(dp) =

∫ 1

0

phπ
′
h(dph) =

αh∑d
k=0 αk

. (14)

As for the terms at the numerator, instead, we have that

π′{ph > bh(ε)} = π′h{ph > bh(ε)}

=

∫ 1

bh(ε)

Γ
(∑d

k=0 αk

)
Γ(αh)Γ(

∑
k 6=h αk)

pαh−1
h ×

×(1− ph)
∑
k 6=h αk−1dph

= 1− Ibh(ε)

(
αh,

∑
k 6=h

αk

)
, (15)

and that ∫
{ph≤bh(ε)}

phπ
′(dp)

=

∫
{ph≤bh(ε)}

phπ
′
h(dph)

=

∫ bh(ε)

0

Γ
(∑d

k=0 αk

)
Γ(αh)Γ(

∑
k 6=h αk)

pαhh ×

×(1− ph)
∑
k 6=h αk−1dph

= since [Γ(x+ 1) = xΓ(x)]

=
αh∑d
k=0 αk

· Ibh(ε)

(
αh + 1,

∑
k 6=h

αk

)
. (16)

Using (14), (15), and (16) in (12), the inequality (13) is
eventually obtained. �

V. NUMERICAL EXAMPLE

Inspired by [17], we consider a finite-horizon optimal
control problem arising in MPC design for the mechanical
system depicted in Figure 3. The system is composed by

Fig. 3. The studied mechanical system.

four masses connected by springs and its state is a 8-
dimensional vector ξ = [d1 d2 d3 d4 ḋ1 ḋ2 ḋ3 ḋ4]T ,
where d1, d2, d3, d4 are the mass displacements from the
nominal positions l̄1, l̄2, l̄3, l̄4, while ḋ1, ḋ2, ḋ3, ḋ4 are the
displacements’ derivatives. The control input is instead u =
[u1, u2, u3]T , where u1, u2, u3 are forces acting on the
masses as shown in Figure 3. All masses and stiffness
constants are equal to 1.
In the example, the control action is kept constant over the
sampling period and we work with the resulting discretized
model of the system. This writes as

ξt+1 = Aξt +But +Dwt,

where A and B are suitable matrices and the term Dwt is
introduced to model a stochastic disturbance. We take

D =
[
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

]T
,

which means that the disturbance affects the fourth mass
only, while wt is a bi-variate noise.3 The system is supposed
to be at rest at t = 0.

The disturbance can be reconstructed from the state
according to wt = D†(ξt+1 − Aξt − But), where D†

is the pseudo-inverse of D. This motivates the following
parametrization of the control action as an affine function
of the disturbance:

ut = γt +

t−1∑
τ=0

θt,τwτ , (17)

where γt ∈ R3 and θt,τ ∈ R3×2 are design parameters.
Parametrization (17) was first proposed in [20] and has the
great advantage of making u and ξ linear in the design
parameters. After collecting N = 500 realizations δi =

[w
(i)
0 w

(i)
1 . . . w

(i)
4 ], i = 1, . . . , N , of the disturbance along a

horizon of 5 time-instants, γt and θt,τ are designed according
to the following scenario program:

min
γt,θt,τ

4∑
t=0

[
‖γt‖22 +

t−1∑
τ=0

‖θt,τ‖2F

]
(18)

s.t. sup
t=1,...,5

∥∥∥∥∥∥∥∥∥
d

(i)
1,t

d
(i)
2,t − d

(i)
1,t

d
(i)
3,t − d

(i)
2,t

d
(i)
4,t − d

(i)
3,t

∥∥∥∥∥∥∥∥∥
∞

≤ 1, i = 1, . . . , N.

In (18), ‖ · ‖F denotes the Frobenius norm and d
(i)
1,t, d

(i)
2,t,

d
(i)
3,t, d

(i)
4,t are the first four components of the state cor-

responding to the i-th realization of the disturbance. The
interpretation is that the cost accounts for the magnitude of
control actions,while the constraints impose that the spring
deformations are kept within a safe range.

The violation of the solution to (18) can be here interpreted
as a measure of robustness as for the satisfaction of the de-
formation limits when new realizations of the disturbance are

3Though immaterial for the further development of the example, we report
here for the sake of completeness that wt is a white noise, with independent
components w1,t, w2,t, each uniformly distributed over [−0.6, 0.6].



faced. Evaluating the violation is of paramount importance
for a reliable usage of the designed control policy. In (18), the
total number of optimization variables is equal to d = 75, but
after solving it we observe that the cardinality of the smallest
support set s∗500 is just 11. We thus resort to Theorem 2 to
assess FV (ε|s∗500 = 11).

Take π′ = Dir(α0, α1, . . . , α75) with α0 = · · · =
α75 = 1, which corresponds to a flat prior giving the same
likeliness to all possible situations. The resulting marginal
π′11 is depicted in Figure 4.a (solid line), while the bound to
FV (ε|s∗500 = 11) as obtained from Theorem 2 is in Figure 4.b
(solid line again). As it appears the conditional distribution
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Fig. 4. (a) π′11; (b) bound for FV (ε|s∗500 = 11). Solid blue line: αk = 1,
k = 0, . . . , 75; dashed purple line: αk = 1, k 6= 11, α11 = 100.

is concentrated and allows one to draw the conclusion that,
for the specific case at hand with s∗500 = 11, it is very likely
that the violation is below 10%.

Suppose now that αk = 1 for k 6= 11 and α11 = 100,
which amounts to having a strong beliefs that s∗500 = 11 has
a high chance to happen. Interestingly, though the marginal is
very different from the previous case (see Figure 4.a, dashed
line), the bound to FV (ε|s∗500 = 11) returned by Theorem 2
is very similar to the previous one (Figure 4.b, dashed line).
This heuristically shows that the conditional distribution of
the violation is little sensitive to the prior π′.
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