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Abstract In this paper a fusion metamodeling approach is suggested as a method
for reducing the experimental and computational effort generally required for cali-
brating the parameters of FEM simulations models. The metamodel is used inside
an optimization routine for linking data coming from two different sources: sim-
ulations and experiments. The method is applied to a real problem: the optimal
design of a metal foam filled tube to be used as an anti-intrusion bar in vehicles.
The model is hierarchical, in the sense that one set of data (the experiments) is
considered to be more reliable and it is labeled as “high-fidelity” and the other set
(the simulations) is labeled as “low-fidelity”. In the proposed approach, Gaussian
models are used to describe results of computer experiments because they are flex-
ible and they can easily interpolate data coming from deterministic simulations.
Since the results of experiments are obviously fully accurate, but aleatory, a second
stage (“linkage”) model is used, which adjusts the prediction provided by the first
model to more accurately represent the real experimental data. In the paper, the
modeling and prediction ability of the method is first demonstrated and explained
by means of artificially generated data and then applied to the optimization of
foam filled tubular structures. The fusion metamodel yields comparable predic-
tions (and optimal solution) if built over calibrated simulations vs. non-calibrated
FEM models.
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1 Introduction

The concept of metamodeling for computer simulations of manufacturing prob-
lems is known since more than two decades (Friedman and Pressman, 1988; Yu
and Popplewell, 1994). At the beginning of this century, metal forming or plasticity
numerical problems, which are usually very time consuming due to the complex-
ity of physical phenomena involved at large deformations, have been increasingly
metamodeled, for purposes like uncertainty assessment (Baghdasaryan et al, 2002)
or design optimization (Do et al, 2004). The typical approach is to use a small set
of experimental results in order to either tune or verify a Finite Element Method
(FEM) model. Then, a metamodel can be built solely on the basis of accurate,
calibrated, so-called “high-fidelity” simulations (Wiebenga et al, 2012). Alterna-
tively, hierarchical metamodels have been proposed, based on a combination of
“high-fidelity” (Hi-Fi) and “low-fidelity” (Lo-Fi) data sets (Kennedy and O’Hagan,
2000; Hino et al, 2006). In the available literature, high vs. low fidelity FEM models
typically implies the use of finer vs. coarser meshes (Huang et al, 2006a). Alterna-
tively, numerical models with different formulations have been used for modeling
the same process: as an example in the optimization of sheet metal forming, out-
come of a one-step solver (Lo-Fi) can be combined with data from an incremental
solver (Hi-Fi) (Sun et al, 2010). Another example can be found in the field of
CFD (Computational Fluid Dynamics), where a multistage metamodeling tech-
nique that links data coming from two different numerical sources (finite volumes
and finite differences calculations) has been implemented (Qian et al, 2006). These
“fusion” metamodels are used because they allow one to obtain accurate predic-
tions with less computational effort than metamodels based only on Hi-Fi results,
provided that Lo-Fi simulations are faster, thanks to a simpler formulation or to
a coarser mesh. These models are often called hierarchical, because there is a hi-
erarchy between different data sets. Clearly, the fidelity of numerical results can
only be assessed with reference to real, experimental data of the physical process
under investigation. In metal forming and plasticity problems, authors that deal
with FEM simulations must spend a lot of time and effort in order to calibrate the
most significant model parameters (coefficients of friction, flow stress and hard-
ening parameters, anisotropy values, damage or failure thresholds, etc.) in order
to match the numerical results. As an example, in (Roux and Bouchard, 2013),
where a kriging metamodel is used for optimizing the strength of a clinched joint,
an entire Section of the paper is devoted to the validation of the FEM model.

A different class of hierarchical models can be defined, that take into account
the potential variability or uncertainty of the response, as in (Xia et al, 2011),
where a hierarchical Bayesian model is implemented. These models have been
more recently and therefore less frequently applied and they are suited not just for
merging the results of Hi-Fi and Lo-Fi simulations, but for the fusion of computer
experiments and physical experiments. The only available example of application
in the metal forming industry, to the authors knowledge, is given in (Wagner et al,
2011), where the goal was to accurately model the temperature distribution of a
work piece in a forging process. The results of experimental tests are inherently
considered fully accurate, truly Hi-Fi, except for the only approximation due to
the measurement system, but they are stochastic in nature and they are usually
available in limited numbers, due to their high cost. The numerical results are
considered Lo-Fi and deterministic.
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In this paper a hierarchical, multi-stage metamodeling approach is proposed,
similar to the one used in (Wagner et al, 2011), and combined to an optimiza-
tion procedure. The goal of the present paper is to demonstrate that hierarchical
metamodels can be used:

– not only to reduce to computational time spent in FEM calculations required
for filling the design space, as in deterministic hierarchical models (Hino et al,
2006);

– not only to enrich the data base and yield a better overall model identification,
as demonstrated in (Wagner et al, 2011);

– but also and especially to reduce the time and effort required for calibrating
the FEM models.

In the proposed model, data coming from simulations are used to produce a first
stage metamodel with a Kriging predictor based on a Gaussian process. Gaussian
models are widely used to describe computer experiments data because they are
flexible and they can easily interpolate points coming from nervous deterministic
simulations. This metamodel can be very imprecise, because large deviations from
real data can be expected in the simulations. Therefore, a second-stage model
is used, in order to “correct” the prediction of the first model according to real
experimental data observed. As for the first-stage model, a Gaussian process is
used also to model this linkage or second-stage level. In this second-stage model a
parameter can be added, known as the nugget, in order to take into account the
process variability, i.e. the prediction does not interpolate the data and replicated
measurements are allowed. The two-stages hierarchical model is then inserted in
an optimization problem, which is solved using a version of EGO (Efficient Global
Optimization) (Huang et al, 2006b; Roux and Bouchard, 2013). In the paper, the
modeling and prediction ability of the method is first demonstrated and explained
by means of artificially generated data. Then, the method is applied to a real
problem: the optimal design of a metal foam filled tube to be used as an anti-
intrusion bar.

2 The fusion metamodeling and the optimization approach

The problem we deal with consists of optimizing a response function, i.e. identi-
fying the parameter setting that maximizes (or minimizes) the target response.
Unfortunately, the objective function is not known in advance but it can be em-
pirically observed via experimental data yh(x). The subscript h is added to denote
Hi-Fi data, i.e., data that we trust because they are provided by real experiments
on the phenomenon under interest. Due to process variability and measurement er-
ror, observed data are noisy and this is why optimization will concern the expected
value of the empirical function.

Unfortunately, optimization via experimental modeling is a cumbersome activ-
ity, especially when the number of parameters is large and the experimental space
to be spanned is wide. This is why an additional aid can be provided by numerical
simulation data yl(x). Here, the subscript l stands for Lo-Fi data. As a matter of
fact, numerical simulations are clearly a proxy of reality and optimization based
on simulated data only can fail in identifying the real optimum. Furthermore, sim-
ulations usually require a calibration study at the beginning, in order to tune the
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internal parameters of the simulator to achieve results which better resemble real
data.

In this paper, we plan to show how appropriate modeling of the connection
between real and simulation data, i.e., fusion metamodeling, allows one to: i) find
the real optimum while reducing the overall experimental effort; ii) reducing (or
even skipping) the initial calibration of the simulation, provided that the data
fusion model can be interpreted as a way of performing off-line calibration.

Reduction of the overall effort is achieved by fusion metamodeling because this
model provides a way to “transform” Lo-Fi data into Hi-Fi data. In other words,
a model connecting the simulation and experimental results allows one to correct
the simulation results ex-post, with respect to a given response variable of interest.

2.1 Fusion metamodeling

Suppose we have made a deterministic Lo-Fi simulation that depends on q pa-
rameters at nl design points, where the sub-index l is used to denote the Lo-Fi
data. A first-stage model can be built on these simulation results, by modeling the
relationship between the response yl and the design parameters. This function has
usually a complex shape, so we use Gaussian Process (GP) model to describe its
behavior. GPs, known as Kriging in spatial statistics, are widely used to describe
response of a computer code (Santner et al, 2003). In particular, we assume that
the response value yl at a generic design point xi = (xi1, xi2, . . . , xiq)

′ ∈ R
q can be

described by the relation:

yl(xi) = f
′

l(xi)β + η(xi), i = 1, . . . , nl (1)

where f ′

l(xi) is the transpose of f l(xi) ∈ R
r, which is a vector of known basis

functions (i.e., spline, Fourier, polynomial) which act as regressors, β ∈ R
r is a

vector of unknown parameters, η(xi) ∼ GP(0, σ2
η ,ϑl) is a GP with zero mean and

variance-covariance matrix defined through the parameter σ2
η and the vector of

scale parameters ϑl ∈ R
q. The core of the GP is the variance-covariance matrix

defined as:

Cov[η(xi), η(xj)] = σ
2
ηrη(xi,xj) = σ

2
η exp

{
−d(xi,xj)

}
. (2)

where rη(xi,xj) is the correlation function modeling the dependence between two
distinct design points xi and xj as a function of their distance. This type of
correlation structure is useful when points that are close in the parameter space
have similar responses and hence a good prediction at a given location can be done
by looking at the responses observed in its neighborhood.

In this paper, the traditional power exponential function weight distance will
be used, given by:

d(xi,xj) =

q∑

k=1

ϑ
l
k

∣∣xik − xjk
∣∣pk

, 0 < pk ≤ 2 ∀ k = 1, . . . , q (3)

which allows one to model isotropy - i.e., similarity that does not depend on the
specific direction in the design space - when all the scale parameters ϑki in equation
(3) assume the same value.
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Let yl =
(
yl(x1), yl(x2), . . . , yl(xnl)

)′

represent the response observed at the

design points and F l =




f ′

l(x1)
f ′

l(x2)
...

f ′

l(xnl)


 ∈ R

nl×r represent the matrix of regressors,

estimation of all unknown GP parameters can be carried out by maximizing the
logarithm of the restricted likelihood (Harville, 1977), given by:

l
β̂
=−

nl − r

2
log 2π +

1

2
log

(
F

′

lF l

)
−

nl − r

2
σ̂
2
η −

1

2
log | Rη | +

−
1

2
log | F ′

lR
−1
η F l | −

nl − r

2
(4)

where Rη = {rη(xi,xj)} is the correlation matrix, σ̂2
η = 1

nl−r

(
yl − F lβ̂

)
′

Rη
−1

(
yl − F lβ̂

)
is the restricted maximum likelihood estimator of σ2

η and

β̂ =
(
F ′

lR
−1
η F l

)−1
F ′

lR
−1
η yl is the maximum likelihood estimator of β. We used

a quasi-Newton algorithm to optimize the function (4), using the Matlab fmincon

function.
Once all the GP parameters have been estimated, prediction at any new de-

sign point x0 can be computed using the BLUP (Best Linear Unbiased Predictor)
estimator (see for example (Santner et al, 2003) or (Shabenberger and Gotway,
2005)), defined as:

ŷl(x0) = f
′

l(x0)β̂ + r̂
′

ηR̂
−1
η

(
yl − F lβ̂

)
(5)

where rη =
(
rη(x1,x0), rη(x2,x0), . . . , rη(xnl ,x0)

)′

is the correlation vector be-
tween the new design point x0 and all the other nl points where the response was
simulated.

Predictions obtained via equation (5) are based on the Lo-Fi simulations only.
However, in most practical cases experimental results are available, too. We will
refer to these results as yh using the subscript h to denote the Hi-Fi data and
distinguish them from the Lo-Fi ones. Usually, yh are more accurate than yl data
but available in a limited number of locations, only (i.e., nh ≪ nl).

The main objective of the fusion metamodeling is to combine the Lo-Fi and
Hi-Fi data in order to improve predictions achievable by using the Lo-Fi or the
Hi-Fi data sets alone. The core of the data fusion model is a linkage or second-stage
model, which represents the connection between Lo-Fi and Hi-Fi data and can be
expressed as (Kennedy and O’Hagan, 2000; Qian et al, 2006):

yh(xi) = ρ(xi)ŷl(xi) + δ0 + δ(xi) + εh(xi) i = 1, . . . , nh (6)

where the aim is to correct the Lo-Fi predictions ŷl(xi) (i.e., predictions done using
the Lo-Fi simulations only) using a “scale” and a “shift” effects, represented by
ρ(xi) and δ0+δ(xi), respectively. The term εh(xi) is the random term of the Hi-Fi
points, known also as nugget, which is assumed to be independent and normally
distributed, i.e., εh(xi) ∼ N (0, σ2

εh). This nugget effect is included to represent
randomness characterizing experimental data.
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Following Qian et al (2006), the scale effect is assumed to have the expression

ρ(xi) = f
′

h(xi)ρ, (7)

where fh(xi) is a known basis function acting as the regressor term when computed
at xi and ρ is the vector of unknown parameters to be estimated. Subscript h is
included to show that these regressors can be different from the ones assumed in
equation (1). As a matter of fact, a first-order term (linear model) for fh(xi) is
usually enough to model the scale effect (Qian et al (2006)).

The shift effect is represented by δ0 + δ(xi), where δ0 is a constant and δ(xi)
is a GP:

δ(xi) ∼ GP(0, σ2
δ ,ϑh). (8)

As in the Lo-Fi model, we will use the power exponential correlation function to
describe the correlation structure of the shift effect. It is possible to prove (Pagani,
2011) that only δ0 can be computed in closed form as:

δ̂0 =
1′nh

Σ−1
h

(yh − P ŷl)

1′nh
Σ−1

h
1nh

, (9)

where yh = (yh(x1), yh(x2), . . . , yh(xnh))
′ are the observed Hi-Fi data, P is a

diagonal matrix with entries ρ(xi) (shown in equation (7)) for i = 1, . . . , nh and
Σh is known as the mean square prediction error (MSPE) or kriging variance. The
kriging variance can be computed as Σh = PΣ0P

′ + σ2
δRδ + σ2

εhInh , where Σ0

is the kriging variance of the Low-Fi model shown in equation (2), computed at
locations where Hi-Fi data have been observed, Rδ = {rδ(xi,xj)} is the correlation
matrix of the GP assumed in equation (8) for the shift effect δ(xi), Inh ∈ R

nh×nh

is an identity matrix and 1nh ∈ R
nh is a vector of ones. Also in this case, the other

unknown parameters can be found by maximizing the logarithm of the restricted
likelihood (Harville, 1977) given by:

l
δ̂0

=−
nh

2
log 2π +

1

2
log

(
F

′

hF h

)
−

1

2
log | Σh | −

1

2
log | F ′

hΣ
−1
h F h | +

−
1

2

(
yh − P ŷl − δ̂01nh

)
′

Σ
−1
h

(
yh − P ŷl − δ̂01nh

)
.

(10)

where F h =




f ′

h(x1)
f ′

h(x2)
...

f ′

h(xnh)


 ∈ R

nh×s.

According to the assumed combination of the linkage (or “second-stage”) (6)
and ”first-stage“ (1) models, the metamodel obtained via data fusion allows one
to predict a process realization at each new location x0 as:

ŷh(x0) = ρ̂(x0)ŷl(x0) + δ̂0 +
(
σ̂
2
δ r̂δ + σ̂0

)′

Σ̂
−1
h

(
yh − P̂ ŷl − δ̂01nh

)
(11)

where rδ = Corr(yh, yh(x0)), σ0 is a vector with entries σ0i = ρ(xi) · ρ(x0) ·
Cov(ŷl(xi), ŷl(x0)) ∀ i = 1, . . . , nl.

It is worth noting that this linkage model can be interpreted as an off-line
calibration step, where the Lo-Fi data are transformed to Hi-Fi data, depending
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on the specific locations where the points are observed. This effect will be further
explored as a possible way to reduce or even skip the traditional pre-tuning of the
simulation model, where internal parameters of the simulation model are tuned to
make simulation resemble experimental data.

2.2 Example of metamodeling performance with artificially generated data

In order to show effectiveness of the proposed metamodel, this section shows an
example of metamodeling starting from artificially generated data. We will com-
pare four different metamodels: a model based on the Lo-Fi points only (LF), a
model based on the Hi-Fi points (HF) only, and two models based on combining
Lo-Fi and Hi-Fi points. In particular, in the third approach that will be referred
to as additive (ADD), the two data sets are simply merged and considered as they
come from a common source. In the fourth case, referred to as fusion (F), the two
datasets are merged with the proposed metamodeling approach.

In the following, we will use the letter z• to represent the real model from
which we will draw samples and is not known in real practice. We will keep the
previous notation and use the letter y• to represent all the models estimated from
the observed data according to our metamodeling approaches.

In this example, the true response z, depends on two variables, x1 and x2, i.e.,
q = 2. Without loss of generality, we consider two variables only, to better visualize
the reconstruction in a surface plot.

We assume that the real surface is described by:

z(x1, x2) =(1− x1)
2
e
−x2

1−(x2+1)2 − 10
(
x1

5
− x

3
1 − x

5
2

)
e
−x2

1−x2
2

+
1

3
e
−(x1+1)2−x2

2

(12)

and the Hi-Fi data are given by:

zh(x1, x2) =z(x1, x2) + εh, (13)

where εh ∼ N (0, σ2
h). In other words, the experimental data are noisy observations

of the real surface.
In our example, the Lo-Fi response is given by:

zl(x1, x2) =z(x1, x2) + a
(
x
2
1 + x

2
2

)
, (14)

where a is a constant that control the systematic error given by the term
(
x21 + x22

)
,

whose pattern is shown in Figure 1(a) (assuming a = 0.3). The Lo-Fi response has
no random term because we assumed deterministic simulations.

In Figure 1(b) the “real” surface (i.e. in equation (12) ) is shown together with
20 data drawn from the Hi-Fi model in equation (13) and 200 data from the Lo-Fi
model in equation (14). In the following, all the data are drawn according to the
maxmin latin hypercube criterion, which is widely used in computer experiments
(Santner et al, 2003).

In order to graphically compare the predicting ability of the four models, Figure
2(a) shows a cross section of the reconstructed and real surfaces at x1 equal to
0.04, while x2 is varying on the abscissa. When prediction is done using the LF
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(a) Systematic error characterizing the Lo-Fi data (a = 0.3)

(b) Real Surface

Fig. 1 Systematic error characterizing the Lo-Fi data and real surface to be reconstructed
together with simulated data points.

model (i.e., prediction based on a GP model based on 200 Lo-Fi data only) a
significant reconstruction error is clear at the borders, due to the systematic error
characterizing Lo-Fi data. In case of the HF model (where reconstruction is based
on 20 Hi-Fi data only), the reconstruction error is wide in region where not enough
data are available (Figure 2(b)). The ADD model obtained by performing GP
fitting on all the 220 Lo-Fi plus Hi-Fi data (Figure 3(a)) shows a pattern similar
to the one observed for the LF model, with little prediction improvement. This is
due to the fact that the response surface is ruled by the large number of Lo-Fi
data points (and by their systematic error), since they are ten times the number
of Hi-Fi points. Finally, the fusion model F is shown in (Figure 3(b)). In this case
the reconstruction is similar to the one observed for the LF model, but thanks to
the hierarchical distinction between the Hi-Fi and Lo-Fi data, it is very close to
the real surface.
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(a) Low-Fidelity model - LF

(b) High-Fidelity model - HF

Fig. 2 Cross sections of the surface reconstruction for the LF and HF models at x1 = 0.04

(a) Addition model - ADD

(b) Fusion model - F

Fig. 3 Cross sections of the surface reconstruction for the A and F models at x1 = 0.04
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All the qualitative conclusions drawn from Figure 3 can be confirmed using the
mean square prediction error (MSE) as performance indicator. The MSE computes
the mean value of the reconstruction error and is computed as follows:

MSE =

∑n
i=1 (zi − ŷi)

2

n
(15)

where zi is the actual value of the function and ŷi is the value predicted at the
same location considering one of the four competitive models (HF, LF, A, F).
Figure 4 shows the 95% confidence interval of the MSE based on 10 replicates
of the reconstruction process (a = 0.3 and σ2

h = 0.1). In each replication, a latin
hypercube sampling was performed to select the points’ locations, in order to check
the prediction ability of each model, while taking into account also this source of
variability. The confidence intervals of all the models are shown in Figure 4(a). A
different scale has been used in Figure 4(b) in order to better clarify the differences
among the LF, ADD and F models. Clearly, the F model outperforms all the other
three models.

(a) MSE with all the models (b) MSE without HF model

Fig. 4 Performance comparison among the four metamodels

A sensitivity analysis was eventually carried out in order to check whether
advantages of the proposed model still hold when different scenarios are considered.
We repeated the previous comparison by changing the systematic error a (from
0.3 to 0.2) and the random noise variance σ2

h (from 0.1 to 0.5). All the 22 = 4
combinations of the changing parameters were considered. One of these scenarios
(a = 0.3 and σ2

h = 0.1) was already explored as reference test case (Figure 4),
and hence Figure 5(a) shows results of the remaining three scenarios. As for the
previous case, the HF model has poor performance and has a very large confidence
interval, this is why it is not shown in the plots. As is clear from the first picture,
increasing the σ2

h to 0.5, i.e. considering a higher variability of the Hi-Fi data,
results in an increased variability of the MSE for the F model but without changing
its superiority. The effect of decreasing the systematic error (i.e., a set equal to
0.2), is shown in Figure 5(b). Both the LF and the ADD model increase their
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prediction performance, but the F model is still the best one. Finally, if we increase
the random noise up to 0.5 and decrease the systematic error coefficient down to
0.2, the comparison of the MSE is shown in Figure 5(c). In this case, the LF model
is better than the ADD model because of the high random noise, but the F model
is again the best.

(a) a = 0.3, σ2
h
= 0.5

(b) a = 0.2, σ2
h
= 0.1 (c) a = 0.2, σ2

h
= 0.5

Fig. 5 Performance comparison changing parameters

2.3 The optimization approach

The final goal of the paper is to show how an appropriate data fusion based on
combining simulated and experimental data can result in an efficient optimization
procedure, which can significantly reduce the simulation and calibration efforts.
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In this case, optimization consists of finding the design point x such that the
expected value of the response function is maximized (or minimized). In our case,
the expected value of the response function is computed via equation (11), which
shows prediction of the response function in any location using the metamodel
built on data fusion. In the following, without loss of generality, we assume that
the response function has a unique global maximum.

Optimization based on a kriging metamodel is usually performed with the
Efficient Global Optimization (EGO) algorithm, originally proposed by Jones et al
(1998). The EGO algorithm looks for the global minimum of a generic deterministic
function, using GP for computing predictions at any new location. The algorithm
was extended in order to take into account also noisy functions in (Huang et al,
2006b) and in (Huang et al, 2006a).

The first step of the optimization algorithm consists of finding an initial guess
of the response surface, by selecting an initial number of 10 q points to roughly
estimate the underlying surface, where q is the dimension of the function domain.
After a first rough estimation of the function, the algorithm suggests adding a
point where a criterion, called the Expected Improvement (EI) (Mockus et al,
1978), is maximized. Then, the algorithm is re-iterated until a stopping criterion
is satisfied (usually when the ratio between the EI at the j-th step and the initial
EI becomes 10−2).

In our paper, a deterministic model (i.e., model without random term) is used
to describe the simulation results. It is combined with a model including a nugget
effect (random term) when simulated data are linked to experimental results. We
will assume that the new points added in the optimization procedure to achieve the
optimum are simulated and hence not affected by noise. This is why the classical
EI criterion (not the augmented EI function proposed in (Huang et al, 2006b) to
deal with noisy data) will be used. However, following our metamodel strategy,
any new Lo-Fi simulation will be “translated” into the corresponding Hi-Fi data,
thanks to the linkage model developed in the data fusion procedure (equation 11).

In the following, the details of the EGO algorithm in the version suitable to
optimize our two-stage metamodel will be described. At each iteration, the current
maximum is established as the maximum of the values predicted via the fusion
metamodel (i.e., the model combining both simulations and experimental data) in
all the locations where simulations or real data were observed. Let ŷl,max represent
this current maximum, i.e. maxi ŷl.

A new variable Q(x) is defined as the difference between the metamodel ŷh(x)
predicted at a generic location x and the current maximum:

Q(x) = ŷh(x)− ŷl,max ∼ N
(
µQ(x), σ

2
Q(x)

)
(16)

The expected improvement can be thus written as a function of this new vari-
able Q, representing the difference between the objective function and the current
optimum, namely:

EI(x) = E(max{Q(x), 0}) =

∫ +∞

0

q√
2πσ2

Q(x)
e
−

1
2

(q−µQ(x))2

σ2
Q

(x)
d q

= σQ(x) ϕ

(
µQ(x)

σQ(x)

)
+ µQ(x) Φ

(
µQ(x)

σQ(x)

)
. (17)
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The main task is now finding the input combination x that maximizes EI and
this requires one to be able to compute the distribution of Q at any location x. To
this aim, we consider a new location x0 and we build a bi-variate vector consisting
of the metamodel prediction at this new location ŷh(x0) and the current maximum
ŷl,max. It is possible to prove (see (Pagani, 2011)) that this vector is approximately
distributed as a bi-variate normal:

[
ŷh(x0)
ŷl,max

]
≈ N2(µego,Σego) (18)

with

µego =PX0
ŷl(X0) + δ̂012 +

(
σ̂
2
ηR̂δXh,X0

+ Σ̂lXh,X0

)
′

Σ̂
−1
h

(
yh − P̂ ŷl − δ̂01nh

)

Σego =Σ̂hX0
− Σ̂

′

hXh,X0
Σ̂

−1
h Σ̂hXh,X0

+

+

(
12 − Σ̂

′

hXh,X0
Σ̂

−1
h 1nh

)(
12 − Σ̂

′

hXh,X0
Σ̂

−1
h 1nh

)′

1′nh
Σ̂

−1
h 1nh

where X ′

0 = [x0, xmax], X
′

h = [x1, x2, . . . , xnh ] is the matrix of Hi-Fi points,
RδXh,X0

is the correlation matrix between Xh and X0, ΣlXh,X0
is the covariance

matrix between ρ(Xh)ŷl(Xh) and ρ(X0)ŷl(X0), ΣhX0
is the covariance matrix

of X0 and ΣhXh,X0
is the covariance matrix between Xh and X0. Clearly, the

distribution of Q(x) can be now computed starting from the aforementioned bi-
variate vector, by applying standard multivariate statistical theory:

Q(x) ≈ N (c′µego, c
′
Σegoc) (19)

where c = (1,−1)′.

Now that the distribution of Q in equation 17, can be computed, optimization
of the function can be carried out (using for instance a Matlab global optimization
algorithm based on (Zsolt et al, 2007)).

We note that the EGO algorithm requires a new estimation of ŷh(x), ŷl,max

and µQ(x) and σQ(x) at each step.

2.4 Example of optimization performance with artificially generated data

In this section we will show how the EGO procedure works, with reference to
the example described in section 2.2 (with a equal to 0.3 and σ2

h equal to 0.5).
An initial design of 20 Lo-Fi points and 10 Hi-Fi points, selected according to a
maxmin latin hypercube will be considered.

Figure 6 shows the surface predicted before (6(a)) and after (6(b)) the EGO
algorithm. As clear from the plot, the EGO algorithm concentrates simulations in
the neighborhood of the maximum value, thus allowing for a better estimation of
the true surface in that region.
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(a) Before the EGO algorithm

(b) After the EGO algorithm

Fig. 6 Surface estimation before and after the EGO algorithm

In order to test the ability of the EGO approach to converge, the optimization
based on our two-stages metamodel was repeated 10 times, starting from differ-
ent starting points at each run. Table 1 summarizes results of these simulations,
showing the number of iterations required before convergence together with the
difference between the true values of the maximum coordinates (i.e., x1, x2 and y,
respectively) and the values of the optimum found by our proposed method. As
clear from the table, the error is consistently low, if compared to the range of the
3 variables.
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# iterations
before convergence

difference with
true optimal x1

difference with
true optimal x2

difference with
true optimal y

4 -0.0424 -0.0124 0.0088
11 0.0429 0.0040 -0.0154
6 -0.0549 -0.0124 -0.0075
5 -0.0429 -0.0092 0.0107
6 0.0427 -0.0110 -0.0097
6 0.0088 0.0135 0.0064
4 -0.0416 -0.0098 -0.0104
5 -0.0404 -0.0137 0.0078
6 -0.0415 0.0125 -0.0086
6 0.0394 -0.0167 -0.0055

Table 1 Number of iterations of ten replicates required by the EGO algorithm and difference
of the optimum coordinates found with respect to the coordinates of the true maximum value

Statistical tests to check the equality between the coordinates of the true max-
imum and the coordinates of the EGO solutions were eventually performed. The
p-values of the tests were 0.69, 0.66 and 0.97, respectively for x1, x2 and y. There-
fore, there was no statistical evidence to indicate that the real solution and the
one found by the EGO approach are different.

3 Optimization via data fusion and the calibration advantage: the real

case study

The modeling and optimization procedure described in Section 2 will be applied to
a real optimization problem: the design of an anti-intrusion side bar for vehicles,
made of an outer tubular steel case and a filling reinforcement made of aluminum
foam (Strano et al, 2010). The filling of cases made of thin metal sheets or tubes
with a reinforcement made of cellular metals (or metal foams), as for the structure
shown in Figure 7, allows for the production of lightweight, high performance
components, particularly suited for flexural resistance in terms of amount of energy
absorbed for a given maximum load.

(a) Stainless steel tube after 3 point bend-
ing, filled by an aluminum foam

(b) Longitudinal cross section

Fig. 7 Steel tube

In order to optimize the performance of the component in case of an accident,
several issues must be taken into account. Let us consider a closed section with
a composite (bi-material) structural beam with initial length L, vertical average
dimension H, horizontal average size W , initial average cross section area S =
H ·W , total occupied volume V = S ·L, mass M , apparent density ρ = V

M . In lateral
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impact, the structure will undergo a flexural state of stress-strain. Given a load P

[kN ] - deflection δl [mm] diagram in bending of a foam filled bar, up to any value
of deflection δl, the load curve profile will exhibit a maximum load value Pmax, an
average load Pavg and an amount of absorbed energy per volume Eabs = Pavg · δl.
The crash force efficiency can be written as the ratio between the mean load
and the maximum load of a Force-Displacement curve (Yuen and Nurick, 2008):

η =
Pavg

Pmax
. A body with high efficiency will have a large energy absorption, while

limiting the maximum load Pmax (and the corresponding acceleration) transmitted
to the vehicle. A Specific Energy Absorption (SEA) can be also defined, as the
ratio between the absorbed energy and the total mass: SEA = Eabs

M . In a lateral
crash, for any given tubular composite structure and a given amount of incoming
energy, it is important to achieve the competing objectives listed as follows.

– To increase or maximize the energy absorption Eabs, given a maximum deflec-
tion δlmax, while limiting the total mass M ; this is equal to maximizing the
SEA of the structure.

– To increase or maximize the crash force efficiency η.
– To minimize the intrusion into the vehicle δlmax.

Let x represent a design variable influencing the aforementioned indicators, a
synthetic objective function y can be built as follows:

y(δlmax,x) =
SEA(δlmax,x) · η(δlmax,x)

δlmax
=

P 2
avg(δlmax,x)

Pmax(δlmax,x) ·M(x)
(20)

and measured in [kNkg ]. In the present case, the maximum admissible intrusion was
set to δlmax = 48 mm for reasons related to design criteria of cars. In the previ-
ous expression, a design vector x is introduced. This vector represents the design
variables, which are known to influence the response even if the analytical expres-
sion modeling this influence is not known in advance. This is a typical problem in
engineering design, where simulations and/or experimental data are required to
empirically reconstruct the relationship between the design variables and the re-
sponse function thus allowing optimization. In our case, our design vector is made
of two design variables. The first x1 is a toughness indicator, related to the plastic
material properties of the outer steel skin. The second variable x2 is a shape factor,
related to its geometry.

x1 =
nn+1 ·K

n+ 1
(21)

x2 =
J

W
(22)

where K and n are respectively the hardening coefficient and exponent of the flow
stress power law, J is the moment of inertia of the tube cross section and W is
the depth of the specimen, in the direction of the movement of the punch, i.e. the
lateral encumbrance of the structure. x1 [MPa] measures the fracture toughness
of the skin material, because it represents the area under the flow stress curve.
In x2 [mm3], J is divided by W because it is important to keep the encumbrance
under control, due to the limited space available inside the car door.

Both the design variables affect the response function y. Unfortunately, the way
in which these two design variables affect the response is not analytically known
and has to be detected via simulation and/or experimental data.
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The optimization problem can be formalized as finding the x-value that maxi-
mizes y, within the range of the investigated values of x. Simulations of the three-
point bending tests were run with an FEM model with explicit time integration
scheme. The foam was modeled with 3D hexahedral elements with a “Crushable
Foam” isotropic material formulation. The tube was modeled with shell elements
with an elastic-plastic isotropic material formulation. Contact between foam and
tube was modeled with a penalty formulation and a Coulomb coefficient of friction
equal to 0.6. The number of elements changed according to the simulated struc-
ture and the simulation time for each test ranges between 4 and 8 CPU hours.
Each simulation was therefore quite expensive from a computational viewpoint.
This is a typical situation in optimization problems where large plastic deforma-
tions are involved, due to the strong nonlinearities of the computational problem.
Each experimental test was also both time- and money-consuming because of the
manufacturing process of foam filled tube, which is described in (Strano et al,
2010). Since both simulations and experiments were expensive, any mathematical
technique aimed at reducing the number of design points required for optimization
would be highly appreciated in the field of design and manufacturing optimiza-
tion of metal foam based structures. The common approach used in the scientific
literature in this case is generally based on the following steps:

1. running a limited number of experiments,
2. building the numerical model and iterating until a satisfactory calibration of

the simulation model is reached,
3. running the simulations required for metamodeling and optimization.

Calibration is often not described in scientific papers, and the final calibrated
model is generally presented, as in (Zarei and Kroger, 2008). Nevertheless, step
2 is always required, although not explicitly mentioned. The aim of this paper is
to demonstrate how the fusion metamodel can be used for merging steps 2 and 3,
reducing the total computational time. This is why we applied our fusion meta-
model and the EGO optimization method described in Section 2 in two different
scenarios.

In the first “calibrated” scenario, step 2 of the traditional three-step procedure
was applied, i.e., the simulation model was pre-calibrated. In particular, for each
investigated material with physical 3-point bending experiments available the K

and n parameters (K and n) of the three tested materials (Fe 360, Docol 800DP,
AISI 304) were iteratively calibrated until the mismatch between experimental and
numerical results felt below a 10% error threshold for the objective function y(48).
In other words, the FEM simulations were run again and again, changing K and n,
until the error on y(48) was considered acceptable. Data used for the three initial
materials in both scenarios are given in Table 2. As later shown in Section 4, 7
experimental design locations have been considered. In 1 out 7 cases, no calibration
was required, i.e. the error was already under 10%. In the other 6 locations, from
2 to 3 FEM runs were required in order to calibrate the input variable, for a
total of about 15 additional computations. Please consider that calibrating the K

and n values makes the x1 values change accordingly, i.e. the calibration has an
effect on one of the two design variables. For additional materials, which have been
evaluated only numerically, the tensile test hardening values found on the CESTM

software package were used as a starting point for analytically calculating K and
n.
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In the second “non-calibrated” scenario, no time was spent for calibrating the
simulation model, saving in this case the above mentioned 15 runs, each amount-
ing to about 3 to 4 CPU hours with the workstation used in the study. All the
materials, including the three materials with experimental values available, were
simply modeled considering the nominal K and n values, calculated by the data
given in CESTM.

By comparing the performance of the calibrated and non-calibrated scenarios
we would like to demonstrate how the fusion metamodel can be used, to some
extent, to reduce simulation calibration efforts.

Non calibrated Calibrated

All cross sections Round cross section Square section

K

[Mpa]
n

x1

[Mpa]
K

[Mpa]
n

x1

[Mpa]
K

[Mpa]
n

x1

[Mpa]

Fe 360 603 0.20 73 603 0.20 73 530 0.26 77
DOCOL800DP 944 0.18 107 700 0.17 76 944 0.18 107
AISI 304 740 0.43 154 1133 0.43 235 - - -

Table 2 K and n values for both scenarios

4 Application of the method to the real case

The method described above has been applied to the crashworthiness optimization
of aluminum foam filled tubular structures presented in 3. For both the calibrated
and non-calibrated scenarios, nh = 7 experimental design locations were initially
available. Every experimental combination, which is a tubular structure with its
shape (summarized by x2) and outer material (summarized by x1) was replicated
three times, for a total of nh × 3 = 21 experimental (Hi-Fi) couples of y and x

values. At these design locations, FEM simulations were performed for both the
scenarios, i.e., with calibrated K and n values and with non-calibrated material
data. Furthermore, nl = 13 additional design locations were added according to
an initial random, space filling design of computer simulations (Lo-Fi data). A
total of Ndes = 20 locations of y and x values were therefore originally available.
The EGO algorithm embedded in the optimization routine suggested Nego = 4
additional evaluation points in the non-calibrated (Table 3) scenario and Nego = 5
in the calibrated one (Table 4). At each step of the EGO a metamodel and an
optimization routine was built based on a minimum of Ndes+Nego design loca-
tions. Indeed, every new location suggested by the EGO approach, i.e. every new
combination of x1 and x2 values, was “translated” into an actual material and an
actual shape. Considering that it is not realistically possible to find an engineer-
ing material with exactly the x1 values suggested by the EGO, we considered the
nearest available material option founded on the CESTM software package to be
used instead. When more than one near option was found, all the close materials
were tested. Similarly, it was difficult to define a real (i.e. potentially available on
the market) tube cross section with the exact shape suggested by the EGO: the
closest approximations was thus considered. For this reason, the actual number of
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design locations tested was larger than Ndes +Nego for both scenarios: 27 instead
of Ndes +Nego = 24 locations were used in the non-calibrated scenario; 35 instead
of Ndes +Nego = 25 locations were used in the calibrated one.

Iteration x1 x2

1 128.03 233.21
2 131.79 276.52
3 110.00 774.00
4 129.48 306.69

Table 3 Evolution of the EGO algorithm in the non-calibrated scenario

Iteration x1 x2

1 198.00 774.00
2 141.46 556.25
3 102.33 786.53
4 113.52 768.36
5 114.15 780.72

Table 4 Evolution of the EGO algorithm in the calibrated scenario

It is useful to further clarify the differences between the two scenarios, with
reference to Figure 8. In the design space, the variable x1 is a function of the ma-
terial parameters under calibration, K and n. As a consequence, in the calibrated
scenario, the experimental y values are placed in the design space at calibrated
locations along the x1 axis. In the non-calibrated scenario, the experimental y

values are still “reliable”, i.e. Hi-Fi, but they are located in the design space at
non-calibrated x1 locations.

The optimal values of the non-calibrated and the calibrated scenario for each
step of the EGO algorithm are reported in Table 5 and in Table 6, respectively. The
resulting interpolated surface and the optimal solution for both the scenarios are
shown in Figures 9 and 10, respectively. We observe that the values of the optimum
found are not in a ascending order because during the steps of the algorithm there
is also a re-estimation of the response function y.

Iteration x1 x2 y

0 107.61 782.42 50 614.35
1 129.40 298.21 51 766.99
2 105.22 782.64 51 200.74
3 107.61 782.56 50 617.58
4 104.38 781.22 51 690.14

Table 5 Evolution of the optimum during the EGO steps in the non-calibrated scenario
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(a) Design space for non-calibrated scenario

(b) Design space for calibrated scenario

Fig. 8 Design spaces

Iteration x1 x2 y

0 107.05 777.39 50 376.07
1 107.16 770.56 50 130.40
2 107.12 776.63 50 376.73
3 113.52 785.20 49 129.89
4 113.15 786.77 52 490.92
5 114.57 774.76 52 712.46

Table 6 Evolution of the optimum during the EGO steps in the calibrated scenario
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Fig. 9 Surface of the metamodel for the non-calibrated scenario; optimal solution values are
given in Table 5

Fig. 10 Surface of the metamodel for the calibrated scenario; optimal solution values are
given in Table 6

By comparing the mentioned figures, we can observe how the two optimal
x-values are very similar, i.e. both scenarios yield more or less the same optimal
solution. Furthermore, the estimated y(48) values are similar too, with a difference
of only 0.1 %. The expected error of the optimal value of y(48) is smaller for
the calibrated vs. the non-calibrated scenario (1764 vs. 5558 N

kg ), which is not
surprising, as the prediction yielded by the calibrated metamodel is obviously
more accurate. Although the two scenarios yield the same optimal solution, the
metamodeled surfaces are not very similar in shape. This is mainly because the
calibration affects the x1 values and range.
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4.1 Further validation of the proposed approach

Looking at Figures 9 and 10, it is clear that several local maxima are present on the
metamodeled surface. Some of these maxima, due to insufficient experimental data,
might be erroneously evaluated by the models built respectively with calibrated
and non-calibrated data. In order to assess whether the optimal solution found
is a true optimum, additional experiments were planned and executed with two
more tube materials (Docol 600 DP and AISI 316L). These additional points also
serve for validating the accuracy of the prediction offered by both the metamodels.
Both the tubes are round shaped. Their geometrical data, the calibrated material
properties and the corresponding x1 and x2 values are given in Table 7. If these
two Hi-Fi points are added to the metamodel in Figure 10, the surface changes as
shown in Figure 11, but the optimal solution is virtually unaltered. Similar results
were obtained by repeating the procedure in the non-calibrated scenario.

K

[MPa]
n

x1

[Mpa]
x2

[mm3]

DOCOL800DP 903 0.15 87.90 254.80
AISI 316L 965 0.25 136.70 607.30

Table 7 K, n values and x values to be added to the calibrated scenario

Fig. 11 Surface of the metamodel for the calibrated scenario with two more Hi-Fi points
added

In order to test the credibility of both the metamodels, we made a “leave-one-
out” cross validation at the three closest available Hi-Fi locations to the calculated
output, the results of the square root of the MSE are in Table 8. “Leave-one-out”
means that the metamodel is rebuilt every time using only the Hi-Fi points from
6 locations, not 7 as in the full plan. This additional study clearly proves that
both metamodels closely predict the real values in the region where the optimum
is finally found because the square root of the MSE is small compared to the
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ranges of the three variables (in the order of 100, 780 and 52 000 for x1, x2 and y,
respectively). In other words, the optimum found is the same for both models and
can be considered a credible solution.

Scenario RMSE(x1) RMSE(x2) RMSE(y)

Non calibrated 1.50 28.38 576.46
Calibrated 0.76 13.64 183.96

Table 8 Square root of the MSE of variable x1, x2, and y.

Finally, in order to verify the accuracy of both the metamodels, the prediction
yielded by the reconstructed surfaces in Figures 9 and 10 was compared with the
Hi-Fi values obtained. The prediction errors are given in Table 9, which clearly
shows how both the models can be considered similar in terms of their predicting
ability.

Non calibrated Calibrated

Predicted y(48)
% Error on the
experimental
Hi-Fi value

Predicted y(48)
% Error on the
experimental
Hi-Fi value

DOCOL800DP 28 315.81 4.09 % 26 941.87 8.74 %
AISI 304 39 888.42 8.52 % 39 656.30 9.05 %

Table 9 K and n values for both scenarios

5 Conclusions

In this paper, a metamodeling optimization method was proposed, based on a
hierarchical “fusion” combination of both experimental (Hi-Fi) and numerical (Lo-
Fi) data. The model was applied to the structural optimization of an aluminum
foam filled steel tube, aimed at the absorption of mechanical energy as a side bar
in vehicles. Experimental three point bending tests were performed with different
tube shapes and materials and two designed plans of numerical simulations were
implemented, too, according to two scenarios. In the first scenario, the simulation
hardening data for the experimentally tested tubular materials were calibrated
until the prediction error was below 10%. In the second scenario no calibration was
performed and nominal values were used for modeling the flow stress of steel cases.
The study showed how the optimization algorithm, run with both the scenarios,
yield the same optimum solution and how both the models have a similar predicting
ability. In the proposed example, the “fusion” metamodeling approach worked as
an effective tool in order to reduce the time and effort spent in calibration of input
simulation data.
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