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Abstract: This paper deals with the problem of H,, filtering for stochastic neural networks (SNNs)
with a mixed of time-varying interval delays, time-varying distributed delays, and leakage delays. A
novel quintuple integral Lyapunov—Krasovskii functional (LKF) is constructed to improve the perfor-
mance of the SNN. Sufficient criteria can be obtained by applying the linear matrix inequality (LMI)
approach and developing a new mathematical analysis, which ensures the filtering error system is
asymptotically stable in the mean square. Finally, simulation results are provided to show the supe-

riority and usefulness of the proposed method.
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1. Introduction

In recent years, the dynamic behaviors of neural networks (NNs) have been effectively investigated
due to their great potential in many applications, such as pattern recognition [8], smart antenna arrays
[31], and associative memory [42]. The success of these applications depends on the dynamic behaviors
of the concerned NNs; thus, several articles analyzing the dynamic behaviors of NNs have been
published in literature, see for instance [1-5,10,11,18,22,29,32,38,43]. Numerous practical applications

require the equilibrium point of a designed NN to be unique and asymptotically stable. Stability
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analysis of NNs have been conducted, and different types of stability conditions have been proposed
in [24,36]. It should be noted that synaptic transmission is a difficult process due to the random
variations in neurotransmitters and the various causes in real nerve systems. The establishments
in [26,44] showed that with some stochastic inputs, NNs can be either stabilized or destabilized.
Thus, this has real-life importance for the study of stochastic effects on the dynamic behaviors of
delayed NNs [28,40]. Furthermore, the problem of stability analysis for stochastic neural networks
(SNNs) is usually harder than the stability analysis of deterministic NNs. Thus, it is necessary to
examine the stability of NNs with stochasticity [7,39].

As is common knowledge, time delays are the main source of divergence, oscillation, and instability
of the model. The time delays that appear in the system can be constant or various [14-16]. Generally,
NN have spatial areas due to the appearance of parallel pathways including different axon lengths and
sizes. That is, the conduction velocities are distributed together with the above pathways. Therefore,
distribution can occur in an extension of delays. Distributed time-delayed signals reflect the distributed
signal propagation in neurons during a time span in the above pathways. Moreover, the lower bound
of the delay is not always zero. Thus, different types of time-varying delays, the so-called time-varying
interval delays that appear in some engineering systems, are commonly found in networked control
systems. Thus, we assume that the time-varying delay belongs to a given interval. Recently, the
stability criteria for NNs that includes both interval and distributed time-varying delays have been
presented in [6,17].

Leakage delay has a wide range of effects on the dynamic behavior of NNs. In fact, the charac-
teristic of the leakage term may destabilize the dynamic behaviors of the NNs, and leakage delays
are generally difficult to handle. Therefore, it is important to analyze the impact of leakage delays
when investigating the state estimation and filtering design problems of NNs; many researchers intend
to study leakage delay problems. In [41], the authors conducted a passivity analysis of SNNs with
leakage and time-varying delays. Leakage delays have a propensity to destabilize NNs, and they are
usually difficult to handle. Therefore, it is necessary to study the effects of leakage-delayed signals
when analyzing the stability of NNs. Note that the existence of leakage-delayed signals in NNs has
led to some new research topics in recent years [30,37,45]. Gan in [9] considered the exponential
synchronization problem for SNNs with reaction-diffusion terms and leakage delay. Furthermore, the
authors in [28] studied the synchronization problems of coupled SNNs with leakage and time-varying

delays.



A general NN is a strongly interconnected model that contains a great number of neurons. NNs
generally require substantial connections between neurons to handle complicated nonlinear problems.
It is highly expensive or complex to get the complete state information of all neurons in an NNs in
most engineering systems due to their tangled structure. Thus, evaluating the states of the neurons
through available measurements to make useful NN applications is a major undertaking. Hence, it
becomes important to examine the state estimation problems of delayed NNs [13,20,33]. The Ho,
state estimation results of static NNs were reported in [25,34]. Saravanakumar et al. investigated the
H, state estimation of SNNs in [34]. H filtering for SNNs with leakage, time-varying interval, and
time-varying distributed delay signals have not been completely studied in the existing literature to
the authors’ best knowledge, which is one of the motivations for this work.

The problem of H, filtering is studied for SNNs with mixed delays in this paper. The stability
criteria for delayed SNNs are obtained based on the It6 differential formula and theory of stochastic
stability to ensure mean-square asymptotic stability with a prescribed H., performance. The main
contributions of this work are twofold: 1) An efficient approach is proposed to study the H filtering
problem for SNNs with leakage delay and mixed time-varying delays by introducing a new Lyapunov—
Krasovskii functional (LKF) including quintuple integral terms; and 2) The quintuple integral terms
fi)m fao fi fo? f;_a m? (s)Sym(s)dsdodaduds and f__q;,;l féo f; fo? ft:_a mT (s)Ssm(s)dsdodaduds that
include the information of the activation function are utilized when obtaining the time derivative of
the constructed LKF.

Notation: R™ and R™*™ respectively represent the n-dimensional Euclidean space and the set of
all n x n real matrices. The notation * denotes the entries induced by symmetry. A7 denotes the
matrix transpose of A. X > 0 (X > 0) denotes that X is a real symmetric positive definite (positive
semi-definite) matrix. diag{a,b, ...,z} denotes the block-diagonal matrix with elements a, b, ..., z in

the diagonal entries. I is the identity matrix with appropriate dimensions.

2. System Formulation

Consider the following SNNs with mixed delays including time-varying interval delays, time-varying
distributed delays, and leakage delays:
t

du(t) = [ — Bu(t — h) + Wog(u(t)) + Wig(u(t — 9(t))) + W /t » g(u(s))ds + Byo(t)| dt



+ |Eu(t) + Eru(t —9(t)) + Hog(u(t)) + Hig(u(t — I(t))) + Ha /t—b(t) g(u(s))ds|dw(t), (1)

z(t) = Cu(t — h) + Du(t — 9(t)) + Bav(t),
B(t) = Ju(t),

u(t) = p(t), t € [-max(da,d, h),0],

where u(t) = [uy(t), u2(t), ..., u,(t)]T € R™ is the neuron state vector signal. g(u(t)) = [g(u1(t)), ...,
g(un(t))]T € R™ represents the activation function vector of neurons. The measurement signal z(t) €
R™ is the network output, 3(t) € RP is to be estimated, and v(t) € RY is the noise input signal in
L[0,00). w(t) = [w1(t),w2(t),...,wn(t)]T is the n-dimensional Brownian motion. B = diag{|1, .., |n}
is the positive diagonal matrix. E, Fy, Hy, H1, Hy, Wy, W1, W5, B1, Bo, C, D, and J are known constant
matrices with appropriate dimensions. ¥(t), b(t), and h respectively represent the time-varying interval

and time-varying distributed and leakage delays. These delays are assumed to satisfy

0< 1y <I(t) <y, () < ¢, 0<b(t) <d, (2)

where ¢, %2, ¢, d, and h are positive constants.

Assumption (1): Every g¢;(t) for ¢ = 1,2,...,n is continuous, bounded and satisfies

~_ gilk1) —gi(k2) _ 4
P e )
¢ < — <¢, (3)

with V't = diag(c],c5,...,c) and V™~ = diag(cy ,c5 , ..., c;) and ki, ks € R, k1 # ka.
We now design the following filter for the NN in (1):

dii(t) = [ — Ba(t — h) + Wog(a(t)) + Wig(@(t — 0(1))) + Wa /t i g(a(s))ds] dt + X[z(t) — F()]dt

t

+ [B0) + it = 0(0) + Hog(@(0) + Hrg(ate = o(0) + 1 [ o JES] dott),
2(t) = Cl(t — h) + Du(t — 9(t)),
Bt) = Ja(), (4)

where u(t) € R™, Z(t) € R™, and B(?‘) € R respectively denote the estimates of u(t), z(t), and S(t).

X € R™ is the filter gain matrix to be computed.
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Defining e(t) = u(t) — u(t) and B(t) = B(t) — B(t), allows us to obtain the following filtering error

system from (1) and (4):
de(t) = [ — (B+XC)e(t —h) — XDe(t —0(t)) + Wof(e(t)) + Wi fle(t —9(t))) + Wa /_ f(e(s))ds
+Qﬁ—XBﬁMﬂP#&pdﬂ+Em@—ﬂu»+Hd@@D+Hﬁ@@—ﬁ@»
H e(s))ds|dw(t),
sy [ slets)is]astt

B(t) = Je(t), (5)

where e(t) = [e1(t),e2(t), ....en(®)]" € R", f(e() = g(u(-)) — g(@()), and f(e(-)) = [f(e1()), -,
flen()]*. Each fi(k) satisfies

where k € R, k # 0.

Definition 2.1. [34]

o Mean-square stability: If there exists a scalar (e) > 0 that satisfies E{|u*(t)|} < e (V ¢t > 0)
when sup_y<s<o E|p?(t)] < < for any scalar € > 0, the filtering error system (5) with v(t) = 0
is called mean-square stable. In addition, if limi_ oo E|u®(t)] = 0, then the filtering error
system is called asymptotically mean-square stable.

o H., filtering: Given a level x > 0, the filtering error system (6) is called asymptotically

mean-square stable with an Hy, performance x if the following condition is satisfied:

1B, < xllv(®)]]2

Jfor all nonzero v(t) € Ly[0,00) under the zero initial condition, where ||B(t)||g, = E{ [y~ [B(t)[*dt}"/2.

Remark 2.2. This paper, considers the Hy, filtering problem for SNNs. Mean-square stability is
required for the internal stability of the stochastic filtering error system without stochastic noise. Thus,

the mean-square stability criterion is obtained for the concerned SNN.



3. Main Results

This section establishes a novel sufficient condition for the desired H., filter design based on a

linear matrix inequality (LMI) approach.

Theorem 3.1. For a giwven matriz X and some scalars ¥1 > 0, ¥ > 0, ¢ > 0, d > 0, and

h > 0, the filtering error model (5) is asymptotically stable in the mean-square with Hs perfor-

QL @
mance, if there exist matrices P > 0, Q; = " 1_2 >0, (j =1,23), Qe >0, Ry >

j
* 22

0 =1234),5S >0 T >0 =12...,8), and any appropriate dimensional matrices
Psy Rs, Qsy Ss, Us, Tsy, Vs, Vs, Xs, (s =1,2), such that the LMIs (7) hold:

Iy, I, I

=] « 1 0 |<0 i=1,234, (7)
* * —I
where
Hoxo Z110 Z111
Iy; = x  —x2I 0 )
* * —R;
with
92 92
E1 =01 + Qs+ 91 Ry + 991 Ry + hRy + Py + P + 9181 + 1 ST + 0911 + 0T + 317/11 + ElulT

192_192 ,192_,192 7‘93 193 193
+ 22 Ly, + 22 1V1T+€1X1+F1X1T+ 2

3 _ 93
Y2 c 1913;17“ -2V T, VT,

93
6 Vi +

B 03

Eis=—-P(B+XC), 213=—-PXD+Pl — Q1 +Ri + ST + 91T + SUs + = VI
03 r V30 r
+ KXQ + G Vi, Eua=-P1+ 091, Z15=—Ri1, Z16 = PWo+Ql, + 1 (V™ + V™),

Eir = PWy, 110 = P(By — XBy), E111 = PWa, Zop = —Qyu, Z33 = —(1 — $)Q3 — Q2 — Q3

+ R+ Ry =2V TV, Egy=—Po+ Qo, S35 = —Ro, Zzr=—(1-9)Q, +T2(V™ + V),
Eu=—-Qn + Q% +Q}, Bus=—Q1s+Qh + Qs Bs5 = —QF), Zs0 = —QFy, Zes = Qi + d°Ry — 2I'y,
Srr=—(1— ¢)Q3 — 2T, Zss = Qo + Q3 + @32, Zgo = —Q3y, Va1 =¥y — 4,

H%Z = |: @1 ( - ﬁlﬁ — %2{ N* %i) A - 129735(’) ETP 191ETT1 %?ETTg %?ETTE',
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H22

4
H22

3
8 |

WETT, 0,BTS, UBTS, UBTS, UBTS;, P S Uu UX |
= (~9P-%5-%a-%¥) E'P 9FT, YETT, WETT
WETT, 0,BTS, UBTS, UBTS, UBTS;, P wS YU UX |
[93 (_1921é_a9§;19§7-_ 193]7 192419?§) ETP 9y ETT, YUipTT, YLUpTT
UNETT, 9y, BTS, UUiBTs, URUIRTS, ULUIRTS, § 9nT 50y My
[@4 (_0217€_ﬁ§;19§7~_ 95 —191V 192—419‘1*37) ETp 1921ETT2 9 —19§ETT ﬁ-i}ETT
UNETT, 9y, BT, UUiRrs, URUIRTg, ULVIRTg, R o9,T Uity 2odly ]
9?2 191 97 9?2 93
“BT oS -Usy s s -m —om -Gm T,
| hBe (—08 - 58— WS- fis) P o -1 4T
SO gy S WS s, —he m 9Ty U —%iﬂ},
[—1921R3 (-192152—193;9?54 _7915 - 158) P =T, — S;§?T4 ~h,
_ 94 2__ 92 3__ 93 _ 92 3_
BTy Sy —B5S, B _192419158 —Ty —9nTy —250T; -5l
2 _ 92 3_ 93 4 2__ 92 3_ 93
[—1921R3 <_192IS2_192219154_192679156_72%58) P —9nTy —250T —BUTy
9 —419‘1*T8 99155 _193;9%54 _193:9?56 _192419158 Ty —99,T, _ﬂggﬂfTﬁ 193;9
= 93 5\ T < 0 e\T T
(oS- 5th - %x) 0 (-0S - -5x) 0 | 05 =| 0 KBP(B+XC)

hBPXD 0 0 —hBPW, —hBPW; 0 0 —hBP(B;— XB5) —hBPW2:|7

(_ﬁmﬁ_ﬂ%ﬁﬁ;ﬂ m§> 0 (_mﬁ_ﬁ%ﬁg_ﬂ 'y
(=0T - 50V, - %55 19357)71 0 (0T - B30y, - B,

PT 0 P O | Q=] QF 0 QF Ous | RT=[RT 0 RT Oues |-
ST 0 ST O [ TT=[ T 0 T Ou [ U= Ul 0 U 01 |,
VT 0V O | AT = AT 0 AT O | T =0T 0 M 0ues |-
E 0 E 00 Hy H 00 0 H |

—93 35

) O1xs }
)T olxg},
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B = [ 0 —(B+XC) —XD 0 0 Wy Wiy 0 0 (B;y—XBs) W, }
Proof : For simplicity, we now let
de(t) = m(t)dt + n(t)dw(t), (8)

where

m(t) = —(B+ XC)e(t — h) — X De(t — 9(t)) + Wo f(e(t)) + Wi f(e(t — 9(t)))

+ W, /ttb(t) fle(s))ds + (By — X Ba)u(t),

n(t) = Be(t) + Bre(t — 0(t)) + Hof(e(t)) + Hif(e(t — 9(t))) + Ha /tt o fle(s))ds.
Define the following LKF candidate:
Vie) = di(et% (9)

where

- B/ (e(t)—B/tth (s)d

t—191

Valer) = /t_ﬂ T(5)Quu(s)ds + / 7 (5)@un(5)ds

—9(t)

[ e+ [ o

s(er) = / fr(e(s))Rif(e d8d6+/19 /6 s)Rae(s)dsds
1 Ji+

t+6
+/ / s)Rze(s dsd6—|—/ / s)Rye(s)dsdd,
t+6 t+6

—9
w(er) / mT $)S1m(s dsd5+/ (8)Sam(s)dsdd
—91 Jt+6

_191
/ / m? (s)Szm(s dsdudé—i—/ / m?” (s)Sym(s)dsduds
91 t+p t+p
—91

/ /// $)Ssm(s dsdadud5+/ // (8)Sem(s)dsdadudd

191 +(X
+ / / / / m?T (5)Sym(s)dsdododuds

— Jé o o t+o



—91 0 0 0 pt
+/ //// mT (s)Sgm(s)dsdododuds,
t+o
—9;
5(et) / / s)Tin(s dsd5+/ / s)Ton(s)dsdd
t+4 t+6

/ / / s)Tsn(s dsdud6+/ / / $)Tyn(s)dsdudd
t+p 6 Jit4p
—91 ¢
/ /// $)Tsn(s dsdad,udé—l—/ /// nT(s)Tsn(s)dsdaduds
t+a t+a

/ //// $)Trn(s)dsdodadudd
« t+o
0
/ //// $)Tgn(s)dsdodadudd,
t+o

where

Through Ito’s formula [19], we get

t

dV (er) = LV (e;)dt + 2(e(t) -B e(s)ds)TPn(t)dw(t),

t—h

where

LV (ey) = ch;](et),

LV (er) B/ e( s Pm nT(t)Pn(t),
t—h

LVy(er) <0 (0)Qun(t) + 1" (t — 91)[~Q1 + Q2 + Qsln(t — V1) — (1 — )™ (t —

— T (t — 92)Qan(t — 92) + T (1)Que(t) — e (t — h)Que(t — h),

£a(er) < e Rl e0) ([ tb(t) stetsnas) ([

e(s))ds
L T

t
+ T (1)[01 Ry + Va1 Rs + hRae(t) — / ¢T (s) Roe(s)ds
t—191

—/;::1 eT(s)Rge(s)ds—/tih el (s)Rye(s)ds
Lw(azt):mT(w[ﬂlSwﬂwﬁ(%%)Sﬁ(w 219%)54 +( ?)S5+( -

(10)

V() Q2n(t — 9(t))

93 —19?)56
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+ (19—%)57 + (ﬁgéﬁ%)ss]m(o - /;19 m" (s)S1m(s)ds

t—191
/ s)Som(s ds—/ m? (s)Szm(s)dsdd
=0 9

t+6
-0
/ mT (s)Sym(s)dsdd — / / m7 (s)Ssm(s)dsduds
-1 t V1 t+p

I 0
/ / m?T (s)Sem(s)dsduds — / / / T (5)Sym(s)dsdaduds
9o J§ Jt+u 91

/ / +am T (5)Sgm(s)dsdaduds,

—102

LVs () = n" (t) [191T1+1921T2+ (%)T3+ (192 219 )i + (?)T5+ (@)TG

— 9% k
( ) ( )Tg}n(t)—/ nT(s)Tyin(s)ds
24 t—0;
t—1;
/ s)Ton(s ds—/ / s)Tsn(s)dsdd
t—92 91 Jt+6
91
/ / nT(s)Tyn(s)dsds — / // $)Tsn(s)dsdudd
Vs Jt+s 01 t+u
—91 40
/ // s)Ten(s)dsdudd — / /// (s)T7n(s)dsdadudd
t+p 91
—9
/ /// s)Tgn(s)dsdadudd.
t+a

From the Newton-Leibniz formula, the following equalities hold for any appropriate dimensional

matrices P, R, O, T, S, V, U, YV, X:
0=2T(t)P :e(t) —e(t —9y) — /t  mls)ds /t y n(s)dw(s)},
] t—0, t—0,
0 =2)\T()Qle(t — V1) — e(t — V(1)) — m(s)ds — n(s)dw(s)|,
L t—0(t) t—0(t)

. ) )
0= 2T (R |e(t = V(1)) — e(t — V2) f/t m(s )dsf/ n(s)dw(s )}

V2
0:2AT(t)s[z91€(t) ttﬂl ds/ﬁl /t+5 s)dsdd — /191 /+5 5)duw(s d5
0 = 2N (1T [re(t) - /j: e(s)ds — [ /+5 s)dsds — / /Mn(s)dw(s)da},
OQAT(t)Z/I{(ﬂj)e(t)/(;l /t;e(s)dsd§/ﬁl/§ /wm(s)dsduda
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0 0 pt
—/ // nsdwsd,udd (16)
5 Jits
2 2 9 —
0 =2X\T(t) 19 ’9 / / s)dsdé — / / / s)dsduds
t+48 t+p
—/ // nsdwsdudé (17)
t+9
0 =2xT(t) / / / s)dsduds — / / / / s)dsdoduds
) t+p
—/ /// nsdwsdadudé (18)
t+a
T 193 193 —h —h
0=2\ s)dsdpdd — s)dsdadudd
+/
/ / / / dadudé] (19)

where

Ao =[ e era—owy | P=[rr P ] e=[or ot ]

R=[=r mp ] s=[sr sp ] T[T o] u=[u w ]

v=| v vﬂT’X:[/ﬂT XZT}T’J’:[MT ]
It is clear that

— T t n\s)awls
TP [ n(s)dete

< AT(HYPTYPTA®) + [ /t tﬁ n(s)dw(s)]TTl[ /t tﬁ n(s)dw(s)}, (20)
Coria [ a(s)du(s)

t—9(t)
< )\T(t) QT;l QT)\(t) + [/ti:::) n(s)dw(s)} TT2 [/ti;:) n(s)dw(s)} , (21)
om0 ns)dw(s)

t—1392

t—9(t)

< NT(ORTy "RTA(H) + {/ti;ﬁ(t) n(s)dw(s)}TTz{/t

n(s)dw(s)] , (22)
— 9o

0 gt
—ZAT(t)S/_ﬂ /t+5 n(s)dw(s)dd
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<IN (ST ESTA(t) + ’ t n(s)dw(s) TT3 t n(s)dw(s)|dd, (23)
=01 t+4 t+8

—9
-2 tT / / s)dw(s
t+6

< I AT (T TV TTA(E) + [ 019 [ [ :1 n(s)dw(s)]Tn[ [ :l n(s)deo(s) ] ds, (24)
—QAT(t)Z/I/O /O/t n(s)dw(s)dudd

- tp
< (U)X s U + / A Lﬂ(ﬂﬂﬂﬂﬂ/L()wuhw5 (25)

- 2>\T(t)V/ / / n(s)dw(s)duds
— ) t+u

< (@) MOV VI + /_ :91 /5 ’ [ /t;n(s)dw(s)r:rﬁ[ /t; n(s)dw(s) | duds,  (26)

— 2T (t)x / / / / s)dadpds

< (193 (AT AT () / / / /+a $)du(s)| 77 /; n(s)de(s)|dadpds, — (27)
( y/_ﬂ / / /H_an s)dw(s)dadpds

< (193 ] ﬂg 1Y) / / / / d(s) 8[ /t; n(s)deo(s)] dadds.

(28)

Through the Tto isometry in [19], we obtain

E[ /t tﬁ n(s)dw(s)]TTl[ /t tﬂl n(s)dw(s): <E / t s)Tin(s (29)
Iﬁ[ﬁu do| } [ALZM$WGXSE/

1[4:/019 [/ doo / d§§E/§ /m $)Tyn(s)dsds, (32)

IE/: [/t du( / dég /_19 /+(5 $)Tyn(s)dsds, (33)

E / Oﬂ /5 ’ /ﬂ sydw(s)| T /+5 s)duw(s dud6<E / /5 /M $)Tsn(s)dsduds, (34)

$)Ton(s (31)
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E/: /5[/ n(s)do(s >}TT6[/; (3)dw(s)) dpds

<E / o / /ﬂ §) Zsn(s)dsduds, (35)
TRty

<E / / / /+a §)Ton(s)dsdadyds, (36)
Lo s

L i

From (6), the following properties hold for positive diagonal matrices Ty > 0 and I'y > 0 (see [20]):

0 < =2fT(e(t)T1f(e(t) + 2T (OTL(V™ + V) fe(t) — 2" ()V TV e(t), (38)
0 < =2fT(e(t —9(t))Taf (e(t — (1)) +2e" (t — (t))T2 (V™ + V) fle(t — 9(1)))

—2eT(t —I(t)) VTV Te(t —0(t)). (39)

EW) = | () T(t—h) T(E-V) eT(t-0)) Tt—d) [Tle(t) fTle(t— VD))
FTelt—00) fTelt—02)) 7)) ([ Fle(sDds) eT(s) mT(s) .

Combining equations (10)-(39) and using the Schur complement, allows us to deduce that

4
ELV (z4) <]E 2 / / / / / s)dsdodadpdd
N t+a Jt—191
s / / / / gT (s)2€(s)dsdododpdd
t+a Jt—h
s)3&(s)dsdodaduds
194 194 /19 / ~/M/ /ﬂ(t) 3
91 0 t— 19(t)
—HE o / / / / / s)I4&(s)dsdodaduds, (40)
19 —97) 9, Jo Ju
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where

_ I, 10, .
Hi: . ) Z:172a3a47
x5,

Hoxo Z1,10 E1,11
II;; = * 0 0 )
* * 7R1

and I1%,, II%,, (i =1,2,3,4) are the same as those defined in LMI (7). Note that,
BE)A(H) = €7 (HINisIT{EE (1), (41)

where 117, = [ J u ] We now set
11 times

50 ={ [ 17030 T e}, ¢ o
Through Tto’s formula, we then obtain
30 =&{ [ 17080 x0T 0n0) + £V elie) - B{£veto. )}
<E{ / 8B — o W0l0) + LV (enldt).
which leads to
w0 <&{ [ oiewa},
where

I, 10,

=
Il

|+ MgsIlfy, i=1,2,3,4.
* 99

From (7) and the Schur complement, it then follows from II; < 0, that
E[LV (z,)dt] = E[dV (z,)dt] < 0,V e(t) # 0.

Hence, ||B]|2 < x||v]||2 holds.
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4. H,, FILTERING

Theorem 4.1. Given scalars 91 > 0, 92 > 0, ¢ > 0, d > 0, and h > 0, the filtering error system
(5) is asymptotically stable in the mean-square with an Hs performance x if there exist matrices
QL Qs

* %2
1,2,...,8), and any appropriate dimensional matrices Ps, Rs, Qs, Ss, Ts, Vs, Us, Vs, Xs, (s =1,2),

P>07 Q]: 207 (]:17273)5 Q4>07 R€>0(€:17273a4)7 Sl>07 ﬂ>0(l:

such that the LMIs (42) hold:

i1 X% X3

Si=| % X, 0 |<0 i=1234, (42)
* * -1
where
Dgyg D110 P11
Su=| o« 2 0 |,
* * —Rl
with
1 T T r, 9 e
P11 =Ql, + Qs +V1Ry +0U21R3 + hRy + Py + P + 9181 + 1S] +91T1 + 90 TE + S+ U
2 42 2 92 3 3 3 03 3 _ 93
+ Y2 ﬁ1V1 + Y2 ﬁ1V1T + ﬁ/ﬂ + ﬁxfp + %2 191371 + 05— U Vi —2v v,
2 2 6 6 6 6
192 192 _192 193
Pro = —PB—GC, ®13=-GD+ Py = Q+Ri+ S5 +9nT + Uy + 2V +
93— 93 o 1 - +
+ y27 @14:7P1+Q1’ @15:77—\{1’ @16:PWO+Q12+F1(V +V )7 ®17:PW17

6
@119 = PBy — GBy, ®111 = PWa, ®ap = —Qu, P33 =—(1—9)Q3 — Q2 — QF + Ro + RY — 2V TV T,

Dgy = —Py+ Qa, Pgs = —Ro, P37 = —(1-9)QL +T2(V™ + V"), &4y = —Q1, + Q7 + Q7
Dyg = —Qia + Qs + Qyy o5 = —QF;, P59 = —QYy, Pos = Qi + d*Ry — 20y,
Or7 = —(1— 9)Q3, — 2Ta, Psg = —Qiy + Q35 + Q35, Pog = —Q3y, Vo1 = V2 — V1,
oh=| e (0P - 58— 5U-5X) BE'P wETT, GETT, YETT:
NETT, 9,BTP UBTP UB'P LBTP P S Uu UX |,

Sh=| v (-0P-485-Uu-4x) ETP 0BT YETT, RETT;



WETT, 0,B'P UBTP LBTP UBTP P 9,8 LU LUX |,

S = [ O3 (—?921@— 03;0%%_ 639 % ﬂfﬁ) ETP 95 ETT, L;ﬁffﬁn L??ETTG

4 g4 ~ 2 92 3_ 93 4__ g4 ~ ~ 3 ~
BNETT 9y, BYP UUBrp BUpTp BoURTp G oy, T Bhy %y},

Sh=| 6 (-omR - BT - MUY - GG) BTP 9y BT, SSRETT, MEUETT,

BETT, 9y BTP UpYigrp Botiprp ivigrp ®og,F S50y vy |,
N3y = [ —vU1 Ry (—19151 19153 19§S5—19157) -P 0T —§ 3 —§T5 191T7
9?2 93 93
DS —2P) U(Sy—2P) U(S-2p) U(s;-2P) -1 -0y -Ym YT |,
’12 ,13 2 2 3 4
52, — [ “hR, (—19151 ~ g, - g, - 9157) —p -0 -Urn U U

91(S1 —2P) (S5 —2P) Ui(S5—2P) U(S;—2P) -Ty —hTy —UT5 —UTy }

¥3, = [ —U21R3 ( — 9152 — ﬂg;ﬂf S4 — ﬂggﬁi Se — %SS) —P —95Ty —ﬂg;ﬁ% T, —”3;9? Ts
SR 9y (S — 2P) B5U(S, —2P) BUi(S,—2P) PUi(Sy—2P) —T, —9yT
8 V21(S2 —2P) —251(S4—2P) —251(S¢ —2P) 57 1(Ss—2P) Ty —9aT)

LT%

_192 92 93— ﬂi’T }

4 9393 93 —9% 97 93-93 93 —0%
Yoo = [ —U21Rs (—192152— oSy — PS5 — 51 8s) P =Ty -5 Ty =T

1919‘1*

2_ 92 3_ 93 4_ 94
Ty 921(S2 —2P) 225718, —2P) 22%(S5 —2P) “2U(Sg—2P) —Tp —i0aTy

SBq in | Wl [0 WBPB+ABGC WBGD 0 0 —hBPW, —hBPW

~

0 0 —hBPB;+ hBGDB; —hBPW2:|7E:|:E 0 £y 00 Hh H 0 0 0 Hy |

3:[0 —(B+P71GC) —P7'GD 0 0 Wy Wi 0 0 (B;— P 'GBs) Wg].

In addition, the gain matriz X is computed from X = P71G.

18 times
. = = . . — 1 —1 —1
Proof: Pre- and post- multiply IT; and I, in (7), respectively, by diag{ I,...,I ,PSy ", PS; ", PS: ",
18 times
1 . T e-lp a-lp a-lp a-1
PS7 . I,I,1,1,1} and diag{ T,...1 ,S7'P,S;*P,Ss'P,S7 P, I,I,1,1,I}. Next, pre- and post-

18 times
P ~ ) P 1 1 —1 -1
multiply II5 and Il in (7), respectively, by diag{ I,....,I1 ,PSy ", PS; ", PSg ", PSg ,I,I,1,I,I} and
18 times
. — 1 1 -1 1 LQ . . .
diag{ I,....,.I ,S5 P, S, P, Sg" P,Sg P,1,I,I,1,I}. Then, weobtainX;, (i =1,2,3,4) in (42) using
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the inequality (S; — 2P) > PS;'P (I = 1,2,...,8) (see [35]). The proof of Theorem 4.1 completes

from Theorem 3.1.

Remark 4.2. The problem of H,, filtering for SNNs is presented in terms of LMIs using a new
quintuple integral LKF, that guarantees the mean-square asymptotic stability of the resulting filtering
error system. In Theorems 3.1 and 4.1, the derivative of the LKF can finally be expressed as the sum

of four parts (40). This method is generally different from [7,39].

Remark 4.3. In [13], the authors examined the H,, state estimation problem for static NNs. The
H, state estimation of SNNs with mixed delays was established in [34]. However, the H filtering of
SNNs with leakage-delayed and mixed time-varying delayed signals was not presented in the existing

work. Hence, the results of our work have great scope.

Remark 4.4. The problem of H., state estimation for SNNs using a new LKF with triple integral
terms was investigated for the first time in [34]. No other H, state estimation result is available for
SNNSs in the literature to the authors’ best knowledge. Quadruple integral approaches have mostly
been used for deterministic delayed NN models in recent years. There are many methods of solving
quadruple integral LKF's in deterministic NN cases. However, it is difficult to use quadruple integral
approaches for SNNs. Nevertheless, the quadruple integral approach for SNNs was introduced and
successfully solved in [38]. Next, we proposed a new quintuple integral LKF for solving the Ho,
filtering problem for SNNs. Additionally, multiple time-varying delays have been added in this paper:
time-varying interval delays, leakage delays, and time-varying distributed delays. It will be possible
to investigate the existence of neutral-type time-varying delays in the model under consideration in

this paper in future works.

Remark 4.5. The distributed H, state estimation problem was examined for stochastic delayed 2D
systems in [21]. The state estimation problem for asynchronous multi-rate multi-smart sensors was
studied in [27]. Global p-stability analysis for quaternion-valued NNs with unbounded time-varying
delays was presented in [23]. The Lo, performance problem for single and interconnected NNs with
time-varying delays is considered in [3]. From the perspective of the authors, state estimation and
filtering problems have not been completely studied for SNNs in literature, which partly motivates us

to consider such problems in this paper.
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Remark 4.6. Generally, H,, control, H,, state estimation, and H filtering problems are not simply
applied to SNNs. Some research publications have tackled such problems. However, the authors used
very simple LKF's to solve the stability problems in those articles. A new LKF with quintuple integrals
is proposed for the stability analysis of SNNs in this paper, considering that some computational
complexity can occur in our method. However, the H, filtering problem was completely studied for

SNNs with mixed time delays, which is the main contribution and motivation of our work.

5. Numerical Examples

We have provided both numerical and practical examples to show the superiority and usefulness of

our approach in this article.

Example 5.1. Now, consider the filtering error system in (5) with the following matrix parameters:

2 0 —0.5 0.2 0.5 0.2 02 —-0.5
B = 9 WO = 3 Wl = ) 2 = 3
0 1 —0.2 0.5 0.3 0.2 —-04 1.2
0.1 0.2 —-0.05 0.1 0.05  0.05 0.01 0.02
= 5 El - ) HO = ) Hl = )
—0.05 —-0.1 0.01 —-0.1 0.01 -0.01 0.02 0.01
0.02 -0.01 —0.4
Hy; = , Bi= ,Cz[o.z 0.2},D=[0.05 0.1},
0.01 0.02 0.4

By = 0.8, J={0.3 0.4], Vo =0y VI =1L.

We obtain the desired gain matrix by solving Theorem 4.1 with ¢¥; = 0.4, ¥5 =1, d =0.3, h = 0.2
and ¢ = 0.4:

—0.5051

0.4964

TABLE 1. Comparison of minimum y for various values of ¥5, ¢, when ¢; =1, d =

0.3, h =02
¢ 0.1 0.2 0.3 0.4 0.5
Vo
1.5 0.2421 0.2658 0.2901 0.3124 0.3367
2.0 0.4124 0.4347 0.4604 0.4873 0.5162
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TABLE 2. Comparison of the maximum allowable delay upper bound 95 for various
values of 91, ¢, when d=0.3, h =0.2.

¢ 0.1 0.2 0.3 0.4
U
1.5 3.2143 3.1623 3.0538 2.9143 2.7865
2.0 3.8132 3.5876 3.4687 3.3587 3.2786

The state trajectories of uq(t) and wus(t) and their respective estimations w1 (t) and @ (t) are shown

in Figure 1. Figure 2 represents the filtering error, e(t) = u(t) — u(t).

Finally, Figure 3 shows the

output error, 3(t) = B(t) — B(t) Tt is easy to observe the usefulness of Theorem 4.1 for the H, filter

design of delayed SNN from the simulation results.

FIGURE 1. State response u(t) and its estimation ().

Uy

-y

Uz

-y

25
t/sec

Example 5.2. Consider the following matrix parameters:

2 00

B=10 3 0], W

0 0 4

04 -0.2
=] -02 02
0.2 0.3

0.3
0.4
-0.3

,le

0.2

0

0.2

—-0.1 0.1

0.1

-02 0

0.1

0.3 —-02 04
, Wo=1] —02 04 02
03 01 -0.1
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€1
15F 7

)

05 4

t/sec

01 T T
— ()
0.05F :
O,
-0.05 E
_0'1 4
-0.15 E
0.2 1
_025 | | | | | | | | |
o o5 1 15 2 25 3 35 4 45 5
t/sec
FIGUurE 3. Output error 3(t).
02 0 0 —0.05 0 —0.01 0.01 —-0.05 0
E={ 0 01 0 |,Ho=| -002 -0.03 0 , Hy = 0 0.05 0

0 0 01 0.06 004 -0.04 0 0.05 0.05
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—0.05 0.1 0.1 -0.3
0.2 0.1 02 0.2 0.3 02
Hy = 01 005 01 |,Bi=] 01 |,C= , D= )
0.1 04 02 04 0.1 05
-0.1 01 -0.1 -0.1
—0.4
32: ) J = |:03 0.4 05:|7 E1:V7:O3a V+:[3'
0.3

Choosing Vi (e;) = e (t)Pe(t) instead of V;(e;) = (e(t) — Bftt_h e(s)ds)TP(e(t) — Bftt_h e(s)ds) in
LKF (9) implies 22 = 0. Then, we obtain the minimum H,, performance index x for different values
of delay Y5 and ¢ by solving LMI S (i = 1,3,4) in Theorem 4.1 with ¢¥; = 0.5, d = 0.3, h = 0.
The comparison results are listed in Table 3. Thus, our results are less conservative than the method

proposed in [34].

TABLE 3. Comparison of minimum y for various values of 95, ¢.

(92, &) (0.804) (0.9,03) (0.9,05) (1.0,0.5)  (1.0,0.7)
34] 0.8478 0.8796 0.8974 0.9278 0.9537
Our result |  0.3154 0.3485 0.3705 0.4163 0.4673

Example 5.3. Artificial NNs have the characteristics of functionally related biological neurons in a
nervous system. Moreover, NNs can be used in some practical systems. In this example, we choose
the quadruple-tank process (QTP), as shown in Fig. 4. The main objective was to stabilize the liquid
level in tanks 1 and 2 using pumps 1 and 2, respectively. Therefore, v; and vy are the respective input
voltages to pumps 1 and 2 and the outputs are 1 and 2 (voltages from level measurement devices).
The QTP can be represented using the NN. The differential equation for the mass balances in the

QTP can be expressed as follows (see [12]):

T(t) = AgZ(t) + A1Z(t — V1) + Bou(t — 93) + Byu(t — 93), (43)
where
~0.0021 0 0 0 0 0 00424 0
_ 0 ~0.0021 0 0 _ 00 0  0.0424
AO = 5 Al - 5
0 0 ~0.0424 0 00 0 0
0 0 0 ~0.0424 00 0 0
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~ 0.1113v; 0 0 0 ~ 0 0 0 0.1113v1
0= , B1= ,
0 0.1042v9 0 O 0 0 0.1042v, 0
~ —0.1609 —-0.1765 —0.0795 —0.2073 ~ ~
K= , 71 = 0.333, 72 = 0.307, u(t) = Kz(t).

—-0.1977 —0.1579 —0.2288 —0.0772

Mass balances in delayed equations can be represented by differential equations. Transport delays are

Tank 3 Tank 4

¥
;

Pump1 @ h,
Uy

FIGURE 4. Schematic representation of QTP (see [12])

usually included with the delay phenomenon in the tanks’ water inlets. Additionally, the transport
delays between tanks and valves vary with respect to time. It is assumed that ¥y = 0, ¥5 = 0, and
¥3 = 9(t). The control input variable u(t) denotes the amount of water provided by the pumps.
Hence, it is easy to see that u(t) exhibits a threshold value because of the limited capacity area and

pump hoses. Thus, we can consider the nonlinear function @(¢) as follows:

u(t) = Kf(&()),

F@®) = [A@EQ), .. f2@a0))]7,

Fi@i() = 0.01()F;(¢) + 1| — |7(t) — 1)), i =1,...,4.



TABLE 4. Upper bounds of 95 for various values of vy; and ~s.

N, 03 0.4 0.5
0.3 | 1.2456 | 1.3258 | 1.3691
04 | 1.3361 | 1.3812 | 1.4305
0.5 | 1.3615 | 1.4083 | 1.4538

The QTP (43) can be transferred to SNN (1), without stochastic disturbance, as follows:

at) = ~Bu(t) + Wo f (u(t)) + Wi f(ult - 9())) + . (44)
2(t) = Cuft),
u(t) = p(t), t € [=05,0],

where B = — Ay — 211, Wy = EOIN(, W, = Elf(, and f() = f() Additionally, by taking the values

T
J[o 00 0} , VT =04, VT
5 = 1.5142, which ensures the feasibility of the LMI (with I, = 0) in Theorem 3.1. In addition, the

= 0.0114, ¢ = 0.5, ¥; = 1.0, we obtained the delay bound

upper bounds of ¥ for various values of vy, and v, are given in Table 4 when ¥ = 1.

3
Uy
2F 4
- = U
-=-u3
1 (\ m b
\
of - S
= 7
=1 /‘
_1 ' -
)
1
ob ! 1
1
1
]
_3 b 4
_4 | | | | | | | | |
0 0.5 1 15 2 25 3 35 4 45 5
t/sec

FIGURE 5. The state trajectories of the system in the Example (5.3).

Remark 5.1. Example 5.3 is motivated by a modified version of the quadruple-tank benchmark,

which considers the transport delays in the process variables. This QTP system was selected to
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illustrate that the presented technique can be applied to real-life problems. The QTP is easy to use,
very interesting, and gives effective dynamic properties. Thus, this standard problem has recently
received a great deal of attention in both research and control education. This system is composed of
four interconnected water tanks and two pumps (Figure 4). A comparison table and figure have been

added to show the feasibility and convergence of our results (see Table 4 and Figure 5).

Remark 5.2. There are many published papers in the literature related to H, filtering and state es-
timation problems. However, to the best of the authors’ knowledge, H,, filtering and state estimation
problems for SNNs are not considered in depth in the literature except in Ref. [34]. Moreover, the
results in Ref. [34] are a special case in our work. Considering that our work is more general than [34],

however, this reference is suitable for comparison purposes with our results.

6. Summary

This paper investigates the problem of H, filtering for SNNs with leakage delay, mixed time-
varying interval, and distributed delays. The proposed problem has been examined in terms of LMIs
by establishing a new LKF with quintuple integral terms for delayed NNs. Additionally, the desired
gain matrix has been estimated with feasible LMIs. Practical and numerical examples have been
provided to show the feasibility and superiority of the presented results. An extension of the proposed
results to the existence of neutral-type time-varying delays in the model under consideration will be

investigated in further work.
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