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ABSTRACT 

 

Despite the tremendous effort of researchers and manufacturing engineers in improving the 

predictability of the air bending process, there is still a strong need for comprehensive and dependable 

prediction models. Currently available modeling approaches all present some relevant limitations in 

practical applications. In this paper, we propose a new method, which represents an improvement over 

all existing modeling and prediction techniques. The proposed method can be used for accurate 

prediction of the main response variables of the air bending process: the angle  after springback and 

the bend deduction BD. 

The metamodeling method is based on the hierarchical fusion of different kinds of data: the 

deterministic low-fidelity response of numerical FEM simulations and the stochastic high fidelity 

response of experimental tests. The metamodel has been built over a very large database, 
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unprecedented in the scientific literature on air bending, made of more than 500 numerical simulations 

and nearly 300 experimental tests. The fusion is achieved first by interpolating the FEM simulations with 

a kriging predictor; then, the hierarchical metamodel is built as a linear regression model of the 

experimental data, using the kriging predictor among the regressors. 

The accuracy of the method has been proved using a variant of the leave-one-out cross validation 

technique. The quality of the prediction yielded by the proposed method significantly over-performs the 

current prediction of the press brake on-line numerical control. 

1. INTRODUCTION 

 

From the point of view of the user, the angle  after springback and the bend 

deduction BD are the two most relevant responses of the air bending process. The 

bend deduction measures how much the flange length L of the sheet elongates after 

bending. These two process responses are largely determined by the geometry of 

the tools (the die width w and radius Rd, the punch radius Rp) and the blank material 

and thickness t0. The most important geometrical variables of the air bending 

process are resumed in Fig. 1. With a given tooling and blank, the bend angles before 

(i) and after () springback can be varied by controlling the amount of vertical 

punch stroke, s. In the left part of Fig. 1, the punch is plotted at the beginning of its 

stroke (with a dotted line) and at the end of the stroke; the bend angle i before 

springback is shown. The sheet is also shown at the beginning of the process (with a 

dotted line) and at the end of the punch stroke. In the right part of Fig. 1 the 

geometry of the sheet after springback is shown. 

An extensive literature is available on the prediction of air bending response variables, 

and especially on the prediction of the bend angle before i and after springback . 

Despite the tremendous effort of researchers and manufacturing engineers in 
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improving the predictability of the air bending process [1], whenever a new sheet 

metal bent part is designed, both off-line CAD-based software [2] and on-line 

Numerical Controls (NC) of the press brakes [3] often fail to estimate the required 

amount of punch stroke s and the required initial length L of the sheet blank. Partly, 

this is because the air bending has an inherent, hardly reducible, process variability 

[4], i.e. it is affected by the blank-to-blank and batch-to-batch variability of material 

properties, sheet thickness, tribological conditions. As a consequence, setup 

adjustment runs are performed by the press brake operator in order to fine tune the 

air bending process [5]. In order to shorten or avoid these try-outs runs, press brake 

manufacturers have installed several on-line sensors and developed control 

algorithms, e.g. based on the on-line measurement of the bend angle [6] or the actual 

initial sheet thickness t0 [7] or the punch force [8]. These on-line feedback controls are 

usually effective, but they increase the processing times [9] and they are often not 

appreciated by the users. Besides, these on-line process adjustments aim at finding 

the correct value of punch stroke s that yields a desired final bending angle , but they 

can do little to control the amount of bend deduction BD, which is still an important 

outcome of the process. Besides, on-line feedback controls still require reliable 

prediction models of  in order to effectively compensate the punch stroke.  

It can be concluded that, no matter how well equipped and how advanced is the press 

brake, there is still a strong need for comprehensive and dependable prediction 

models. In the scientific literature, five kinds of models can be found. For each type of 

model, only a few representative papers will be here cited for the sake of brevity. 

1. Empirical or semi-empirical formulas [10] and practical rules [11], based on 

simplified modeling of the elastic-plastic deformation of the sheet metals. They 
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can only account for a few process variables, e.g. they are typically not able to 

account for anisotropy or friction. However, since the parameters of the empirical 

models are determined through experimental results and they can be included in 

look-up tables, these are the most widely used methods by industrial companies 

and press brake manufacturers. They fail whenever a new material comes into 

production. Industrially, the empirical prescriptions of the standard DIN 6935 are 

often implemented [12].  

2. Experimental metamodels, such as statistical regression models [13] or 

metamodels based on artificial intelligence [14]. They can account for a larger base 

of process variables, they can often provide an estimation of uncertainty, but they 

have a very large model-building cost. 

3. Complex theoretical models, based on the modeling of the elastic-plastic 

deformation of the sheet metals. These methods require finding numerical 

solutions to non-linear problems with short computational time. They can 

incorporate a relatively large amount of process variables. With very few 

exceptions [15], these models do not directly address the estimation of the 

variable of actual interest for the press users (e.g. the dependence of the final 

bending angle on the punch stroke). Furthermore, theoretical models always 

involve the estimation of the internal bending radius, which is a variable of scarce 

practical interest and very difficult to measure with accuracy. 

4. FE (Finite Elements) methods, which are also based on modeling of the elastic-

plastic deformation of the sheet metals; they are highly effective and reliable, but 

they require long computational times, hence they cannot be used for on-line 

purposes [16]. They could incorporate, virtually, all relevant process variables. FE 
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models sometimes fail to yield reliable results, especially because the air bending 

process is strongly influenced by the mechanics of springback, which is still one of 

the most difficult phenomena to be predicted by FEM.  

5. Metamodels based on extensive campaigns of FEM simulations [17][18]. The 

meta-models obviously have a relatively large computational cost during the 

model-building phase, but they can be used on-line. They can incorporate virtually 

any model parameter and, unlike look-up tables, any parameter can be used 

continuously in its range, thanks to interpolation. Their predicting ability depends 

on the extension and the design of the underlying database of FE simulations [19] 

and, obviously, on the reliability of the FE simulation model itself. 

In this paper a sixth, new type of method is proposed, based on the hierarchical 

metamodeling of both numerical FEM simulations and physical experiments. The 

proposed method overcomes most limitations of the alternative approaches: it allows 

fast on-line computation of the prediction, it reduces the numerical error of FE models 

because it corrects the numerical model with data of real experiments, it allows to 

consider all the relevant process variables. 

The six above listed methods are summarized in Table 1, along with their main 

strengths and weaknesses. 

Hierarchical metamodels, based on the fusion of experimental and numerical results, 

have been recently applied to sheet metal forming problems [20]. These metamodels 

are called hierarchical, because there is a hierarchy between different data sets: the 

results of physical experimental tests, though affected by measurement errors and 

scatter, are a direct representation of the process and are, therefore, high fidelity data 
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(hi-fi). Experimental data are stochastic in nature and they are usually available in a 

limited number, due to their high cost. Numerical results, i.e. the output of FEM 

simulations, are considered of low fidelity (lo-fi), but they are deterministic in nature. 

The approach proposed in this paper is to build first a metamodel, built by 

interpolation over a large data base of numerical simulations, using a Kriging predictor. 

The kriging interpolator is then used as one of the variables of a statistical regression 

model, built over a large set of experimental conditions, replicated 2 or 3 times each. 

The logical flowchart of the proposed method is represented in Fig. 2, referred to a 

generic response variable y. The generic response y can be either the bend deduction 

BD or the bend angle . 

The paper is organized as follows: first the FEM model used for building the kriging 

interpolator is described (Section 2.1), along with the description of the numerical 

design space (Section 2.2), i.e. the input and output variables considered in the kriging 

metamodel. The kriging interpolation function of both response variables of interest 

( and BD) is also presented (Section 2.3). In Section 3, the physical air bending 

experiments are described, including the experimental and measurement setups. In 

Section 4, the hierarchical metamodel is presented, and its robustness is verified by 

means of a demanding cross validation test. 

2. FEM simulations and kriging metamodel 

2.1 FEM simulation setup 

The FEM simulation setup has been implemented with the commercial code Abaqus 

6.14. The simulation model has been generated in 2D plane strain condition by 
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modelling the tools (punch and die) as discrete rigid bodies and the blank as a 2D 

planar deformable part (Fig. 3). The blank has been modelled with 8 node biquadratic 

plane strain quadrilateral elements with reduced integration (CPE8R). The mesh of the 

blank is finer at the center of the model, at the interface with the punch, with 

quadrilateral elements of 0.15 mm approximated edge length. Then the quadrilateral 

elements have been stretched along the x direction by considering a bias factor of 10 

on 500 elements along the upper edge of the blank. The size of the elements varies 

between 5 and 15 elements through the thickness, increasing with the initial sheet 

thickness t0. Thanks to a small computational cost of each FEM run, no symmetry plane 

has been used, so that the material in the region under the punch nose, where the 

maximum amount of deformation and springback takes place, is not over-constrained. 

The blank material has been defined with the elastic (Young’s modulus and Poisson’s 

ratio) and plastic properties (Yield stress / Plastic strain curve). The anisotropic 

material behaviour has been described by the classical Hill’s anisotropic yield function. 

The coefficients F, G, H, L, M, N of the Hill’s law are determined by the software itself, 

which requires as the user input the following values:  

𝑅11 = 1; 𝑅22 = √𝑟𝑦(𝑟𝑥+1)𝑟𝑥+𝑟𝑦 ; 𝑅33 = √𝑟𝑦(𝑟𝑥+1)𝑟𝑥(𝑟𝑦+1); 𝑅12 = 1; 𝑅13 = √ 3𝑟𝑦(𝑟𝑥+1)(2𝑟𝑥𝑦+1)(𝑟𝑥+𝑟𝑦); 𝑅23 = 1 

where the Rij are the anisotropic yield stress ratios along the direction 1, 2 and 3 

respectively defined in the model as X, Y and Z. The rx, ry and rxy are the Lankford’s 

anisotropic coefficients along the 0°, 90° and 45° rolling directions of the blank. 

The simulation model is made in two steps: 

• Bending: starting by the initial condition shown in Fig. 3a, the blank is bent by 

the descent of the punch with a velocity of 10 mm/s. 
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• Springback: the contacts between the blank and the tools are released and the 

blank recovers its elastic deformation. The isostatic condition is obtained by 

removing two degrees of freedom at two different nodes (Fig. 3b). 

The objective of the simulation model was to obtain numerical estimates of the final 

opening angle (αFEM) and the bend deduction (BDFEM). A python script has been 

developed to extract the nodes coordinates of the blank extrados from the FEM 

model. The extrados nodal coordinates have been imported in a MATLAB script to 

calculate the bend angle, by fitting two segments along the straight portion of the 

right and left flanges. A general definition of BD is given in Fig. 4; it is obtained by 

subtracting the initial blank length L from the total length of the two flanges. The 

definition of BD changes if the final angle is lower or bigger than 90°, as shown in Fig. 

4. A MATLAB script has been developed to calculate the final flange length considering 

the two different cases: 

1. αFEM ≤ 90: the flange length FL1 is calculated as the distance between the points 

with maximum and minimum abscissa. The operation is repeated for the second 

flange of the profile for measuring FL2. The BDFEM is calculated as: 𝐵𝐷𝐹𝐸𝑀 = 𝐹𝐿1 + 𝐹𝐿2 − 𝐿 (1) 

2. αFEM > 90: three points are identified that define the flange lengths: the first and 

last nodes of the extrados, plus the intersection of the two straight tangent lines 

to the extrados. The BDFEM values are obtained as in equation (1). 

2.2 FEM design space 

Using the FEM model described in the previous section, an extensive set of computer 

simulations has been run. The 13 input variables that vary in the FEM simulations are: 

the wall thickness t0, 7 material properties, the tooling dimensions w (die opening), Rp 



Journal of Manufacturing Science and Engineering 

9 

 

(punch nose radius), Rd (die corner radii), the punch stroke s and the Coulomb 

coefficient of friction f. In many models of air bending, the internal bend radius of the 

sheet Ri is also considered; however, it is not included in the numerical plan and will 

not be included in the experimental factors as well. The bend radius, unlike the sheet 

thickness, is not a design parameter, it is a consequence of the process. All the 

performed tests and simulations are “small radius” bending tests, i.e. they have been 

run with very small punch radius (0.8 mm). Therefore, the bending radius only 

depends on the geometry of the process (punch stroke, sheet thickness, die with) and 

it is strongly correlated to the bend angle. Besides, accurate measurement of the 

internal radius is rather difficult. 

In the numerical data set, the estimation of the coefficient of friction is rather 

arbitrary, because it is a variable very difficult to be tuned and accurately assessed. 

The friction coefficient was selected in the typical range used in FEM simulation of 

sheet metal forming: e.g. 0.1 as a standard lubrication for steel-steel interface. In 

experiments, all friction conditions were constant, but some of the stainless steel 

samples were coated with a protection polymeric film. In simulation, this was assumed 

as a punch-sheet cof equal to 0.06.  

The seven material variables are: the Young’s modulus E, the yield strength Rs, the 

ratio Rm/Rs between tensile ad yield strengths, the elongation at fracture A%, the 

Lankford’s normal anisotropy coefficient rx in the bending direction, the Lankford’s 

coefficient ry and the average normal anisotropy rave. According to the orientation of 

the sheet, rx can be either equal to the r90 material coefficient or the r0. In the 

simulation, a 3-parameters hardening law for the flow stress 𝜎, as a function of the 

effective strain 𝜖,̅ has been used: 𝜎 = 𝐾(𝜖0 + 𝜖)̅𝑛. Trivial mathematical relations have 
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been used to convert the engineering parameters Rs, Rm, A% to and from the 

hardening parameters K, 0 and n. The engineering parameters have been preferred 

in the design of computer simulations to be more familiar and more consistent with 

the engineering practice and with the material databases which are implemented in 

most NC controls of press brakes. 

The 13 variables used in the plan of computer experiments are listed in Table 2, along 

with their investigated range. Space filling designs are the most commonly used for 

metamodeling of computer experiments [21]. In this case, we designed the 

simulations starting from a true space filling design, which was heavily modified for 

the following reasons:  

• some geometrical variables are weakly correlated with each other (e.g. w with Rd), 

hence it makes no sense to test a condition where a very large w-value is used with 

a very small Rd value. all conditions which are not feasible or practical have been 

stripped from the initial plan. 

• some material variables are correlated with each other (e.g. Rm>Rs) and are also 

bounded by physical or technological constraints; All conditions which are not 

feasible or practical have been stripped from the initial plan. 

The initial space filling design was therefore cleaned from unfeasible or non realistic 

conditions. Besides, the design was modified by adding more runs: 

• many FEM runs were conducted to simulate the physical experiments (see Section 

3), which were designed under a different design of experiments; 

• many FEM runs were added to the design, to replicate typical configurations, 

suggested by expert users of the press brake; in these additional runs, the 
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coefficient of friction was not varied randomly, but was kept fixed at either 0.06 

or 0.1. 

A complete graphical representation of the plan of FEM simulations is here too long 

to be reported, due to the very large number of variables and entries. As a mere 

example, in Fig. 5, 2 couples of design variables are shown: (t0 and E), (rx and rave). The 

variables of the first couple are completely independent on each other and the 2-D 

portion of the design space shown in Fig. 5a is uniformly filled. The two variables in 

the second couple are weakly correlated, hence the design space in Fig. 5b is not filled 

in the lower-right and upper-left regions. The final design of computer experiments 

includes 507 different simulation runs.  

The results of all FEM simulations are summarised in Fig. 6, where the two main 

responses FEM and BDFEM are plotted for each run. The figure shows the non-linear 

relation between these two responses, where larger values are obtained when  

approaches 90°. Negative BDFEM values can be obtained for very small bending angles, 

while the BDFEM tends to zero when FEM approaches 180°. 

2.3 Kriging metamodels 

The typical approach used in the Design and Analysis of Computer Experiments (DACE) 

is to use a kriging model to approximate a deterministic computer model [22]. A 

kriging interpolator which performs a linear detrending [23] thanks to a linear 

regression has been used and it is described in this Section. First, the variables listed 

in table 2 have been transformed into a vector x of normalized variables of size p=13, 

with normalization in the range [0;1]. The FEM simulation has been repeated m=507 

times, with m different values of the input vector x. If ykrig is the generic kriging 

predictor, it expresses the deterministic response yFEM (either BDFEM or FEM) of the 
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FEM simulation for the input vector x. ykrig is a realization of a regression model F(x) 

and a correlation function z(x): 

𝑦𝑘𝑟𝑖𝑔 = 𝐹(𝑥) + 𝑧(𝑥) = 𝛽0 + ∑ 𝛽𝑖 ∙ 𝑓𝑖(𝑥)𝑝𝑖=1 + 𝑧(𝑥) (1) 

where i is the i-th linear regression coefficient, fi(x) are the regression terms, each 

one is a function of a given input variable, z(x) is a correlation function (stochastic 

process) with zero mean and covariance function: 

𝑐𝑜𝑣[𝑧(𝑥); 𝑧(𝑤)] = 𝜎2𝑐(𝜃, 𝑥, 𝑤) (2) 

where x and w are two distinct values of the input vector. c is a correlation function of 

x and w with a constant parameter   Computationally, the [m*p] matrix S of design 

points is available. Calculating the function c for each combination of rows of the data 

matrix S, a correlation matrix C is obtained. The parameter  of the correlation 

function and the i coefficients are optimized in order to produce the following 

minimization: 

min𝜃 |𝐶| 1𝑚𝜎2 (3) 

where C is the correlation matrix, |𝐶| is the determinant of C, m is the number of 

design points (507 in this case), 2 is also introduced in equation (2) and it is the 

maximum likelihood estimate of the process variance [24]. As the value of m increases, 

the minimization (3) becomes more and more similar to the simple minimization of 

2. 

This general formulation of the Kriging interpolation has been restricted with the 

following assumptions. Among many alternatives, the selected correlation function is  
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     𝑐(𝜃, 𝑥, 𝑤) = ∏ 𝑒−𝜃∙|𝑥𝑖−𝑤𝑖|𝑝𝑖=1  (4) 

The function c(, x, w) is exponentially decreasing with the distance between the 

values x and w. A simple linear model F(x) has been selected, using fi(x)=xi. With the 

available data and the given assumptions, a kriging interpolator krig has been built 

according to equation (1), which yields a prediction of the angle  after springback. In 

the krig metamodel, the optimized value of the correlation parameter is =0.032, 

yielding = 39.85 °. 

Another kriging interpolator has been built for yielding a prediction BDkrig of the bend 

deduction BD. The approach used for producing the BDkrig estimate is exactly the same 

described above. In the BDkrig metamodel, the optimized value of the correlation 

parameter is =0.150, yielding = 0.984 mm. 

3. Air bending tests 

3.1 Bending setup 

The experimental activities have been performed in collaboration with Amada 

Engineering EU. The experimental tests were performed on an HG1003 press brake 

machine where the last version of numerical control (NC) software AMNC3i was 

installed. The AMNC3i has an integrated algorithm which allows to calculate the punch 

stroke by entering as inputs the material information and tools geometry from internal 

database, the thickness and the width of the blank, the target bend angle and the 

initial flange length. The calculated stroke s values have been used as input data not 

only in the tests, but also in the numerical FEM simulations which simulated the tests. 

The punch stroke values have been calculated by the software in order to reach a given 

“target” -value. Four target angle values 𝛼𝑁𝐶  have been tested: 75°, 90°, 120° and 
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165°. The NC of the machines also yields an estimation of the expected bend 

deduction 𝐵𝐷𝑁𝐶. Five different materials have been tested: two types of steels, two 

types of stainless steels and one aluminum alloy. Tensile tests on all materials have 

been performed in order to obtain the mechanical properties. 

The levels used for all experimental variables (material type and some geometrical 

parameters) are reported in Table 3. A full factorial design would require 2160 

conditions, clearly too cumbersome. Only 108 conditions of the factors/levels listed in 

Table 3 have been selected by a factory expert. Each condition has been replicated 2 

or 3 times, for a total number of 288 experimental results.  

3.2 Measurement setup 

The measurement activities have been performed in two phases. The measurements 

of the angle of the bent specimens have been performed with a digital goniometer. 

This allowed to reduce the measurement error within the interval of [-0.01; +0.01]°. 

The measurements of the specimens BD have been performed by taking in account 

the definition in Fig. 4. A specially designed measurement setup has been used to 

reduce the measurement error. In fact, in all sheet metal bending operations, the 

experimental measurement of the elongation of the fibers (or the measurement of 

the unlengthened) region is a critical and difficult task, even if using state of the art 

measuring techniques [25]. For specimens with final bend angle lower than or equal 

to 90°, a gauge block system has been implemented (Fig. 7) and a dial gauge has been 

used for measuring the flange lengths, within an accuracy close to 0.01 mm. 

For specimens with final resulting angle > 90°, a digital image acquisition and 

processing technique has been implemented. For the acquisition, a photographic 

setup has been built by using a reference plane, a NIKON D3300 camera positioned at 
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fixed focus distance and a controlled LED lighting system. In each photograph, the 

specimen and a standard component, previously measured with a micrometre, have 

been introduced to evaluate the scale (px/mm) to apply in the measurement phase. 

For the analysis, each photograph has been treated with ImageJ, with the integrated 

threshold Huang algorithm [26], in order to discretize and export the profile of the 

specimen (Fig. 8). ImageJ is a widely-used image processing program, designed for 

scientific use. The threshold level and method have been calibrated with the data 

coming from the previously mentioned mechanical BD measurement procedure. The 

profile of each specimen has been exported in Cartesian coordinates from each 

photograph. The analysis of the profile has been performed with a MATLAB® script. 

3.3 Experimental results 

The main purpose of the experimental plan is to generate the experimental hi-fi data, 

useful for building the hierarchical metamodeling. The large number of different 

tested experimental conditions (108), replicated to a total of 288 tests, will also allow 

to validate the model itself, by randomly splitting the experimental conditions into a 

training set and a verification set. A comprehensive report of the experimental results 

is out of the scope of this paper. Besides, the qualitative effect of the main process 

parameters and their sensitivity on the air bending results is well known to the users 

and has been investigated several times. However, it is interesting to evaluate the 

results in terms of errors. First, it must be noticed that the natural scatter of the data, 

measured trough the standard deviation, amount to 0.16° for the bending angle and 

to 0.09 mm for the BD. This means that no prediction model can ever reduce the 

average prediction error below these values. The difference, in absolute terms, 
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between the measured experimental angle values 𝛼 and the target NC values can be 

measured as: 𝜀𝛼𝑁𝐶,𝑖 = |𝛼𝑁𝐶,𝑖 − 𝛼𝑖|               ∀ 𝑖 = 1, 288 (5) 

Similarly, the absolute error on the prediction 𝐵𝐷𝑁𝐶  of the bend deduction can be 

calculated: 𝜀𝐵𝐷𝑁𝐶,𝑖 = |𝐵𝐷𝑁𝐶,𝑖 − 𝐵𝐷𝑖|          ∀ 𝑖 = 1, 288 (6) 

In Fig. 9, these absolute errors are grouped by target  levels. Larger absolute errors 

on BD are recorded for target angle NC =165°. Larger absolute errors on  are 

recorded for target angle NC =75°. The figure clearly explains why press brakes are 

often equipped with angle measurements sensors and controls and why process setup 

adjustments are required. Per Fig. 9, the typical error on the BD estimation is very 

frequently in excess of 0.2 mm and the typical error on the angle is very frequently in 

excess of 1°, i.e. outside the left-bottom box. These errors are unacceptable for most 

engineering applications, especially when consecutive bends are required on the same 

part. Besides, when the errors fall well outside the left-bottom box, it is not easy to 

adjust the process parameters to reach the required tolerances.  

4. Hierarchical metamodel 

4.1 Model building 

The structure of the hierarchical metamodel is to merge, into a unique predictor, the 

information available from both the numerical and experimental results. Obviously, 

the validity of the proposed metamodel is restricted to the investigated range of 

parameters. The adopted approach is first explained with reference to the angle . 

For the i-th experimentally measured value i, a discrepancy 𝛿𝛼𝑖 = (𝛼𝑖 − 𝛼𝑘𝑟𝑖𝑔,𝑖) can 
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be calculated as the difference between the actual bending angle and its kriging 

prediction 𝛼𝑘𝑟𝑖𝑔,𝑖. The 𝛿𝛼𝑖  values can be used for building a linear regression model: 

𝛿𝛼 = 𝛼 − 𝛼𝑘𝑟𝑖𝑔 = 𝛽0 + ∑ 𝛽𝑗𝑁𝑗=1 ∙ 𝑓𝑗(𝑥) + 𝜀  (7) 

where 𝛽𝑗 are the regression coefficients, N is the number of regression functions 𝑓𝑗(𝑥) 

and  is a white noise, i.e. a normally distributed statistical error with zero mean. A list 

of potential fj functions to be included in the fusion regression model has been 

identified. The list includes: 

• the 13 original independent terms listed in Table 2; 

• 7 additional terms, presented in Table 5; 

• all the first order interactions among the above listed 13+7 terms. 

The 7 additional regression terms listed in Table 5 are: 3 functions of kriging predictors 

of angle and bend deduction (krig, krig/2, BDkrig); 2 functions which indicate the 

stiffness of the sheet material respectively in the elastic (Kelas) and the plastic (Kplas) 

regions; 3 empirical predictors of bending angle 𝛼̃, punch stroke 𝑠̃ and internal 

bending radius 𝑅𝑖, which are sometimes used in the technical practice. 

A stepwise heuristic algorithm has been used [27] for the selection of significant terms 

in the regression model, using a combined backward elimination and forward 

inclusion significance threshold of 0.0005. This routine allows selecting the best 

regression model, i.e. the best subset of regression terms out of the long list of 

potential terms, excluding all the terms with a significance level above 0.0005. The 

actual model selected by the stepwise algorithm includes N=13 regression functions 

for . The resulting regression predictor 𝛿𝛼 can be considered a hierarchical 

metamodel, since it incorporates the kriging estimate 𝛼𝑘𝑟𝑖𝑔:  
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𝛿𝛼 = 𝛽̂0 + ∑ 𝛽̂𝑗𝑁𝑗=1 ∙ 𝑓𝑗(𝑥) (8) 

Once the 𝛿𝛼 model is available, the hierarchical metamodel prediction 𝛼𝑖̂ for each 

experimental run can finally be obtained as: 

𝛼̂𝑖 = 𝛿𝛼,𝑖 + 𝛼𝑘𝑟𝑖𝑔,𝑖            ∀ 𝑖 = 1, 288 (9) 

The same metamodeling approach has been implemented for the BD, obtaining a 

hierarchical metamodel 𝐵𝐷̂ with only 8 terms.  

The hierarchical metamodels 𝛼̂ and 𝐵𝐷̂ have been calculated for all experimental 

points and the resulting absolute prediction errors can be calculated as: 

𝜀𝛼ℎ,𝑖 = |𝛼̂𝑖 − 𝛼𝑖| (10) 

𝜀𝐵𝐷ℎ,𝑖 = |𝐵𝐷̂𝑖 − 𝐵𝐷𝑖| (11) 

The plot of the absolute errors 𝜀𝛼ℎ,𝑖 and 𝜀𝐵𝐷ℎ,𝑖 is reported in Fig. 10 vs. the target 

NC (4 levels were planned in the experiments). The figure shows that the prediction 

error for the angle offered by the hierarchical metamodel is smaller at NC=165° than 

at the other target angles. The prediction error for the bend deduction is smaller at 

NC=75°. A comparison of Fig. 9 with Fig. 10 immediately shows how the hierarchical 

metamodel strongly improves the prediction offered by the press brake NC, since the 

cloud of points in Fig. 10 is much more concentrated near the origin of the plot space. 

In fact, in Fig. 10 the absolute error 𝜀𝛼ℎ,𝑖 is always <2.5 °, and the absolute error 𝜀𝐵𝐷ℎ,𝑖 
is <0.45 mm. By comparison, the axes ranges in Fig. 9 are double as much. Besides, 

while in Fig. 9 four distinct clouds of points can be recognized, one for each target NC 

value, in Fig. 10 the four groups are mostly overlapped. This suggests that the absolute 

prediction error does not significantly depend on the target level of bend angle. 
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4.2 Cross validation 

The two proposed metamodels 𝛼̂ and 𝐵𝐷̂ are far from any physical interpretation of 

the process mechanics and, since they come from metamodeling of both computer 

and physical experiments, their validity is questionable not only outside the design 

space, but also in regions of the design space which have not been satisfactorily filled. 

For this reason, an experimental cross validation approach has been followed. 

Before presenting the cross validation, it must be underlined that a purely 

experimental regression model for y, which does not incorporate the kriging predictor, 

has been built with the above described stepwise selection method. The resulting 

errors for both angle and bend deduction are statistically significantly larger than the 

errors of the hierarchical metamodels.  

The approach is to estimate the j coefficients of both predictors 𝛿𝛼 and 𝛿𝐵𝐷 by using 

only a subset of the available 108 experimental conditions and the available 507 FEM 

runs. This subset is called the “training” set and it has been selected as a variant of the 

well-known leave-one-out cross validation methodology, typically used in regression 

models [28]. The purpose of this method is to compare each available experimental 

result yi(x) with metamodel predictions which have been built without the knowledge 

of both experimental yi and numerical yFEM results at that design point x and in its 

proximity. 

The cross validation can be described as follows: let Xexp [108x13] and Xfem [507x13] 

be matrixes which define the full data sets of respectively 108 experimental conditions 

x and 507 numerical simulations. For each ith row of Xexp, i.e. for each experimental 

condition xi, a reduced matrix Xexp_i [107x13] is created by stripping the ith row. The 

minimum Euclidean distance of row xi from all other rows of Xexp is calculated as dexp_i, 
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as a measure of proximity to the ith design point. Then, a reduced Xfem_i matrix is 

created by removing its rows which fall within a hypersphere centered in xexp_i and 

with radius 0.99·dexp_i. At each iteration, this method leaves 1 experimental condition 

and 1 or 2 FEM simulation runs out of the design data sets. For each xi condition, the 

kriging and the hierarchical models are recomputed using the same kriging and 

regression functions used for the full model of Section 4.1; then, the predictions 𝛼̂𝑟𝑒𝑑 

and 𝐵𝐷̂𝑟𝑒𝑑 are produced for the i-th condition with the reduced data sets. The 

resulting absolute errors 𝜀𝛼ℎ_𝑟𝑒𝑑  and 𝜀𝐵𝐷ℎ_𝑟𝑒𝑑  can be compared with the prediction 

errors of the numerical control 𝜀𝛼𝑁𝐶  and 𝜀𝐵𝐷𝑁𝐶. In Fig. 11, the boxplots of the absolute 

errors are shown. Graphically, there seems to be a superiority of the hierarchical 

metamodel, even if built with reduced datasets. Statistical analyses have been 

performed over the paired errors, in order to have a more objective response, and 

they uncontrovertibly confirmed that the hierarchical metamodels, developed only on 

the reduced data sets, outperform the NC prediction. 

As a further cross validation test, the j coefficients of both predictors 𝛿𝛼 and 𝛿𝐵𝐷 have 

been calculated by using a training set with only 2/3 of the 108 available experimental 

conditions. Precisely, 34 experimental conditions with all their replicates have been 

randomly selected and stripped out of the available data. The 34 stripped conditions 

(amounting to 88 experimental runs because of the replicates) can be used as the 

“validation” set, i.e. the predictions 𝛼̂𝑟𝑒𝑑 and 𝐵𝐷̂𝑟𝑒𝑑 can be produced on the validation 

design points. Again, the resulting absolute errors 𝜀𝛼ℎ_𝑟𝑒𝑑  and 𝜀𝐵𝐷ℎ_𝑟𝑒𝑑  can be 

compared with the prediction errors of the numerical control 𝜀𝛼𝑁𝐶  and 𝜀𝐵𝐷𝑁𝐶. The 88 

calculated differences 𝜀𝛼_ℎ − 𝜀𝛼_𝑁𝐶 have an average of -0.46°, i.e. the metamodel for the 

angle, although built only on 2/3 of the experimental points, still overperforms the NC 
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prediction. Similarly, the hierarchical metamodel for BD still overperforms the NC prediction 

by still 0.2 mm on average.  

4.3 Discussion of results 

The hierarchical metamodel, which combines the information coming from both 

experimental results and numerical simulations yields an improved accuracy if 

compared to a purely numerical kriging estimator or to a purely experimental 

regression predictor. In fact, If building a purely numerical kriging estimator, an 

unacceptable bias on the estimation of the experimental results would be obtained 

both for angle and bend deduction. If building a purely experimental regression model, 

solely based on the available experiments, the absolute 𝜀𝛼ℎ,𝑖 would remain below 2.5°, 

but with a larger mean; the absolute error 𝜀𝐵𝐷ℎ,𝑖 would be <1.2 mm, i.e. spread over 

a significantly larger range. 

Furthermore, the cross validation of the model, presented in the previous Section, has 

shown that the proposed approach can lead to an improvement over the current 

prediction models implemented in industrial NC programs. The applicability of the 

models requires that the press brake software be equipped with a software able to 

handle, and to take as an input, the 13 input variables of the metamodel. Indeed, most 

of the 13 parameters are already currently implemented in the AMADA press brakes 

software, except for the 3 Lankford coefficients, which at the moment must be 

represented by a unique value of average normal anisotropy. The estimation of the 

coefficient of friction is critical, because it is a variable very difficult to be assessed, 

but the sensitivity of the metamodel with respect to f is limited. For every new 

material, new specific parameters should be introduced in the material DB, because it 
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would be impossible to obtain accurate predictions without accurate and reliable 

input data. 

CONCLUSIONS 

 

In this paper, we propose a new method for accurate prediction of the main response 

variables of the air bending process. The method can be used for calculating the angle 

 after springback for a given punch stroke, or it can be reversed for calculating the 

punch stroke for a target . The method can also be used for calculating the bend 

deduction BD. The method is based on the hierarchical (fusion) metamodeling of a 

large number of both numerical FEM simulations and experimental results. The 

accuracy of the method has been tested against the current practice, by means of a 

severe cross-validation test, obtaining good results. 

The proposed method overcomes all the limitations of all alternative approaches: it 

reduces the numerical error of FE models because it corrects the numerical model 

with data of real experiments; it allows to consider all the relevant process variables. 

Another crucial advantage of the proposed method is that provides a very fast 

computation of the prediction, thus allowing a potential on-line use. 

In future applications of the developed model, the predictive ability of the developed 

metamodels could be continuously improved by adding new simulations and new 

experiments to the data sets. 

As a further development, the hierarchical metamodeling will be applied to more 

complex air bending test cases, i.e. for modeling the geometry of simple components, 

such as u-shapes or hat-shapes, which are made as sequences of consecutive bends. 

In fact, the on-line tuning of air bending parameters is a much more lengthy and 
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difficult task when trying to control, at the same time, the angles and the flange 

lengths of consecutive bends. 

 

FUNDING 

This research has been partly funded by the project HIGH PERFORMANCE 

MANUFACTURING, code 4: CTN01_00163_216758, financed by the Italian Ministry of 

University and Research (MIUR), directed by prof. Michele Monno.  

 

NOMENCLATURE 

 

Symbol description 

A% Elongation  

αi initial bend angle, before springback, ° 

 final bend angle, after springback, ° 

BD bend deduction, mm 

i coefficient of a regression model 

C Correlation matrix of the of the kriging model 𝛿𝑦 difference between the actual response variable y and its kriging 

prediction ykrig 𝜀𝑦ℎ,𝑖 absolute prediction error of the hierarchical metamodel at the i-th 

condition on any response variable y  𝜀𝑦𝑁𝐶,𝑖 absolute prediction error of the numerical control at the i-th condition 

on any response variable y  

f Coulomb’s coefficient of friction 

fi(x) regression function in a linear regression model 

FL final flange length, mm 

L initial sheet length, mm 

m number of different FEM simulation runs, i.e. design points of the 

kriging metamodel 

N number of regression functions of the hierarchical metamodel 

p number of independent variables in FEM simulations 

 parameter of the kriging correlation function 
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rave average normal anisotropy coefficient 

rx, ry and 

rxy 

Lankford’s anisotropic coefficients along the 0°, 90° and 45° rolling 

directions 

Rij anisotropic yield stress ratio along the direction i, j 

Rd die radius, mm 

Rm material ultimate tensile strenght, MPa 

Rp punch radius, mm 

Rs material yield strenght, MPa 

s punch stroke, mm 

S matrix of [m*n] design points in the kriging metamodel 

t0 sheet thickness, mm 

w die width or opening, mm 𝑦̃ empirical estimate of any response variable y  𝑦̂ prediction of any response variable y yielded by a regression model 

yFEM numerical FEM estimate of any response variable y 

ykrig kriging predictor of any response variable y 

yNC target value of any response variable y, as predicted by the available 

numerical control of the press brake 
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Figure List 

 

 
before punch stroke reversal                             after springback 

Fig. 1: geometrical process parameters of air bending; the bend deduction BD is here defined 

under the assumption of a symmetric process and for a final angle ≤90°. 
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Fig. 2: logical flowchart of the proposed method for a generic response variable y. 
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(a) (b) 

Fig. 3: scheme of the simulation setup (a) and boundary conditions of the springback 

stage (b). 
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(a) (b) 

Fig. 4: definition of the flange length from the standard DIN-6935 [12]; the initial 

sheet length is L, as defined in Fig. 1. 
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 (a) 

 (b) 

Fig. 5: two couples of variables tested in the FEM plan of simulations. 
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Fig. 6: plot of simulated BDFEM vs FEM; data are grouped by levels of sheet thickness 

t0. 
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(a)

 (b) 

Fig. 7: experimental gauge block system (a), scheme of the flange length 

measurement (b). 
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 (a) 

 (b) 

Fig. 8: photograph of specimen 51 (a), results of the threshold Huang algorithm (b). 
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Fig. 9: absolute prediction errors 𝜀𝛼𝑁𝐶  vs. 𝜀𝐵𝐷𝑁𝐶 of the press brake; data are grouped 

by levels of target angle NC 
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Fig. 10: absolute prediction errors 𝜀𝛼ℎ  vs. 𝜀𝐵𝐷ℎ  of the hierarchical metamodels;  

data are grouped by levels of target angle NC. 
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Fig. 11: boxplots of the absolute error differences for the angle (left) and the bend 

deduction (right); the hierarchical metamodels calculated over reduced data sets still 

overperform the NC prediction. 
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Table List 

 

 

MODEL TYPOLOGY STRENGTHS WEAKNESSES 

1. EMPIRICAL FORMULAS 

Simplified modeling, robust 

to a wide range of each 

process variable, fast 

(allows on-line usage) 

Inaccuracy, generally due to 

a reduced number of 

variables 

2. EXPERIMENTAL 

METAMODELS 
Accuracy 

Large model-building cost, 

valid only in the 

experimental range 

3. THEORETICAL MODELS 

Short computational time, 

robust to a wide range of 

process variables 

Not industrially relevant 

4. FE METHODS 

Account for many process 

variables (full elastic-plastic 

material behavior) 

Long computational times 

5. FEM-BASED 

METAMODELS  

Account for many process 

variables, fast (allows on-

line usage) 

Not always accurate 

6. HIERARCHICAL 

METAMODELS 

Account for many process 

variables, fast (allows on-

line usage), accurate 

Depend on FEM plan 

dimension 

Table 1: strengths and weakness of bending models listed previously. 
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Variable name and symbol Unit Min value Max value 

Wall thickness t0 (mm) 0.60 2.50 

Young’s modulus E (GPa) 56.7 231 

Yield strength Rs (mPa) 36 545 

Tensile vs. yield strength ratio Rm/Rs  1.05 11.88 

Elongation  A%  0.12 0.70 

Normal  

anisotropy  

coefficients 

rx  0.29 1.82 

ry  0.29 1.82 

rave  0.60 1.67 

Punch radius Rp (mm) 0.6 1.0 

Die opening w (mm) 6.0 20.0 

Die radius Rd (mm) 1.0 3.0 

Punch stroke s (mm) 0.23 18.95 

Coefficient of friction f  0.061 0.180 

Table 2: range of design parameters included in the FEM plan of computer 

experiments. 
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Factors  Unit Levels 

Thickness t0 (mm) 0.8 1 1.2 2 

 

Punch radius Rp (mm) 0.60 0.65 0.80  

Die width W (mm) 6 8 10  

Die radius Rd (mm) 1.0 1.5 2.0  

Target bend angle NC (°) 75 90 120 165 

Material   FeP11 FeP06G AISI304 AISI304 (D) Al5754 

Table 3: description of the factors investigated in the experimental activities. 
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name Variable or function 

Kriging 

predictors of  

bending angle 

and 

 bend deduction 

krig, BDkrig 

Kriging estimate 

of  

half the 

external  

semi-angle  

𝛽𝑘𝑟𝑖𝑔2 = (180 − 𝛼𝑘𝑟𝑖𝑔)2  

Material 

stiffness  

indicator in the  

elastic region 

𝐾𝑒𝑙𝑎𝑠 = 𝑅𝑠𝐸 ∙ 𝑡0 

Material 

stiffness  

indicator in the 

plastic 

region 

𝐾𝑝𝑙𝑎𝑠 = 𝑅𝑚 ∙ 𝐴%𝐴%𝐴%  

Empirical 

estimate  

of bending 

angle 

𝛼̃ = 𝑎𝑟𝑐𝑡𝑎𝑛( 𝑤 + 𝑅𝑑 2⁄𝑠 − 𝑅𝑝 5⁄ − 𝑡0 5⁄ ) 

Empirical 

estimate 

of punch stroke 

𝑠̃ = 0.5 {𝑤 ∙ 𝑡𝑎𝑛 (𝛽𝑘𝑟𝑖𝑔2 )+ [1 − 𝑐𝑜𝑠 (𝛽𝑘𝑟𝑖𝑔2 ) − 𝑡𝑎𝑛 (𝛽𝑘𝑟𝑖𝑔2 )∙ 𝑠𝑖𝑛 (𝛽𝑘𝑟𝑖𝑔2 )] (𝑅𝑝 + 𝑅𝑑 + 𝑡0)} 

Empirical 

estimate  

of internal 

bending 

radius 

𝑅𝑖 = 𝑤 ∙ 𝑡𝑎𝑛 (𝛽𝑘𝑟𝑖𝑔2 ) + 𝑡02 − (𝑠̃ − 𝑡0)𝑠𝑒𝑐 (𝛽𝑘𝑟𝑖𝑔2 ) − 1  

Table 4: table of additional regressor functions fj used in the forward-backward 

stepwise algorithm. 

 


