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Abstract – In this paper, we propose two metrics, i.e. the optimal repair time and the resilience 

reduction worth, to measure the criticality of the components of a network system from the perspective 

of their contribution to system resilience. Specifically, the two metrics quantify (i) the priority with 

which a failed component should be repaired and re-installed into the network, and (ii) the potential 

loss in the optimal system resilience due to a time delay in the recovery of a failed component, 

respectively. Given the stochastic nature of disruptive events on infrastructure networks, a Monte 

Carlo-based method is proposed to generate probability distributions of the two metrics for all the 

components of the network; then, a stochastic ranking approach based on the Copeland's pairwise 

aggregation is used to rank components importance. Numerical results are obtained for the IEEE 30 

Bus test network and a comparison is made with three classical centrality measures. 

Index Terms – Critical Infrastructure, system resilience, component importance measures, system 

recovery, stochastic ranking 

I. INTRODUCTION 

Complexity of critical infrastructures (CIs), such as power grids, the Internet, transportation networks, 

and so forth, is increasing. Disruptive events, whether they are malevolent attacks, natural disasters, or 

human-caused accidents, can have significant impacts on these real world complex networks composed of 

numerous interconnected functional and structural elements. 

Justifiably, then, critical infrastructure protection (CIP) has become a priority for all nations [1]. The focus 

has been traditionally placed on physical protection and asset hardening [2]-[5]. However, in recent years, 

lessons learned from some catastrophic accidents have pushed part of the focus on the concept of 



“resilience” [6], [7]. The outcomes of the 2005 World Conference on Disaster Reduction (WCDR) witness 

the significance of introducing the term “resilience” into the disaster discourse, giving birth to a new 

culture of disaster response [8]. Consequently, government policy has also evolved to encourage efforts 

that would allow assets to continue operating at some level, or quickly return to full operation after the 

occurrence of disruptive events [9]. 

“Resilience” comes from the Latin word “resilio” that literary means “to leap back” and denotes a system 

attribute characterized by the ability to recover from challenges or disruptive events. The Merriam-

Webster dictionary defines resilience as “the ability to recover from or adjust easily to misfortune or 

change.” In this view, systems should not only be reliable, i.e. having an acceptably low failure probability, 

but also resilient, i.e. having the ability to optimally recover from disruptions of the nominal operating 

conditions [10], [11].  

In this context, the present paper addresses the issue of quantifying the importance of components in 

contributing to the resilience of a critical infrastructure. Component importance measures (CIMs) have 

been thoroughly studied in the field of reliability theory and risk analysis. Various analytical and 

empirical CIMs have been proposed in the literature, e.g. Birnbaum [12], Fussell-Vesely [13], Reliability 

Achievement/Reduction Worth [14], [15], Barlow–Proschan [45], Natvig [46], and their extensions [16]-

[20], [34], [47], [48]. CIMs have been shown valuable in establishing direction and prioritization of actions 

related to an upgrading effort (e.g., reliability improvement) in system design, or in suggesting the most 

efficient way to operate and maintain system status. However, none of the existing classical CIMs based 

on the reliability concept are directly applicable to the post-disaster phase, since there is no scope to 

exhibit reliability after the occurrence of system failure. 

The role that a component plays in a network system has been measured by various so-called centrality 

measures, looking from the point of view of the complex interaction and communication flow in the 

network [21], [22]. Classical topological centrality measures are the degree centrality [23], [24], the 

closeness centrality [24]-[26], the betweenness centrality [24], and the information centrality [27]. They 

specifically rely on topological information to qualify the importance of a network component. 

Additionally, Freeman et al. [28] proposed a flow betweenness centrality measure based on the idea of 

maximum network flow; Newman [29] suggested a random walk betweenness measure that counts 

essentially all paths between vertices and which makes no assumptions of optimality; Jenelius et al. [30] 

proposed several vulnerability-based importance measures for transportation networks; Hines and 

Blumsack [31] introduced an “electrical centrality” measure for electrical networks by taking into account 

the electrical topology of the network; Zio and Piccinelli [32] provided a randomized flow model-based 

centrality measure specifically for electrical networks; Zio and Sansavini [33] introduced component 

criticality measures from the cascade failure process point of view, for general network systems. 



Nevertheless, none of these analyses takes into account the dynamics of system recovery from the effects 

of a disruptive event. 

Resilience-based metrics of component criticality with respect to their influence on the overall resilience of 

the system (i.e., on the system’s ability to quickly recover from a disruptive event) can be helpful for 

preparing an efficient component repair checklist in the event of system failure [34]. Natvig et al. 

introduced a dual extended Natvig measure for repairable systems: according to this measure, the 

components that are considered important are those whose repair reduces significantly the expected time 

of residence of the system in the worst states [34]. Hence, this dual Natvig measure is a resilience measure 

for multistate components in a multistate system. A dual extension of the Barlow-Proschan measure has 

also been suggested for multistate repairable systems, based on the probability that the repair of the i-th 

component is the cause of a system state improvement, given that this has occurred [48].  

Recently, Barker et al. [35] introduced two resilience-based network component importance metrics. 

Although the resilience definition, which the importance metrics rely on, actually embraces the temporal 

dimension of system recovery, it can be considered “memoryless”: in the sense that the system resilience 

metric R��t��e�	  at a given time t�  does not take into account the information about the restoration 

behavior before time t�. Thus, it may happen that different restoration curves with different levels of 

favorability have the same value of resilience R��t��e�	 . Besides, the two metrics introduced in [35] seek to 

quantify the effect that the disruption, rather than the recovery (behavior), of an individual component has 

on the system resilience, implying that the resilience improvement is achieved by actions related to 

system protection and fortification efforts in system design, although they have also been applied to 

compare network recovery strategies [36].  

In this study, a new definition of system resilience and a resilience optimization framework are firstly 

presented, based on which we then introduce two network components importance measures, namely, 

the optimal repair time and the resilience reduction worth, useful for prioritizing restoration activities. 

The two measures quantify (i) the priority with which a failed component should be repaired and re-

installed into the network and (ii) the potential loss in the optimal system resilience due to a time delay in 

the recovery of a failed component, respectively. A stochastic ranking technique, based on the Copeland’s 

pairwise aggregation [37], is applied to rank the components criticalities.  

As a case study, the IEEE 30 Bus test network is considered: the criticalities of the components computed 

by the proposed indicators are compared to those produced by three classical measures of betweenness 

centrality [28], [29], [38]. 

It is noted that the differences of the resilience-based CIMs proposed in the present paper with respect to 

that in [35] mainly fall into the following two aspects: (i) the concept and definition of system resilience 



which the CIMs rely on takes into account the cumulative restored system functionality; (ii) the focus of 

the proposed resilience-based CIMs is to quantify the effect that the recovery, rather than the disruption, 

of individual components has on the global system resilience, for most effective system (recovery) 

operation. 

The remainder of the paper is organized as follows. Section II provides the general framework of the 

study, recalling the definition of system resilience and the resilience optimization model. In Section III, 

two measures of component criticality for system resilience, and a simulation methodology for their 

calculation and ordering are presented. Section IV illustrates the calculation of the proposed metrics on 

the IEEE 30 Bus test network: the obtained components rankings are compared to those produced by 

classical betweenness centrality measures. Concluding remarks are drawn in Section V. 

II. METHODOLOGICAL BACKGROUND: SYSTEM RESILIENCE DEFINITION AND OPTIMIZATION 

FOR INFRASTRUCTURE NETWORK SYSTEMS 

This section provides the definition of system resilience and the resilience optimization framework, which 

serve as methodological background for the resilience-based component importance measures that will be 

discussed in Section III.  

A. System Resilience Definition 

As illustrated in Fig. 1, a quantifiable and time-dependent system performance function (also called 

system level delivery function or figure-of-merit) 
(�) is the basis for the assessment of system resilience 

[8], [35], [36]. It has a nominal value 
(��) under nominal operating conditions. The system operates at 

this level until suffering a disruptive event at time �� . The disruption generally deteriorates system 

performance to some level 
(��) at time ��. Then, recovery action is started, affecting and improving 

system performance until it achieves, at a later time ��, a targeted level of performance 
(��) that could be 

the same, close to, or better than original system performance 
(��)), for which recovery is considered 

completed. The dotted curve �
(�) in Fig. 1 denotes the targeted system performance if not affected by 

disruption, which is generally evolving due to the dynamic nature of service demand and system 

upgrading; in this study, it is assumed to be equal to 
(��) and remain invariant, for simplicity of 

illustration. Besides, it is noted that various strategies exist for recovery activities, and system 

performance is ultimately a function of recovery decisions. The period of �� ≤ � ≤ ��  is generally 

considered as the recovery time [8]. 



 

Fig. 1. Generic system performance transition curve under the occurrence of disruption. 

Let �(�) be the resilience of a system at time � (� � ��). In its basic form, �(�) describes the cumulative 

system functionality that has been restored at time �, normalized by the expected cumulative system 

functionality supposing that the system has not been affected by disruption during this time period (Eq. (1) 

below): graphically, �(�) is quantified by the ratio of the area with diagonal stripes �� to the area of the 

shaded part ��, as shown in Fig. 2. 

�(�) � � ��(�)��(� )!��"" � �#�(�)��(� )!��"" , � � ��                                                                  (1) 

Note that the formulation in Eq. (1) focuses mainly on the recoverability dimension of resilience and �(�) 
is in the range of �0, 1!. �(�) � 0 when 
(�) � 
(��), which means that a system has not recovered from its 

disrupted state (i.e., there has been no “resilience” action); �(�) � 1  when 
(�) � 	�
(�) , which 

corresponds to the ideal case where a system recovers to its target state immediately after disruption. This 

resilience quantification is consistent with the original meaning of the concept of resilience and is capable 

of measuring at the same time the magnitude and rapidity of system recovery action. More importantly, 

this definition of system resilience is not memoryless since it considers cumulatively the system 

functionality restored, differently from [35]. 



 

Fig. 2. Conceptual illustration of the proposed resilience measurement. 

B. System Resilience Optimization 

A disruptive event could impact one or more components of an infrastructure network system. In the case 

of multiple component failures, a systemic recovery action should be undertaken with the order of failed 

components to repair such that system resilience is maximal, i.e., to achieve optimal (restored) cumulative 

system functionality over the recovery time considered. 

A variety of frameworks of optimization for post-disaster recovery of an infrastructure network system 

can be designed, focusing on different aspects of the restoration strategy, e.g., the order of repair of the 

damaged components, where and how to allocate repair resources and so forth. This study focuses on the 

significance of the recovery of a component with respect to the resilience of the system. Consequently, the 

optimization is designed to find the optimal order of repair of the set of failed components with the 

objective of achieving maximum system resilience over the restoration time horizon. 

The mathematical model for the resilience optimization concerns a network ((), *) comprising a set of 

nodes ) connected by a set of links or arcs *. The network nodes are distinguished in supply nodes	)+, 

transshipment nodes )#  and demand nodes ),  ()+ ∪ )# ∪ ), � ) ). Each arc ./ ∈ )  has an associated 

capacity (./) ∈ 1�2 , each supply node . ∈ )+ has a supply capacity per time unit 345 ∈ 1�2 and each demand 

node / ∈ ),  has a demand 36, ∈ 1�2  per time unit. Network flow is delivered from supply nodes to 

demand nodes respecting the flow capacities of the links and supply/demand capacities of the nodes. The 

performance of the network is evaluated by determining the maximum amount of flow that can be 

received by the demand nodes. Formally, the system performance function is defined as: 


(�) � ∑ 86(�)6∈9:                                                                           (2), 

where 86(�) represents the amount of flow received by demand node / at time �. 



Disruptions happen and create damages to nodes and/or links in the network, which is modeled as 

removal of a subset of arcs, *; ⊂ *, from the network.1 The arcs in set *; are viewed as non-operational 

immediately after the disruption. System performance 
(�) achieves its minimum value at this time, 

which is seen as the initial stage of system restoration that we focus on (we set � � 0 at this time for 

computational convenience, i.e. 
=4> � 
(0)).  
The recovery optimization framework aims at identifying the subset of links in *; to repair and the order, 

in which the links should be repaired so as to achieve maximum system resilience over the restoration 

horizon � ∈ ?2. In this study, link repairs are assumed to be discrete tasks and only a single arc can be 

repaired at a given time period. Thus, discrete time periods � � 1,… , � are considered, hereafter, instead 

of the continuous one in the resilience definition of Eq. (1). Besides, we do not model in detail the 

mechanisms and procedures according to which a single failed component is repaired; rather, the focus is 

on the identification of the exact (optimal) time when the disrupted arcs should be brought back online 

and, thus, on the temporal sequence of the restoration actions on all the failed components. Obviously, the 

inclusion of possibly different repair times for different components may produce a different component 

ranking. However, this would be automatically accounted for in the procedure by the inclusion of proper 

“hard” constraints and, thus, it would not impair the applicability and generality of the approach . By 

combining Eqs. (1) and (2), system resilience to be maximized at time � is given by 

�(�) � ∑ A∑ BC(�)C∈D: ��EFGH"IJ"IK#∙M∑ NC:C∈D: ��EFGO                                                                (3), 

where ∑ 36,6∈9: � �
(�) is the target system performance. The variables of the resilience optimization 

problem include: (i) continuous variables 846(�) ∈ 1�2, ./ ∈ * and � � 1,… , �, that denote the flow moving 

from node .  to node /  through link ./  at time unit � ; (ii) continuous variables 86(�) ∈ 1�2 , / ∈ ), , that 

represent the amount of flow received by demand node / at time unit � and (iii) binary state variables P46(�) , ./ ∈ *  and � � 1, … , � , such that P46(�) � 1  if arc ./  is operational and P46(�) � 0  if arc ./  is not 

operational at time unit � . We are interested in optimizing the resilience over the whole restoration 

process: thus, the timespan � is the total recovery time, defined as the period necessary to restore the 

system functionality to the same level as the original system. Consequently, the formulation of the 

resilience optimization problem is as follows: 

max ∑ A∑ BC(�)C∈D: ��EFGH"IJ"IK#∙M∑ NC:C∈D: ��EFGO                                                                   (4) 

Subject to 

                                                           
1
 For nodes, they can be converted to equivalent arcs by introducing additional arcs and nodes into the network, i.e. 

by ‘splitting’ a node into two nodes and an arc. 



∑ 846(�)(4,6)∈T − ∑ 864(�)(6,4)∈T ≤ 345 												∀. ∈ )+, � � W1, … , �X                           (5)	∑ 846(�)(4,6)∈T − ∑ 864(�)(6,4)∈T � 0														∀. ∈ )# , � � W1, … , �X                           (6)	∑ 846(�)(4,6)∈T − ∑ 864(�)(6,4)∈T � −86(�)					∀. ∈ ),, � � W1, … , �X                          (7)	0 ≤ 86(�) ≤ 36,																										∀. ∈ ), , � � W1, … , �X                                              (8)	0 ≤ 846(�) ≤ P46(�)3(./)																∀./ ∈ *, � � W1,… , �X                                         (9)	P46(�) ≤ P46(� + 1)																												∀./ ∈ *, � � W1,… , �X                                     (10)	∑ ZP46(�) − P46(� − 1)[(4,6)∈T\ � 1				∀� � W1,… , �X                                               (11)	P46(�) ∈ W0,1X, P46(0) � 0													∀./ ∈ *;, � � W1, … , �X                                       (12) 

The objective (4) is to maximize the system resilience over the time horizon of recovery. Constraints (5)-(9) 

are typical network flow constraints over the links and supply/demand nodes in the network in period �. 
They ensure that: the flow generated at a supply node does not exceed its supply capacity (5); the amount 

of net injected flow at a transshipment node is zero (6); the amount of net injected flow at a demand node 

is equal to the received flow at the node (7) while not exceeding its requested demand (8); the flow on an 

operational link does not exceed its capacity and there is no flow passing through an arc if the arc is failed 

(9). Constraint (10) ensures that once an arc has been restored at time �, it will keep operational thereafter. 

Finally, constraint (11) ensures that only a single arc can be repaired at any given timeslot. 

This resilience optimization above defined is a typical mixed integer programming (MIP) problem. A 

commercial optimization solver Cplex [39] is used in this study for its solution. It is noted that this 

resilience optimization model is only applied for the purpose of illustration of resilience-based component 

importance metrics. More complex optimization models (e.g., taking into account the cost and duration of 

repairing a particular failed link) can be adopted in other application cases. Besides, a specific application 

involving the 400kV French Power Transmission Network of the proposed resilience (restoration) 

optimization problem has been presented in [49]. While the present study mainly focuses on the definition 

of resilience-based CIMs and the analysis of their properties, as mentioned d before. 

III. RESILIENCE-BASED COMPONENT IMPORTANCE MEASURES FOR INFRASTRUCTURE 

NETWORK SYSTEMS 
A. Component Importance Measures Definition 

As described in Section II.B, the analysis concerns a network ((), *) comprising a set of nodes ) and a set 

of links *. The binary state variable of arc ./ at time � is defined by P46(�), ∀./ ∈ * . The initial impact 

experienced by the network after a disruptive event ] at time � � 0 is represented by the removal of a 

subset of arcs, *; ⊂ *, from the network, setting P46(0) � 0, ∀./ ∈ *;. We introduce the failure probability 

of arc ./ under event ], ^�(./) 
3ZP46(0) � 0|][ � ^�(./), ∀./ ∈ *                                                       (13) 



Eq. (13) describes how individual components (links) are initially affected by a disruptive event ]; Section 

II.B explains how these failed components optimally recover from the disruption state following the event; 

finally, Eq. (1) incorporates these dimensions to quantify system resilience.  

When considering component criticality in a resilience setting, we are interested in understanding: (i) the 

optimal time to repair the failed components in order to maximize system resilience, and (ii) the effect that 

the timely recovery of the components have on the overall resilience of the system. These concepts are at 

the basis of the definition of the two resilience-based importance measures here proposed.  

Given a particular initial failure state, the optimal repair time �46̀a�  of a failed arc ./ is defined as the time 

when the arc ./ is restored to operating status so to maximize the system resilience over the recovery time �, given by:  

�46̀a� � bcd max#FC∈��,#!�(�)                                                      (14)  

It can be obtained by firstly solving the MIP problem (4) - (12) and, then, computing it based on the state 

variables of the arc ./: 
�46̀a� � ∑ �1 − P46(�)	#�e�                                                             (15) 

The timespan for restoration, �, is chosen as the time period necessary to restore the system functionality 

to the same level as the original system. It is noted that the optimal repair time �46̀a� offers an explicit 

quantification of the priority that should be given to the reparation and installation of arc ./ into the 

network. Low values of �46̀a�  indicate higher priority of being repaired and re-installed into the network, 

i.e. higher ranking of the component in the repair checklist.  

To account for the delay in the restoration of a particular link ./, a resilience reduction worth (RRW) 

metric is introduced as 

��f46(∆��) � hij"(#)�hij"(#|#FCk#FCij"2∆�l)hij"(#)                                                  (16), 

where �`a�(�)  represents the optimal system resilience at restoration time � ; �`a�(�|�46 � �46̀a� + ∆��) 
corresponds to the optimal system resilience at time � if link ./ cannot be repaired until time (�46̀a� + ∆��), 
where ∆�� is the delay with respect to its optimal repair time �46̀a�  given by Eq. (14). Eq. (16) quantifies the 

potential (normalized) loss in optimal system resilience due to a delay ∆�� in the repair of link ./. This 

metric is comparable to the so-called reliability reduction worth [40], which measures the potential 

damage caused to the system reliability by the failure of a particular component. It can provide valuable 

information to guide the recovery process of a particular component. Components with high values of 



��f46(∆��) should be given high priority in the restoration process, e.g. be assigned adequate restoration 

resources to avoid delays that would have a more significant impact on system restoration. 

It is noted that the resilience-based CIMs in [35] are introduced to quantify the effect that the disruption, 

rather than the recovery (behavior), of an individual component has on the system resilience (represented 

by the system recovery time). Specifically, the first metric in [35] measures the contribution that the 

disruption of link . has on the system recovery time, weighted by the ratio of system service loss due to the 

disruption effect on link . to the maximum loss among all the links; The second metric in [35] quantifies 

how the system recovery time is improved if link .  is invulnerable. Both definitions imply that the 

resilience improvement is achieved by actions related to system protection and fortification efforts in 

system design. However, the two resilience-metrics introduced in the present paper measure the effect 

that the recovery of an individual component has on the global system resilience, by quantifying (i) the 

priority with which a failed component should be repaired and re-installed into the network, and (ii) the 

potential loss in the optimal system resilience due to a time delay in the recovery of a failed component, 

respectively. Hence, our resilience-based metrics are able to suggest the most effective way for system 

operation, i.e., to help the implementation of (i) recovery schedule planning, and (ii) restoration resources 

allocation. 

B. Methodology for Component Importance Ordering 

Ordering network links recovery on the basis of the values of the criticality measures described above, i.e., 

the optimal repair time �46̀a�  and resilience reduction worth ��f46  (fixed ∆��), requires quantifying the 

effect of timely repairing these links on the overall resilience of the system. Given the stochastic nature of 

disruptive events in terms of components failures after the event, the resilience-based criticality measures 

introduced are not represented by deterministic values, but rather by probability distributions. Therefore, 

given a network ((), *) under a disruptive event ] , we first apply a Monte Carlo-based method to 

generate distributions of optimal repair time �46̀a�  and resilience reduction worth ��f46(∆��) for all the 

links in the network; then, we rank links importance using a stochastic approach based on the Copeland's 

pairwise aggregation method [37]. The detailed steps of the algorithm are as follows: 

Step 1. A network ((), *) is initially operating with a given parameters setting: flow demand 36, of all 

the demand nodes in ),, supply capacity 34+ of all the supply nodes in )+ and link capacity 3(./) 
for all the network arcs in *. 

Step 2. A failure configuration of the network is randomly sampled on the basis of the failure 

probabilities of each arc in the system given by Eq. (13), under a disruptive event ] at initial 

time � � 0. The operation state variables of failed links are set to 0, i.e., P46(0) � 0, ∀./ ∈ *;. 



Step 3. The resilience optimization model of Eq. (4) - (12) is applied and solved by Cplex to obtain the 

optimal strategy of network recovery, i.e., the optimal repair time �46̀a�  for each failed arc ./ ∈ *;. 
Step 4. In order to evaluate the second importance measure ��f46(∆��), for each failed arc ./ ∈ *;, the 

additional constraint that the restoration of arc ./  should not be accomplished earlier than �46̀a� + ∆�� (i.e., �46 � �46̀a� + ∆��) is added to the optimization model of Eq. (4) – (12). Then, �`a�(�|�46 � �46̀a� + ∆��) is obtained by solving this “modified” optimization model by Cplex. 

Finally, the resilience reduction worth ��f46(∆��) for each arc ./ is recorded. 

Step 5. To account for the stochasticity of the disruptive event in terms of arcs failures, repeat Step 2 to 

Step 4 for a chosen number ℵ of iterations, generating probability distributions for �46̀a�  and ��f46(∆��), for all the links in the network. 

Step 6. Given the distributions of �46̀a�  (resp., ��f46(∆��)) for each arc ./, perform a stochastic ranking 

of links according to ascending (resp., descending) �46̀a�  values (see Section III.B.1). 

C. Stochastic Ranking 

In order to rank network links according to the distribution of their optimal repair time �46̀a�  (or resilience 

reduction worth ��f46(∆��)) obtained at step 6 of the algorithm above, an approach based on the 

Copeland's pairwise aggregation method [37] is proposed. The Copeland’s method (CM) is a simple non-

parametric Condorcet method used in the political field (voting) that does not require any information 

about decision maker preference and operates on a multi-indicator matrix formed by n  objects 

characterized by o attributes [41]. CM relies on pair-wise comparisons between objects in the candidate 

pool, and the so-called Copeland score is defined for each object as the difference between the number of 

times that this object beats the other objects and the number of times that it is beat by other objects. 

The CM-based ranking approach applied here corresponds to a modification proposed by Al-Sharrah [42]. 

It first examines the CDF of a given variable for all the candidates, e.g., the CDF of �46̀a� , ∀(., /) ∈ *; then, it 

compares the CDF of two candidates under analysis, i.e., links ./ and ./, with respect to specific attributes pq  of the CDF: for example, attributepq   may represent the r th percentile. Subsequently, a quantity �q�./, ./	 is calculated based on a pairwise comparison between links ./ and ./ with respect to (percentile) pq of the corresponding distributions, r � 1, … , o: 

�q�./, ./	 � s�q���./, ./	 + 1,																						if	pq(./)	beats	pq(./)�q���./, ./	 + 0.5,					if	pq(./)	and	pq�./		are	tied�q���./, ./	,																													if	pq(./)	beats	pq(./)                                          (17), 

where the sentence “pq(./) beats pq(./)” means that pq(./) dominates pq(./) with respect to the ranking 

rule of the variable considered, i.e., pq(./) < pq(./)  for �46̀a� , while pq(./) > pq(./)  if ��f46(∆��)  is 



considered. ���./, ./	 is initialized at zero for the first (percentile) p� and Eq. (16) is iterated through all o 

attributes (percentiles). Then, the Copeland score for each link ./ is defined as 

 �(./) � ∑ ���./, ./	46�46                                                                                     (18) 

This Copeland score is finally used to rank all the links: the higher �(./), the higher the contribution of 

link ./ to the overall resilience of the network. 

IV. CASE STUDY 
A. Resilience-Based Criticality Measures on The IEEE 30 Bus Test System 

The IEEE 30 Bus test system [43] is taken as reference case study for the proposed resilience-based 

component importance measure approach. This system (Fig. 3) represents a portion of the American 

Electric Power System and is composed of 30 buses connected by 41 transmission lines. To carry out the 

analysis, each system component is transposed into a node or edge of the representative topological 

network, as it is shown in Fig. 4. Three different physical types of nodes are considered: generator nodes 

(where the electricity flow is fed into the network), demand nodes (where customers are connected) and 

transfer or transmission nodes (without customers or sources). 

The simulation procedure introduced in Section III.B is, then, used to rank each component of the IEEE 30 

Bus network according to the criticality metrics introduced. In normal conditions, the network is assumed 

to operate under the following parameters setting: the generation capacity is identical for all generation 

nodes and equal to 60, in arbitrary units (a.u.); the flow demands are 20 a.u. for all load nodes; the values 

of the transmission capacities are 20 a.u. for all the network links. The homogeneous assignments of 

generation capacity, demand and link capacity are here applied for the purpose of identifying the 

resilience criticalities of all the network arcs stemming from their different topological connections. For 

the same reason, a constant failure probability ^�(./) is assumed for all the network links under disruptive 

event ]. The roulette wheel selection method [44] is used in step 2 for sampling a failure configuration by 

selecting a failed link at each spin until a certain number ‖*‖ ∙ ^�(./) � 12 of arcs are selected. 



 

Fig. 3. Single line diagram of the IEEE 30 Bus test system. 

 

Fig. 4. Graph representation of the IEEE 30 Bus test system. The dark grey circles labeled with G represent 
the generator nodes, the white circles labeled with T represent transmission nodes and the light grey 

circles labeled with D represent the demand nodes. 

Fig. 5 illustrates the Cumulative Distribution Functions (CDFs) of �46̀a�  for five representative links (<1, 3>, 

<5, 7>, <27, 30>, <8, 28> and <10, 21>), obtained at step 5 of the procedure by applying the simulation 
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algorithm proposed in Section III.B (for ℵ � 1000 samples). The Figure illustrates the probability that �46̀a�  
is less than or equal to a target value �. It can be seen that the optimal repair time associated with link <1, 

3>, i.e. ���̀a�, will never be larger than 5 (square-line curve in Fig. 5). Moreover, the curve for link <1, 3> 

always “dominates” the other curves. Therefore, this link should have the highest priority to be repaired 

in order to maximize system resilience. 

However, considering e.g. links <5, 7> (circle line) and <27, 30> (triangle line) in Fig. 5, it is not evident 

which one “dominates” the other, due to the intersection of their CDF curves. Thus, the CM-based 

ranking approach introduced in Section III.B.1 is applied to rank the importance of the links. Fig. 6 reports 

the Copeland scores of all the 41 links in the IEEE 30 Bus network, ordered in descending order, with link 

<1, 3> having the highest score, followed by links <2, 6>, <2, 4>, <10, 22> and so forth. Furthermore, Fig. 7 

graphically illustrates the Copeland score of the optimal repair time �46̀a�  for all IEEE 30 Bus network links, 

where links with higher values of Copeland score are represented as thicker and darker edges. It is shown 

that two types of links are more important in terms of �46̀a� : i) the links which connect the generator nodes 

with the other two types of nodes (transmission nodes and demand nodes), e.g. links <2, 6>, <1, 3>, <12, 

13> etc., and ii) the links which are the only ones connected to demand nodes, e.g. link <25, 26>. The 

restoration of these types of links is most likely able to augment the total amount of flow received by the 

demand nodes of the network: thus, high priority should be given to these links when considering the 

repair order of the failed links. 

 
Fig. 5. Cumulative probability distributions of the optimal repair time �46̀a�  for five representative links. 
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Fig. 6. Copeland score ranking of the optimal repair time �46̀a�  for all IEEE 30 Bus network links. 

 
Fig. 7. Graphical illustration of the Copeland scores of the optimal repair time �46̀a�  for all IEEE 30 Bus 

network links. Links with higher value of Copeland score are represented as thicker and darker edges. 

Fig. 8 and Fig. 9 illustrate the results based on the resilience reduction worth ��f46(∆��) for all the links 

and for a delay time ∆�� � 3 units, i.e., the Copeland score ranking and its graphical representation, 

respectively. It is noted that different sets of values of the resilience reduction worth ��f46(∆��) for all 

network links can be obtained under different values of delay ∆��; however, the ranking of ��f46(∆��) for 

all the links by the Copeland method will keep consistent in our study. It is shown that <24, 25> is the 

most critical link in terms of ��f46, i.e. a delay in its restoration would cause the largest reduction in 
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system resilience among all the network links; thus, adequate resources should be given to make sure of 

its timely restoration. Besides, it is noted that the links with high Copeland scores in terms of the optimal 

repair time �46̀a�  also have high Copeland score ranking in terms of the resilience reduction worth ��f46: 
the correlation coefficient between the two Copeland scores is c ��#FCij" , �hh�FC� � 0.82 for ∆�� � 3. 

 

Fig. 8. Copeland score ranking of the resilience reduction worth ��f46(∆�� � 3) for all IEEE 30 Bus 

network links. 
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Fig. 9. Graphical illustration of the Copeland scores of the resilience reduction worth ��f46(∆�� � 3) for 

all IEEE 30 Bus network links. Links with higher values of Copeland score are represented as thicker and 
darker edges. 

B. Comparison with Betweenness Centrality Measures 

Betweenness centrality indices have been introduced as measures of component importance in a network, 

taking into account the different ways in which a component interacts and communicates with the rest of 

the network [24], [32]. A classical centrality measure is the topological betweenness centrality introduced 

in the social network field, which is based on the idea that a component is central if it is lies between 

many other components, in the sense that it is traversed by many of the shortest paths connecting pairs of 

nodes [24], usually called as shortest path betweenness. The topological betweenness centrality �46� of a given 

link ./ in a supply-demand-differentiated network (()+ ∪ )# ∪ ),, *) is given by [38]:  

�46� � �‖9�‖∙‖9:‖∑ >� (46)>� 5∈9�,�∈9: , ./ ∈ *                                                         (19), 

where �5� is the number of topological shortest paths between supply nodes and demand nodes, and �5�(./) is the number of supply-demand shortest paths passing though link ./. 
To account for the issue that in some cases flow may not follow the ideal geodesic paths from supply to 

demand nodes, a betweenness centrality measure based on the idea of maximum network flow has been 

proposed [28], usually known as flow betweenness. The measure counts all independent paths that carry 

information when a maximum flow is pumped between each pair of vertices. The flow betweenness of a 

component is defined as the amount of flow through it when the maximum flow is transmitted from 

source P to demand �, averaged over all P and �. It is quantitatively defined as [28] 

�46� � ∑ =� (46)�∈D�, ∈D:∑ =� �∈D�, ∈D: , ./ ∈ *                                                                     (20), 

where n5� is the maximum flow from a source node P to a demand node � and n5�(./) is the maximum 

flow from P to � that passes through link ./. 
In practical terms, however, neither of the two betweenness measures introduced above is realistic. Both 

count only a small subset of possible paths between vertices, and both assume some kind of optimality in 

information transmission (shortest paths or maximum flow). Therefore, a new betweenness measure that 

counts essentially all paths between vertices and which makes no assumptions of optimality has been 

suggested, called random walk betweenness [29]. This measure is based on random walks between vertex 

pairs and asks, in essence, how often a given component will fall on a random walk between another pair 

of vertices. Roughly speaking, the random walk betweenness of a link ./ is equal to the number of times 

that a random walk starting at P and ending at � passes through the link along the way, averaged over all 



P and �. Let �465� be the current flow from P to �, through link ./. Then, the random walk betweenness of a 

link ./ is defined as 

�46h� � �‖9�‖∙‖9:‖∑ �465�5∈9�,�∈9: , ./ ∈ *                                                        (21) 

We are interested in comparing the ranking results of our resilience-based component importance 

measures to these betweenness centrality indices, i.e., shortest path betweenness, flow betweenness and random 

walk betweenness for the proposed IEEE 30 Bus network. Fig. 10 shows the values of the Copeland scores 

for the optimal repair time �#FCij" (left panel) and for the resilience reduction worth �hh�FC  (right panel) 

plotted with respect to the shortest path betweenness �46� for all the links of IEEE 30 Bus network. No obvious 

correlation can be identified from the figures. Actually, the correlation coefficients between �#FCij", �hh�FC  
and �46� are c ��#FCij" , �46�� � 0.08  and c M�hh�FC , �46�O � 0.14 , respectively. Similarly, Fig. 11 plots the 

relationship between the Copeland scores for the optimal repair time �#FCij" (left panel) and the resilience 

reduction worth �hh�FC  (right panel) with the flow betweenness �46� ; Fig. 12 shows the same scatterplots with 

respect to the random walk betweenness �46h� . The correlation coefficients are c ��#FCij" , �46�� � 0.002 , 

c M�hh�FC , �46�O � −0.24, c ��#FCij" , �46h�� � 0.24 and c M�hh�FC , �46h�O � 0.32, respectively.  

 

Fig. 10. Scatterplot of the Copeland scores of the optimal repair time �#FCij" (left panel) and resilience 

reduction worth �hh�FC  (right panel) with the shortest path betweenness �46� for the links of the IEEE 30 

Bus network. 
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Fig. 11. Scatterplot of the Copeland scores of the optimal repair time �#FCij" (left panel) and resilience 

reduction worth �hh�FC  (right panel) with flow betweenness �46�  for the links of the IEEE 30 Bus network. 

 

Fig. 12. Scatterplot of the Copeland scores of the optimal repair time �#FCij" (left panel) and resilience 

reduction worth �hh�FC  (right panel) with the random walk betweenness �46h� for the links of the IEEE 30 

Bus network. 

These results show that the betweenness centrality indices (e.g., shortest path betweenness, flow betweenness 

and random walk betweenness) do not capture the component criticality with respect to resilience for the 

recovery of the IEEE 30 Bus network. This implies that these centrality measures (which are calculated 

under normal operation condition) are not applicable to guide the system restoration after a disruptive 

event, e.g., to prepare an efficient component repair priority checklist in the event of system failure. 
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This paper primarily contributes two metrics to measure the criticality of network components from the 

perspective of their contribution to system resilience, defined as the cumulative system functionality that 

has been restored at time �, normalized by the expected cumulative system functionality supposing that 

the system has not been affected by disruption during this time period.  

The first resilience-based component importance measure, i.e. the optimal repair time �46̀a�  in Eq. (14), 

offers an explicit quantification of the priority that should be given to arc ./ to be repaired and re-installed 

into the network. Lower values of �46̀a�  indicate higher priority, i.e. higher rank in the component repair 

checklist for system restoration in the event of system failure. The second resilience-based component 

importance measure, i.e. the resilience reduction worth ��f46(∆��), quantifies the potential loss in optimal 

system resilience due to a delay ∆�� in the repair time of link ./. This measure can provide valuable 

information to guide the recovery process of a particular component: components with high values of ��f46(∆��) should be given high priority to their timely restoration, e.g. be assigned with adequate 

restoration resources. 

Given the stochastic nature of disruptive events on an infrastructure network, a Monte Carlo-based 

method has been proposed to generate distributions of optimal repair time �46̀a�  and resilience reduction 

worth ��f46(∆��) for all the components in the network; then, a stochastic ranking approach based on the 

Copeland's pairwise aggregation method has been applied to rank components importance. 

The results of the two measures applied to the IEEE 30 Bus test network demonstrate some non-obvious 

and meaningful conclusions about the contributions of certain links to the resilience of the network. It is 

shown that two types of links are most important in terms of �46̀a� : i) the links which connect generator 

nodes with the other two types of nodes (transmission nodes and demand nodes), e.g. links <2, 6>, <1, 3>, 

<12, 13> etc., and ii) the link which is the only arc connecting to demand nodes, i.e., link <25, 26>. The 

restoration of these types of links is most likely able to augment the total amount of flow received by the 

demand nodes of the network so that high priority should be given to these links in the reparation list. 

Besides, those links with high Copeland scores in terms of �46̀a�  also have high Copeland scores ranking in 

terms of the resilience reduction worth ��f46 : actually, the correlation coefficient between the two 

quantities is c ��#FCij" , �hh�FC(�)� � 0.82.  

It is noted that the differences of the resilience-based CIMs proposed in the present paper with respect to 

that in [35] mainly fall into the following two aspects: (i) the concept and definition of system resilience 

which the CIMs rely on is an non-memoryless one in this study by taking into account the cumulative 

restored system functionality; (ii) the focus of the proposed resilience-based CIMs is to quantify the effect 



that the recovery, rather than the disruption, of individual components has on the global system resilience, 

thus, are valuable in suggesting the most effective way for system (recovery) operation. 

Finally, it is shown that the classical betweenness centrality indices, such as the shortest path betweenness, 

flow betweenness and random walk betweenness, do not capture resilience criticality as do the resilience-based 

measures �46̀a�  and ��f46(∆��). Actually, the existing centrality indices and the CIMs in the reliability 

engineering literature are not appropriate to help implement resilience planning because they do not take 

into account system recovery time. Instead, the two measures proposed in the present paper provide 

insights useful for practical restoration activities of infrastructure networks after suffering a disruptive 

event. 

It is noted that in this study we consider a system suffering a specific type of events e (e.g., earthquakes of 

a certain magnitude) and rank the component importances by a stochastic ranking method. The results 

are valuable to help implement the system restoration if this type of event happens on the system. 

However, it might be possible that an infrastructure system is affected by different types of events 

concurrently (e.g., earthquake and tsunami). Future studies will concentrate on the application of the 

resilience-based component importance measures to different types of infrastructure networks subject to 

(possibly different types of correlated) disruptive events, in order to further demonstrate the practical 

effectiveness of the measures.  
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