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Abstract

We search for non-constant normalized solutions to the semilinear elliptic system











−ν∆vi + gi(v
2
j )vi = λivi, vi > 0 in Ω

∂nvi = 0 on ∂Ω
∫

Ω
v2i dx = 1, 1 ≤ i, j ≤ 2, j 6= i,

where ν > 0, Ω ⊂ R
N is smooth and bounded, the functions gi are positive and increasing,

and both the functions vi and the parameters λi are unknown. This system is obtained, via
the Hopf-Cole transformation, from a two-populations ergodic Mean Field Games system,
which describes Nash equilibria in differential games with identical players. In these models,
each population consists of a very large number of indistinguishable rational agents, aiming
at minimizing some long-time average criterion.

Firstly, we discuss existence of nontrivial solutions, using variational methods when
gi(s) = s, and bifurcation ones in the general case; secondly, for selected families of nontrivial
solutions, we address the appearing of segregation in the vanishing viscosity limit, i.e.

∫

Ω

v1v2 → 0 as ν → 0.
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1 Introduction

We consider the following semilinear elliptic system





−ν∆v1 + g1(v
2
2)v1 = λ1v1

−ν∆v2 + g2(v
2
1)v2 = λ2v2 in Ω∫

Ω
v21 dx =

∫
Ω
v22 dx = 1, v1, v2 > 0

∂nv1 = ∂nv2 = 0 on ∂Ω.

(1)

Here Ω ⊂ R
N is a smooth bounded domain, normalized in such a way that

|Ω| = 1,
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ν > 0, and both the functions vi and the parameters λi are unknown. The interaction functions
gi ∈ C2([0,∞)) satisfy

• C−1
g s ≤ gi(s) ≤ Cgs ∀s ≥ 0,

• gi is strictly increasing, g′i(1) > 0,
(2)

for some Cg > 0 (i = 1, 2).
The elliptic system (1) arises in the context of Mean Field Games (briefly MFG) theory.

MFG is a branch of Dynamic Games which has been proposed independently by Lasry, Lions
[21, 22, 23] and Caines, Huang, Malhamé [19, 18] in the engineering community, with the aim
of modeling and analyzing decision processes involving a very large number of indistinguishable
rational agents. Here, we focus on MFG with two competing populations, where every individual
of the i-th population (i = 1, 2) is represented by a typical agent, and whose state is driven by
the controlled stochastic differential equation

dX i
s = −aisds+

√
2ν̃ dBi

s,

where Bi
s are independent Brownian motions. The agent chooses her own velocity ais in order to

minimize a cost of long-time-average form

J i(X i
0, a

1, a2) = lim inf
T→∞

1

T

∫ T

0

E

[ |ais|2
2

+ gi((m̂j)s)

]
ds,

where m̂j denotes the empirical density of the players belonging to the other population (i.e.
j = 3− i). It has been shown (see in particular [16]) that equilibria of the game (in the sense of
Nash) are captured by the following system of non-linear elliptic equations





−ν̃∆ui(x) + 1
2 |∇ui(x)|2 + λi = gi(mj(x))

−ν̃∆mi(x) − div(∇ui(x)mi(x)) = 0 in Ω∫
Ω
midx = 1, mi > 0, i = 1, 2.

(3)

The unknowns ui, λi provide the value functions of typical players and the average costs respec-
tively. On the other hand, the unknowns mi represent the stationary distributions of players of
the i-th population implementing the optimal strategy, that is the long time behavior of agents
playing in an optimal way. We suppose that the state X i

s is subject to reflection at ∂Ω; this
motivates the Neumann boundary conditions.

Note that the individual cost J i is increasing with respect to m̂j , as we are supposing that gi
is increasing. In other words, every agent is lead to avoid regions of Ω where an high concentration
of competitors is present. For this reason, our MFG model is expected to show phenomena of
segregation between the two populations. In particular, segregation should arise distinctly in
the vanishing viscosity regime, namely when the Brownian noise (whose intensity is controlled
by ν̃) becomes negligible with respect to interactions. We will explore this aspect in terms of
qualitative properties of the two distributions m1,m2.

Another key feature of this model is the quadratic dependence of the cost J i with respect to
the velocity αi. It has been pointed out (see [21, 24]) that the so-called Hopf-Cole transformation
partially decouples the equations in (3), reducing the number of the unknowns. Precisely, if we
let

v2i := mi = e−ui/ν̃ and ν = 2ν̃2

then (3) becomes (1). We will therefore consider (1) and transpose the obtained results to the
original system (3).
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Before proceeding with the analysis of the reduced system (1), a few bibliographical remarks
are in order. First of all, while the single population case has received a considerable attention,
few papers deal with mathematical aspects of the multi-population setting. We mention that
a preliminary study of (1)-(3) has been made in [10], while a non-stationary version of (3) is
considered in [20]. The latter work provides also a motivation for (3) based on pedestrian crowd
models. Our MFG system can be also seen as a simplified version of the population models
presented in [1].

Since |Ω| = 1,
v1 ≡ v2 ≡ 1, λ1 = g1(1), λ2 = g2(1)

is a solution of (1) for every value of ν. We will refer to it (or, with some abuse, to the pair
(v1, v2) ≡ (1, 1)) as the trivial (or constant) solution. The aim of our investigation is twofold:
firstly, to show the existence of families, indexed by ν, of nontrivial Nash equilibria for (1);
secondly, to analyze possible segregation phenomena for such families, as ν → 0.

Definition 1.1. The pair (v1, v2) is a Nash equilibrium for (1) if each vi achieves

λi := inf

{∫

Ω

[
ν|∇w|2 + gi(v

2
j )w

2
]
dx : w ∈ H1(Ω),

∫

Ω

w2 dx = 1

}
.

It is easy to show (see Lemma 2.1 ahead) that a pair (v1, v2) is a Nash equilibrium if and
only if (up to a change of sign of its components) it solves (1) with multipliers (λ1, λ2).

Definition 1.2. We say that a set of solutions

Σ ⊂
{
(ν, v1, v2) ∈ R× C2,α(Ω)× C2,α(Ω) : (ν, v1, v2) satisfies (1) for some (λ1, λ2)

}

segregates if it contains sequences {(νn, v1,n, v2,n)}n with νn → 0, and for every such sequence it
holds ∫

Ω

v1,nv2,n → 0 as n→ ∞.

One important feature of system (1) is that its unknowns are both the functions vi, which are
required to be normalized (in the L2 sense), and the parameters λi. Despite the large literature
devoted to existence results for semilinear elliptic systems, only few papers deal with normalized
solutions, mainly when searching for solitary waves associated to nonlinear Schrödinger systems
[26, 27, 28, 4, 3]. Note that all these papers are based on variational methods, since the systems
they consider are of gradient type. This is not the case for (1), except when the interactions gi
are linear functions.

On the other hand, segregation issues have received much attention in the last decade, and
by now a large amount of literature is dedicated to this subject, see e.g. [11, 9, 12, 8, 7, 33, 25,
15, 6, 29, 32], the recent survey [31], and references therein. Mainly two types of competitions
have been widely investigated, namely the Lotka-Volterra type (e.g. gi(s) = ai

√
s), and again

the variational one. Furthermore in these papers segregation (as defined in Definition 1.2) is a
first easy step, while all the effort is done to show that the convergence of v1v2 to 0 is very much
stronger than merely L1. Conversely, in our situation, even the L1 convergence is not clear at
all, mainly due to the unknown behavior of the parameters λi. For instance, the set of trivial
solutions does not segregate at all. Actually, this is one of the main difficulties we have to face.

Motivated by the above discussion, we first treat the variational case

gi(s) = γis, for some γi > 0.
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In such a case, as we mentioned, (1) has a gradient structure, at least in dimension N ≤ 3: Nash
equilibria can be obtained as critical points of the functional

Iν(v1, v2) =

∫

Ω

[
1

γ1
|∇v1|2 +

1

γ2
|∇v2|2 +

1

ν
v21v

2
2

]
dx

constrained to the manifold

M =

{
(v1, v2) ∈ H1(Ω)×H1(Ω) :

∫

Ω

v21 dx =

∫

Ω

v21 dx = 1

}
.

As a consequence, existence of solutions can be obtained by direct minimization of Iν |M . Re-
garding the asymptotic behaviour of such minimizers, using techniques contained in [26] we can
show Γ-convergence to the following limiting problem:

min

{∫

Ω

[
1

γ1
|∇v1|2 +

1

γ2
|∇v2|2

]
dx : (v1, v2) ∈M, v1 · v2 ≡ 0,

}
. (4)

It can be proved that such minimum is achieved, and, among other properties, that any minimizer
(V1, V2) is such that V1

√
γ2−V2

√
γ1 ∈ C2,α(Ω), for every 0 < α < 1 (see Proposition 3.3 ahead).

As a matter of fact, we can prove the following.

Theorem 1.3 (Variational case). Let N ≤ 3, gi(s) = γis, γi > 0, and let µ1 > 0 denote the first
positive Neumann eigenvalue of −∆ in Ω. Then, for every

0 < ν ≤ γ1γ2
µ1(γ1 + γ2)

,

the minimum of Iν |M is achieved by a pair (v1,ν , v2,ν), which is a nontrivial Nash equilibrium
for (1).

Moreover, any family of minimizers exhibits segregation: up to subsequences,

vi,ν → Vi in H
1(Ω) ∩Cα(Ω) as ν → 0,

for every α < 1, where (V1, V2) achieves (4).

Turning to the general case, since (1) has no variational structure, one is lead to search for
solutions using topological methods. In particular, it is natural to use bifurcation theory to find
nontrivial solutions (ν, v1, v2) branching off from the trivial ones

T = {(ν, 1, 1) : ν > 0} ⊂ R× C2,α(Ω)× C2,α(Ω).

We denote by S the closure of the set of nontrivial solutions of (1), so that a bifurcation point is
a point of S ∩ T . The classical bifurcation theory by Rabinowitz [30, 14] can be applied to our
setting to obtain the following.

Theorem 1.4. Let µ∗ > 0 denote a positive Neumann eigenvalue of −∆ in Ω, and

ν∗ =
2
√
g′1(1)g

′
2(1)

µ∗ .

• If µ∗ has odd multiplicity then there exists a continuum C∗ ⊂ S such that (ν∗, 1, 1) ∈ C∗

and
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– either (ν∗∗, 1, 1) ∈ C∗, where ν∗∗ = 2
√
g′1(1)g

′
2(1)/µ

∗∗ and µ∗∗ 6= µ∗ is another positive
Neumann eigenvalue,

– or C∗ is unbounded; furthermore, in dimension N ≤ 3, C ∩ {(ν, v1, v2) : ν ≥ ν̄}
is bounded for every ν̄ > 0, and C contains a sequence (νn, v1,n, v2,n) such that, as
n→ +∞,

νn → 0, ‖(v1,n, v2,n)‖C2,α → +∞.

• If µ∗ is simple (with eigenfunction ψ∗) then the set of non-trivial solutions is, near (ν∗, 1, 1),
a unique smooth curve with parametric representation

ν = ν(ε), v = (1, 1) + εv∗ + o(ε),

where ν(0) = ν∗ and v∗ =
(
−ψ∗√g′1(1), ψ∗√g′2(1)

)
.

Remark 1.5. Sharper asymptotic expansions are provided in Remark 4.6 ahead, in case both gi
are more regular.

Remark 1.6. To compare this theorem with the classical results by Rabinowitz, we recall that here
the natural bifurcation parameter is 1/ν, rather than ν itself. In particular, in case infinitely many
eigenvalues µn are odd, we have infinitely many bifurcation points νn → 0. As a consequence
it is easy to construct families of nontrivial solutions, jumping from branch to branch, that not
only do not exhibit segregation, but even tend to the trivial solution as ν → 0.

The previous remark shows that one can not expect segregation for a generic family of non-
trivial solutions. It is then natural to ask whether segregation occurs for the bifurcation branches
above described, at least for the unbounded ones. According to Theorem 1.4, in order to find
unbounded branches of nontrivial solutions we first have to find odd eigenvalues of −∆ in Ω,
and then to exclude that the corresponding branch goes back to the set of trivial solutions.
Usually, in the bifurcation framework, both conditions can be satisfied when working with the
first eigenvalue of the linearized problem: indeed, on one hand such eigenvalue is simple; on the
other hand, it is usually possible to carry over to the full branch the nodal characterization of the
corresponding eigenfunction. Notice that this is not our case, since the first Neumann eigenvalue
is 0 and it does not provide a bifurcation point, while the first positive eigenvalue µ1 is actually
the second one. Another way to exploit these ideas is to work in dimension N = 1.

Theorem 1.7. Let N = 1. For any k ∈ N, k ≥ 1 there exists a continuum Ck of solutions, such
that:

• if (ν, v1, v2) ∈ Ck then both vi have exactly k − 1 critical points;

• Ck ∩ T =

{(
2
√

g′
1
(1)g′

2
(1)

π2k2 , 1, 1

)}
;

• h 6= k implies Ch ∩ Ck = ∅;

• each Ck contains sequences with ν → 0 and ‖(v1, v2)‖C2,α → +∞;

• each Ck segregates.

Once segregation is obtained, we have that the segregating branches converge, up to subse-
quences, to some limiting profiles. As a consequence, some natural questions arise, about the
type of convergence as well as about the properties of the limiting profiles. We can give the full
picture in the case of the first branch.
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Theorem 1.8. Let N = 1 and C1 as in Theorem 1.7. Then, any sequence {(νn, vn, λn)}n ⊂ C1
such that νn → 0 is uniformly bounded in Lipschitz norm, and it holds

vi,n → Vi in H
1(Ω) ∩Cα(Ω) as νn → 0,

for every α < 1, where (V1, V2) is the minimizer (unique up to reflections) achieving (4) with
γi = g′i(0) ≥ C−1

g .

Remark 1.9. We expect that most of the results of Theorems 1.7 and 1.8 can be extended to
higher dimension, in the radial setting.

It is easy to see that the convergence above is optimal: indeed, in case of Lipschitz conver-
gence, both Vi would be C1, a contradiction with their explicit expression provided in Proposition
3.3. Up to our knowledge, this is the first paper obtaining optimal bounds for competitions which
are not of power-type, even though only in dimension N = 1 (or in the radial case). The only
other paper dealing with generic competitions is [33], where uniform bounds in the planar case
N = 2, not necessarily radial, are obtained.

Let us also point out that along the first branch the problem –which is not variational– inherits
a variational principle in the limit. This is a remarkable fact, since it shows a deep connection
between the variational problem (4) and the nonvariational system (1). This phenomenon was
already observed, in a different situation, in [13].

Of course, all the results we obtained for system (1) can be restated for the original MFG
system (3), recalling that

mi = v2i , ui = −2ν̃ ln vi.

Finally, let us also mention that the true multidimensional case N ≥ 2, as well as the case of
3 or more populations, are of interest: they will be the object of future studies.

The present paper is structured as follows: in Section 2 we list a few preliminary results;
Section 3 is devoted to the analysis of the variational case, and to the proof of Theorem 1.3,
while Section 4 contains the bifurcation arguments and the proof of Theorem 1.4; the Sturm-type
characterization of the nontrivial solutions in dimension N = 1 is developed in Section 5, and
the proof of Theorem 1.7 is completed in Section 6, by showing segregation; finally, the proof of
Theorem 1.8 is contained in Section 7.

Notation. Throughout the paper, i denotes an index between 1 and 2, and j = 3− i. With
a little abuse of terminology, we say that (v1, v2) solves (1) (or even that (ν, v1, v2) does) if there
exist λ1, λ2 such that (v1, v2, λ1, λ2) satisfies (1) (for some prescribed ν).

We will denote by (µk)k≥0 the non decreasing sequence of the eigenvalues of −∆ with homo-
geneous Neumann boundary conditions, namely µk is such that

{
−∆ψk = µkψk in Ω,

∂nψk = 0 on ∂Ω,

for some eigenvector ψk ∈ C2,α(Ω), which constitute an orthonormal basis of L2(Ω). The first
eigenvalue µ0 = 0 is simple and its corresponding eigenfunction is ψ ≡ 1.

Given a function u, u±(x) = max(±u(x), 0) denote its positive and negative parts. Finally,
C,C1, C2, . . . denote (positive) constants we need not to specify.

2 Preliminaries

In this section we collect some preliminary results and some estimates of frequent use.
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Lemma 2.1. The pair (v1, v2) is a Nash equilibrium if and only if, up to a change of sign of
each component, it is a (classical) solution of (1).

Proof. Considering vj as fixed, we have that vi is an L
2-normalized eigenfunction of the Neumann

realization of the operator
H1(Ω) ∋ w 7→ −ν∆w + gi(v

2
j )w,

and that λi is the corresponding eigenvalue. But then vi is strictly positive (up to a change of
sign) if and only if it is the first eigenfunction, i.e. it achieves the infimum in Definition 1.1.
In particular, the proof of the strict positivity in Ω is a routine application of the Maximum
Principle and Hopf’s Lemma.

Lemma 2.2. Let (v1, v2) solve (1). Then either it is trivial, or

min
Ω
gi(v

2
j ) < λi < max

Ω
gi(v

2
j ), i = 1, 2.

Proof. Integrating the equation for vi we can write
∫

Ω

[
λi − gi(v

2
j )
]
vi dx = ν

∫

∂Ω

∂nvi dσ = 0,

and since vi is positive, we deduce that either λi−gi(v2j ) ≡ 0, i.e. vj is constant, or minΩ gi(v
2
j ) <

λi < maxΩ gi(v
2
j ).

Now, if both vi and vj are not constant, then the second alternative follows. Let vi be
constant: then its equation implies gi(v

2
j ) ≡ λi, so that also vj is constant. Finally, both such

constants must be 1 by the L2- constraint (recall that |Ω| = 1).

Remark 2.3. The above lemma shows that, for Nash equilibria, having a constant component
implies being the trivial solution (in this sense, the terminology “constant solution” is not am-
biguous). In fact, if unique continuation for (1) holds, then any solution such that one component
is constant in a (non empty) open Ω0 ⊂ Ω must be the trivial one. This is always true, in par-
ticular, in dimension N = 1 (see Section 5).

Lemma 2.4. Let (v1, v2) solve (1). The following identities hold, for every i:

ν

∫

Ω

|∇vi|2 +
∫

Ω

gi(v
2
j )v

2
i = λi;

ν

∫

Ω

∣∣∣∣
∇vi
vi

∣∣∣∣
2

+ λi =

∫

Ω

gi(v
2
j ).

In particular, the multipliers λi satisfy

C−1
g

∫

Ω

v21v
2
2 ≤ λi ≤ Cg. (5)

Proof. To obtain the two identities it suffices to use integration by parts after multiplying the
equation for vi by vi and 1/vi, respectively. Since

∫
Ω v2i = 1 and C−1

g s ≤ gi(s) ≤ Cgs, (5)
follows.

Corollary 2.5. A sufficient condition for {(νn, v1,n, v2,n)}n to segregate is that, for the corre-
sponding multipliers,

either λ1,n → 0, or λ2,n → 0,

as n→ ∞.

7



3 The variational case

This section is devoted to the proof of Theorem 1.3. Such proof relies on ideas contained in [26],
even though in that paper a different problem is considered (Dirichlet conditions, symmetric
interaction, auto-catalytic reaction terms). For this reason we describe the main ideas here, and
refer the reader to [26] for more details.

In the following we assume that N ≤ 3 and

gi(s) = γis, γi > 0.

As we already noticed, the corresponding system has a gradient structure. For easier notation
we make a change of variable, setting

β =
1

ν
, ṽ1 =

√
γ2v1, ṽ2 =

√
γ1v2. (6)

With this notation system (1) becomes





−∆ṽ1 + βṽ22 ṽ1 = λ1ṽ1

−∆ṽ2 + βṽ21 ṽ2 = λ2ṽ2 in Ω∫
Ω
ṽ21 = γ2,

∫
Ω
ṽ22 = γ1, ṽ1, ṽ2 > 0

∂nṽ1 = ∂nṽ2 = 0 on ∂Ω

(7)

(of course, the multipliers λi here are suitable multiple of those of the original system). Also for
(7) positive solutions are Nash equilibria, among which the trivial one is the pair (

√
γ2,

√
γ1).

Solutions to (7) are critical points of the functional

Jβ(ṽ1, ṽ2) =

∫

Ω

[
|∇ṽ1|2 + |∇ṽ2|2 + βṽ21 ṽ

2
2

]

constrained to the manifold

M̃ =

{
(ṽ1, ṽ2) ∈ H1(Ω)×H1(Ω) :

∫

Ω

ṽ21 = γ2,

∫

Ω

ṽ22 = γ1

}

(recall that, since N ≤ 3, the exponent p = 4 is Sobolev subcritical and thus Jβ is of class C1).

Lemma 3.1. For every β > 0 the value

cβ := inf
M̃
Jβ is achieved by (ṽ1,β , ṽ2,β) ∈ M̃,

which is a Nash equilibrium for (7). Furthermore, if

β ≥ γ1 + γ2
γ1γ2

µ1

(the first positive Neumann eigenvalue of −∆ in Ω) then (ṽ1,β , ṽ2,β) is nontrivial.

Proof. Since Jβ is weakly l.s.c. in H1, and M̃ is weakly closed, the minima (ṽ1,β , ṽ2,β) exist by
the direct method. Moreover, since

∫

Ω

[
|∇ṽi|2 + βṽ2j ṽ

2
i

]
= Jβ(ṽ1, ṽ2)−

∫

Ω

|∇ṽj |2,
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we have that such minima correspond to Nash equilibria for the original problem (the converse,
of course, is false). We are left to prove that, for β large, (ṽ1,β , ṽ2,β) 6= (

√
γ2,

√
γ1). To do that,

we will choose a suitable competitor in the definition of cβ : let ψ1 be an eigenfunction associated
to µ1. Then ψ1 changes sign (indeed it is orthogonal to the eigenfunction ψ0 = 1, associated to
µ0 = 0) and we can find non-zero constants a± such that (a+ψ

+, a−ψ−) ∈ M̃ . Then

cβ < Jβ(a+ψ
+, a−ψ

−) = (γ1 + γ2)µ1

(equality can not hold since (a+ψ
+, a−ψ−) can not solve (7)) while

Jβ(
√
γ2,

√
γ1) = γ1γ2β.

Once we have solved the problem for β > 0 fixed, we are ready to show Γ-convergence as
β → +∞. Let

J∞(ṽ1, ṽ2) :=





∫

Ω

[
|∇ṽ1|2 + |∇ṽ2|2

]
when

∫

Ω

ṽ21 ṽ
2
2 = 0

+∞ otherwise

and c∞ := inf
M̃
J∞.

Lemma 3.2. As β → +∞,

cβ → c∞ and (up to subs.) ṽi,β → Ṽi in H
1(Ω) ∩ C0,α(Ω),

where (Ṽ1, Ṽ2) ∈ M̃ achieves c∞.

Proof. First of all, we notice that, for every (ṽ1, ṽ2) fixed,

β1 ≤ β2 ≤ +∞ =⇒ Jβ1
(ṽ1, ṽ2) ≤ Jβ2

(ṽ1, ṽ2).

We deduce that cβ is increasing in β and bounded by c∞, thus it converges. If the pair (ṽ1,β , ṽ2,β)
achieves cβ , β < +∞, then cβ ≤ c∞ implies

both ‖(ṽ1,β, ṽ2,β)‖2H1 ≤ c∞ + γ1 + γ2, and

∫

Ω

ṽ21,β ṽ
2
2,β ≤ c∞

β
.

We infer the existence of (V1, V2) such that, up to subsequences, ṽi,β → Ṽi, weakly in H1 and

strongly in Lp, p = 2, 4. In particular (Ṽ1, Ṽ2) ∈M and Ṽ1 · Ṽ2 ≡ 0. We have

c∞ ≥ lim cβ = lim Jβ(ṽ1,β , ṽ2,β) ≥ lim inf

∫

Ω

|∇ṽ1,β |2 + |∇ṽ2,β |2 ≥
∫

Ω

|Ṽ1|2 + |Ṽ2|2 ≥ c∞.

Thus (Ṽ1, Ṽ2) achieves c∞, and the inequalities above are indeed equalities, proving convergence
in H1 norm and hence strong H1 convergence.

The last thing to prove is the boundedness in C0,α (which will imply convergence in C0,α

too, by Ascoli’s Theorem). Notice that (ṽ1,β , ṽ2,β) satisfies (7), and that 0 ≤ λi ≤ c∞/γi. As
a consequence, boundedness of the Hölder seminorm can be obtained as in [25, Theorem 1.1],
which provides the same result in the case of Dirichlet boundary conditions: since the proofs
in [25] use blow-up arguments, in order to cover the Neumann case one just has to replace odd
extensions (from the half-space to R

N ) with even ones. More precisely, this replacement has to
be performed in [25, Lemmas 3.4, 3.5, 3.6].

End of the proof of Theorem 1.3. The proof of such theorem easily descends from Lemmas 3.1,
3.2, when going back to the original unknowns (6). In particular, notice that (Ṽ1, Ṽ2) ∈ M̃
achieves c∞ if and only if (Ṽ1/

√
γ2, Ṽ2/

√
γ1) ∈M achieves (4).
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To conclude this section, we collect some properties of the minimizers associated to c∞.

Proposition 3.3. Let (Ṽ1, Ṽ2) ∈ M̃ achieve c∞. Then Ṽ1 · Ṽ2 ≡ 0 and there exist parameters Λi

such that
−∆(Ṽ1 − Ṽ2) = Λ1Ṽ1 − Λ2Ṽ2

(in particular, Ṽ1 − Ṽ2 ∈ C2,α(Ω)).
Furthermore, in dimension N = 1, let Ω = (0, 1). Then, the unique minimizer is (up to the

reflection x↔ 1− x)

Ṽ1(x) =

√
2γ2
x0

cos

(
π

2x0
x

)
· χ[0,x0](x),

Ṽ2(x) =

√
2γ1

1− x0
cos

(
π

2(1− x0)
(1− x)

)
· χ[x0,1](x),

and x0 =
3
√
γ2

3
√
γ1 + 3

√
γ2

.

Proof. Let

J∗(w) =
∫

Ω

|∇w|2, M∗ =

{
w ∈ H1(Ω) :

∫

Ω

(w+)2 = γ2,

∫

Ω

(w−)2 = γ1

}
.

Then, for component-wise positive pairs, J∞(ṽ1, ṽ2)|M̃ = J∗(ṽ1 − ṽ2)|M∗ , and the first part of
the proposition follows by the Lagrange multipliers rule (and by standard elliptic regularity).

Turning to the monodimensional case, we have that (Ṽ1, Ṽ2) ∈ H1(0, 1)×H1(0, 1) satisfies

−(Ṽ1 − Ṽ2)
′′ = Λ1Ṽ1 − Λ2Ṽ2, Ṽ1 · Ṽ2 ≡ 0, in (0, 1) (8)

with Neumann boundary conditions. By elementary considerations we deduce the existence of
(at most countable) disjoint open intervals Ii,n, with i = 1, 2 and n ∈ Ni ⊂ N, such that

Vi(x) =
∑

n∈Ni

ai,n cos
(√

Λi(x− xi,n)
)
· χIi,n(x),

where

Ii,n =






(
0, π

2
√
Λi

)
if xi,n = 0(

xi,n − π
2
√
Λi
, xi,n − π

2
√
Λi

)
if xi,n ∈

(
π

2
√
Λi
, 1− π

2
√
Λi

)
(
1− π

2
√
Λi
, 1
)

if xi,n = 1

,
∑

n

π

2
|Ii,n|a2i,n = γj .

Now, also the pair defined by

W̃i =
2γj

π|Ii,1|a2i,1
Ṽi|Ii,1

achieves c∞; as a consequence, W̃1 − W̃2 solves (8), while W̃1 − W̃2 ≡ 0 outside I1,1 ∪ I2,1. We
deduce that both Ni are singleton, and finally that

c∞ = min





∫ 1

0

(w′
1)

2 + (w′
2)

2 :

w1(x) =
√

2γ2

x1

cos
(

π
2x1

x
)
· χ[0,x1](x)

w2(x) =
√

2γ1

1−x2

cos
(

π
2(1−x2)

(1− x)
)
· χ[x2,1](x)

0 < x1 ≤ x2 < 1




,

whose unique solution can be computed by elementary tools.
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4 Bifurcation results

In this section we apply tools from global bifurcation theory in order to prove Theorem 1.4. The
main references are the celebrated papers by Rabinowitz [30] and Crandall and Rabinowitz [14],
which deal respectively with global bifurcation results for odd eigenvalues, and local ones for
simple eigenvalues; for some details about the asymptotic expansions in the latter case, we refer
also to [2, Chap. 5]. For the reader’s convenience, we recall here the two statements we will
apply.

Theorem 4.1 ([30, Thm. 1.3]). Let E be a Banach space, and let G : R× E → E, continuous
and compact, be such that

G(β, v) = βLv +H(β, v),

with L linear and compact and H(β, v) = o(‖v‖) as v → 0, uniformly on bounded β intervals.
If β∗ is a characteristic value (i.e. 1/β∗ is an eigenvalue) of L, having odd multiplicity, then

S := {(β, v) : v = G(β, v), v 6= 0}

possesses a maximal subcontinuum C such that (β∗, 0) ∈ C, and C either is unbounded in E, or
(β∗∗, 0) ∈ C, where β∗∗ 6= β∗ is another characteristic value of L.

Theorem 4.2 ([14, Thms. 1.37, 1.18]). Under the assumptions of Theorem 4.1, assume fur-
thermore that G is of class C2 and that ∂2β,vG(β, 0) = L.

If β∗ is a simple characteristic value of L and v∗ 6= 0 is such that

Ker(I − β∗L) = span{v∗}, v∗ 6∈ R(I − β∗L),

then S is a continuous curve, locally near (β∗, 0), parameterized as

ε 7→ (β, v) = (β∗ + ϕ(ε), εv∗ + εψ(ε)),

where ϕ(0) = 0, ψ(0) = 0. If G is more regular, then also the above curve is, and one can write
higher order expansions (see Remark 4.6).

Among different possible choices, we will apply the above results in the ambient space

E :=
{
v = (v1, v2) ∈ C2,α(Ω,R2) : ∂nvi = 0 on ∂Ω

}
.

Lemma 4.3. The map G : R× E → E defined as

u = G(β, v) ⇐⇒






−∆u1 + βg1(v
2
2)u1 = λ1u1

−∆u2 + βg2(v
2
1)u2 = λ2u2 in Ω∫

Ω u
2
1 dx =

∫
Ω u

2
2 dx = 1, u1, u2 > 0

∂nu1 = ∂nu2 = 0 on ∂Ω,

for suitable λi, is (well-defined and) of class C2. Moreover it holds

∂vG(β, 1, 1) = βL,

where

z = Lw ⇐⇒






−∆z1 = −2g′1(1)
[
w2 −

∫
Ω
w2

]

−∆z2 = −2g′2(1)
[
w1 −

∫
Ω w1

]
in Ω∫

Ω
z1 dx =

∫
Ω
z2 dx = 0

∂nz1 = ∂nz2 = 0 on ∂Ω.

(9)

11



Proof. The proof is based on standard smooth dependence of simple eigenvalues (and corre-
sponding eigenfunctions) with respect to the potentials, see for instance the book [17]. Let us
consider the map F : R× E × E × R

2 → C0,α(Ω,R2)× R
2,

F (β, v, u, λ) :=




−∆u1 + βg1(v
2
2)u1 − λ1u1

−∆u2 + βg2(v
2
1)u2 − λ2u2∫

Ω
u21 dx− 1∫

Ω u
2
2 dx− 1


 . (10)

Let β, v be fixed. Then we can uniquely find positive eigenfunctions ui = ui(β, vj) and simple
eigenvalues λi = λi(β, vj), such that F = 0. As a consequence, it is possible to apply the Implicit
Function Theorem in order to show that

F (β, v, u, λ) = 0 ⇐⇒ (u, λ) = G̃(β, v),

with G̃ ∈ C2 (recall that each gi is of class C
2). More precisely, the invertibility of ∂(u,λ)F at any

of the points above mentioned can be obtained by its injectivity (by Fredholm’s Alternative).
Since G is the projection of G̃ on E, the first part of the lemma follows. Observing that

G̃(β, 1, 1) = (1, 1, βg(1), βg(1)),

also the second part can be proved, by direct calculations.

In order to apply the abstract results, we need to find the eigenvalues of the operator L
defined in the previous lemma. In the following, for easier notation, we write

αi = g′i(1) > 0 (by assumption (2)).

Lemma 4.4. Let L be defined as in (9). Then

β∗Lv∗ = v∗, v∗ 6= 0, ⇐⇒ β∗ =
µ∗

2
√
α1α2

, v∗ = (−√
α1ψ

∗,
√
α2ψ

∗) ,

where µ∗ is a positive Neumann eigenvalue of −∆ in Ω and ψ∗ a corresponding eigenfunction.

Proof. Recall that β∗Lv∗ = v∗ if and only if, for both i,





−∆v∗i = −2β∗αiv
∗
j in Ω∫

Ω v
∗
i = 0

∂nv
∗
i = 0 on ∂Ω.

Setting
ψ± =

√
α2v1 ±

√
α1v2,

we obtain that the above system is equivalent to






−∆ψ± = ∓2β∗√α1α2ψ± in Ω∫
Ω ψ± = 0

∂nψ± = 0 on ∂Ω.
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Hence, if β∗ 6= 0, we infer that β∗ is a characteristic value of L if and only if ψ+ = 0 (by
the Maximum Principle) and 2β∗√α1α2 is an eigenvalue of −∆ with zero Neumann boundary
conditions. Moreover, the characteristic vector space associated to β∗ is generated by

(−√
α1ψ

∗,
√
α2ψ

∗) .

Finally, note that β∗ = 0 is not a characteristic value of L, as −∆ψ = 0 and
∫
Ω
ψ = 0 imply that

ψ ≡ 0.

The last ingredient we need is some control on the behavior of nontrivial solutions.

Lemma 4.5. There exists a constant C > 0 such that

1. S ⊂
{
(β, v) :

∫
Ω |∇v|2 ≤ Cβ

}
;

2. S ⊂ {(β, v) : β ≥ C}.

Proof. Recalling Lemma 2.4 we have that, in the present setting,

∫

Ω

|∇vi|2 ≤ λi ≤ β

∫

Ω

gi(v
2
j ) ≤ Cgβ,

and the first inclusion follows. Concerning the second one, let by contradiction (βn, vn)n ⊂ S be
such that βn → 0. Then, by the first inclusion, vn → (1, 1) in H1 and, by elliptic regularity, also
in E. We deduce that β∗ = 0 corresponds to a bifurcation point, and therefore ∂v(· −G(β, ·)) =
I − βL can not be invertible at β = 0, a contradiction.

We are ready to prove our main bifurcation results.

Proof of Theorem 1.4. First of all, let µ∗ be a positive Neumann eigenvalue, with odd multiplic-
ity, and

β∗ =
µ∗

2
√
α1α2

By Lemma 4.4 we are in a position to apply Theorem 4.1, obtaining a nontrivial branch which
satisfies one of the alternatives there. Recalling that β = 1/ν, we readily have the existence of
a nontrivial branch C in the (ν, v)-space, satisfying all the conditions in (1), with the possible
exception of the positivity ones. In view of Lemma 4.5 we have that

C ⊂
{
(ν, v) :

∫

Ω

|∇v|2 ≤ C1

ν
, 0 < ν ≤ C2

}
.

Note that, in principle, C ∩{ν ≥ ε > 0} may be unbounded in C2,α. Recalling that, in dimension
N ≤ 3, the nolinearities in (1) are Sobolev subcritical, by standard elliptic regularity we have
that H1 bounds imply C2,α ones, so that unboundedness can happen only as ν → 0. The last
thing that is left to prove, to complete the first part of the theorem, is that the branch we
obtained consists of componentwise positive pairs. This easily follows since, by the Maximum
Principle, if the pairs (v1,n, v2,n) solve (1), with ν = νn > 0 and λi = λi,n, and

vi,n → v̄i, νi,n → ν̄i, λi,n → λ̄i,

then either ν̄ = 0 or ν̄ > 0 and v̄1, v̄2 are strictly positive in Ω.
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Coming to the second part, let µ∗ be a simple positive Neumann eigenvalue. By Lemma
4.4 we have that ∂2β,vG(β, 0) = L. In order to apply Theorem 4.2, we only have to check the
compatibility condition, which in our case writes

(−√
α1ψ

∗,
√
α2ψ

∗) 6∈ R(I − β∗L)

(here ψ∗ is an eigenfunction associated to µ∗ = 2
√
α1α2β

∗). By contradiction, let us assume
that (−√

α1ψ
∗,
√
α2ψ

∗) = (I − β∗L)w, i.e.






−∆wi = −2β∗αiwj + (−1)iµ∗ψ∗√αi in Ω∫
Ωwi = 0

∂nwi = 0 on ∂Ω.

Reasoning as in the proof of Lemma 4.4, it is easy to prove that w = 0, and hence ψ∗ = 0, a
contradiction.

Remark 4.6. If we suppose that g1 and g2 are smooth, then the branch S bifurcating from
(β∗, 1, 1) is a smooth curve (at least in a neighborhood of that point), and its parametrization
can be made more precise. In order to simplify the following computations, we set

(β, v) ∈ S ⇔ 0 = F̂ (β, v, λ) := F (β, v, v, βλ)

for some λ ∈ R
2, where F is as in (10). Then, F̂ : R×E×R

2 → C0,α(Ω,R2)×R
2 is smooth and

satisfies

F̂v(β, v, λ)[w, ℓ] =

(
−∆wi + β(2g′i(v

2
j )vivjwj + gi(v

2
j )wi − ℓivi − λiwi), 2

∫

Ω

viwi

)
,

F̂v,β(β, v, λ)[w, ℓ] = (2g′i(v
2
j )vivjwj + gi(v

2
j )wi − ℓivi − λiwi, 0),

F̂v,v(β, v, λ)[w, ℓ;h, p] =
(
β[4g′′i (v

2
j )viv

2
j + 2g′i(v

2
j )vi]wjhj

+2βg′i(v
2
j )vjwjhi + 2βg′i(v

2
j )vjwihj − βℓihi − βpiwi, 2

∫

Ω

hiwi

)
,

F̂v,v,v(β, v, λ)[w, ℓ;h, p; z, q] =
(
β[8g′′′i viv

3
j + 8g′′i vivj + 4g′′i vivj ]wjhjzj + β[4g′′i v

2
j + 2βg′i]wjhjzi

+ β[4g′′i v
2
j + 2g′i]wjhizj + β[4g′′i v

2
j + 2g′i]wihjzj , 0).

If (β∗, 1, 1, g1(1), g2(1)) is a simple bifurcation point, then Ker(F̂v) is spanned by the vector
V ∗ = (−√

α1ψ
∗,
√
α2ψ

∗, 0, 0), and R(F̂v) = {(Ψ, ·) = 0}, where Ψ = (−√
α2ψ

∗,
√
α1ψ

∗, 0, 0).
Therefore, arguing as in [2, Chap. 5], if we set

A := (Ψ, F̂v,β [V
∗]), B :=

1

2
(Ψ, F̂v,v[V

∗, V ∗]), C := − 1

6A
(Ψ, F̂v,v,v, [V

∗]3)

where all the derivatives of F̂ are evaluated at (β∗, 1, 1, g1(1), g2(1)), the following expansions
hold true

β = β∗ − B

A
ε+ o(ε), (if B 6= 0),

and
v = (1, 1) + A

B (β − β∗) · (√α1ψ
∗,−√

α2ψ
∗) + o(β − β∗) if B 6= 0,

v = (1, 1)±
(

β−β∗

C

)1/2
· (√α1ψ

∗,−√
α2ψ

∗) +O(β − β∗) if B = 0, C 6= 0.
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Note that in the latter case, if C > 0 (respectively, C < 0) the bifurcating branch emanates on
the right (respectively, left) of β∗. In our case, the coefficients A,B,C have the explicit form

A = −4g′1g
′
2

∫
(ψ∗)2 < 0,

B = β∗[2g′′2

√
(g′1)

3 − 2g′′1

√
(g′2)

3 + 3g′1g
′
2(
√
g′1 −

√
g′2)]

∫
(ψ∗)3,

C =
β∗

−6A



12g′1g′2
√
g′1g

′
2 +

∑

i=1,2

(−8(g′j)
2g′′′i + 12g′′i (g

′
j

√
g′ig

′
j − (g′j)

2))




∫
(ψ∗)4,

where all the derivatives of gi are evaluated at s = 1.
We observe that if N = 1, the bifurcation is always critical, namely B = 0, as every eigenfunc-

tion ψ∗ satisfies
∫
(ψ∗)3 = 0. In the variational case, where g′′i (1) = g′′′i (1) = 0, the bifurcating

branch emanates on the right, namely (β, v) ∈ S is such that β ≥ β∗ (and therefore ν ≤ ν∗), at
least in a neighborhood of β∗.

5 Classification of solutions in dimension N = 1

In this section we restrict our attention to the case Ω = (0, 1) ⊂ R. Consequently, in the following
(v1, v2) denotes a solution of the problem (i, j = 1, 2, j 6= i)






−νv′′i + gi(v
2
j )vi = λivi in (0, 1)∫ 1

0 v
2
i dx = 1, v > 0 in [0, 1]

v′i(0) = v′i(1) = 0.

In particular, each vi is C2([0, 1]), and it has at least an inflection point in (0, 1) (just apply
Rolle’s Theorem to v′i). Furthermore, v′′i (x) has the same sign of gi(v

2
j (x)) − λi, for every x.

Lemma 5.1. vi and vj have opposite concavity at 0 and 1. More precisely:

• gi(v
2
j (0)) > λi ⇐⇒ gj(v

2
i (0)) < λj;

• gi(v
2
j (1)) > λi ⇐⇒ gj(v

2
i (1)) < λj.

Proof. Let us assume, for instance, gi(v
2
j (0)) > λi and, by contradiction, gj(v

2
i (0)) ≥ λj (the

other cases are analogous).
Then v′′i (0) > 0, and there exists ξ ∈ (0, 1] such that

v′′i > 0 in [0, ξ), v′′i (ξ) = 0 (and hence gi(v
2
j (ξ)) = λi). (11)

Notice that ξ < 1, otherwise vi would have no inflection point in (0, 1). By convexity and
monotonicity we deduce that

x ∈ (0, ξ] =⇒ vi(x) > vi(0) =⇒ gj(v
2
i (x)) − λj > gj(v

2
i (0))− λj ≥ 0.

But then also vj is (convex and) increasing in [0, ξ], so that

gi(v
2
j (ξ)) > gi(v

2
j (0)) > λi,

in contradiction with (11).

15



Next we exploit standard uniqueness results for ODEs in order to detect a number of situations
in which a considered solution is the trivial one.

Lemma 5.2. Let one of the following condition hold:

1. there exists ξ ∈ [0, 1] such that

g1(v
2
2(ξ)) = λ1, g2(v

2
1(ξ)) = λ2, v′1(ξ) = v′2(ξ) = 0;

2. there exist 0 ≤ x1 < x2 ≤ 1 such that, for some i, vi is constant in I = [x1, x2];

3. for some i, gi(v
2
j (0)) = λi;

4. for some i, gi(v
2
j (1)) = λi;

Then (v1, v2) is the trivial solution.

Proof. Under the assumptions of case 1, uniqueness for the Cauchy problem

{
−νv′′i + gi(v

2
j )vi = λivi in (0, 1)

vi(ξ) =
√
g−1
j (λj), v′i(ξ) = 0, i = 1, 2, j 6= i

implies that both v1 and v2 are constant, and we can conclude exploiting the normalization in
L2(0, 1).

If 2 holds, the equation for vi implies gi(v
2
j (ξ)) = λi on I. But then also vj is constant in I,

forcing gj(v
2
i (ξ)) = λj . Since both v′i and v

′
j are identically zero in I, case 1. applies.

Recalling the Neumann boundary conditions, also cases 3 and 4 can be reduced to 1: indeed,
by Lemma 5.1, gi(v

2
j )− λi vanishes at one endpoint if and only if gj(v

2
i )− λj does.

The following key lemma asserts that between two consecutive maxima of each vi there exists
an interval of concavity of vj .

Lemma 5.3. Let 0 ≤ x1 < x2 ≤ 1 be such that, for some i,

v′i(x1) = v′i(x2) = 0, v′′i (x1) ≤ 0, v′′i (x2) ≤ 0.

Then either (v1, v2) is the trivial solution, or there exists ξ ∈ (x1, x2) such that

gj(v
2
i (ξ)) < λj .

Analogously, if v′i vanishes and v′′i is nonnegative at x1, x2 then gj(v
2
i (ξ)) > λj for some ξ ∈

(x1, x2).

Proof. We have to show that, in case gj(v
2
i (x)) ≥ λj for every x ∈ [x1, x2], then (v1, v2) is the

trivial solution. Under such assumption we have that

{
v′′j ≥ 0 in (x1, x2)

gi(v
2
j ) ≤ λi at {x1, x2},

so that gi(v
2
j ) ≤ λi in the whole [x1, x2].

Thus v′′i ≤ 0 in [x1, x2]. Since v
′
i = 0 at x1 and x2, we obtain that vi is constant in [x1, x2], and

Lemma 5.2 (case 2) applies, concluding the proof.

The above result provides a sharp control on the critical and inflection points of each vi, as
we show in the next sequence of lemmas.
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Lemma 5.4. If (v1, v2) is non trivial then both components have only isolated critical points.

Proof. Let by contradiction ξ ∈ [0, 1] be an accumulation point for the set of critical points of
vi. Of course

v′i(ξ) = 0.

We recall that, for any pair of critical points x1 < x2, if both v
′′
i (x1) > 0 and v′′i (x2) > 0 then

there exists a third critical point y1 ∈ (x1, x2) such that v′′i (y1) ≤ 0 (and the same holds for
opposite inequalities). Using this fact, it is not difficult to construct two sequences xn → ξ,
yn → ξ such that

v′i(xn) = v′i(yn) = 0, v′′i (xn) ≥ 0, v′′i (yn) ≤ 0.

Applying repeatedly Lemma 5.3 we deduce the existence of sequences ξn → ξ, ξ
n
→ ξ such that

gj(v
2
i (ξn)) < λj < gj(v

2
i (ξn)). This promptly yields

gj(v
2
i (ξ)) = λj .

Now back to the sequence (xn), applying Rolle’s Theorem we first deduce the existence of a
sequence zn → ξ such that 0 = v′′i (zn) = gi(v

2
j (zn))− λi, implying

gi(v
2
j (ξ)) = λi,

and then of a sequence z′n → ξ with

0 = v′j(z
′
n) → v′j(ξ).

Summing up, we are in a position to apply Lemma 5.2 (Case 1), obtaining that (v1, v2) is trivial,
a contradiction.

Lemma 5.5. Let x0 ∈ [0, 1] be a point of local minimum for vi. Then either (v1, v2) is the trivial
solution, or

gj(v
2
i (x0)) < λj , gi(v

2
j (x0)) > λi

(in particular, it is non degenerate). An analogous statement (with reverse inequalities) holds
for local maxima.

Proof. If x0 = 0 or x0 = 1, then the statement is a consequence of Lemma 5.1. Otherwise, since
x0 is an isolated critical point, it is a strict minimum, and the following points are well defined:

x1 = inf{x ∈ [0, x0) : v
′
i < 0 in (x, x0)}, x2 = sup{x ∈ (x0, 1] : v

′
i > 0 in (x0, x)}.

Then x1, x2 satisfy the assumptions of Lemma 5.3, providing the existence of ξ ∈ (x1, x2) such
that

gj(v
2
i (x0)) = min

[x1,x2]
gj(v

2
i ) ≤ gj(v

2
i (ξ)) < λj ,

which is the first inequality required.
On the other hand, since x0 is an isolated strict minimum we have that gi(v

2
j (x0)) ≥ λi in a

neighborhood of x0. Since the last inequality implies that vj is strictly concave in a neighborhood
of x0, we deduce also the second (strict) inequality.

Lemma 5.6. If (v1, v2) is not the trivial solution, then any critical point of each component is
non degenerate.
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Proof. Let us assume by contradiction that ξ is a degenerate critical point of vi. By Lemmas
5.4, 5.5 we have that ξ ∈ (0, 1) is an isolate inflection point. Therefore

v′i(ξ) = 0, gi(v
2
j (ξ)) = λi,

and ξ is a local extremum for vj . But then Lemma 5.5 applies again, implying that either
gi(v

2
j (ξ)) > λi or gi(v

2
j (ξ)) < λi, a contradiction.

Lemma 5.7. Let (v1, v2) be non trivial, and x1 < x2 be such that, for some i,

v′i(x1) = v′i(x2) = 0, v′i > 0 in (x1, x2).

Then both vi and vj have exactly one inflection point in [x1, x2]. An analogous statement holds
for the opposite monotonicity.

Proof. By Lemma 5.5 we immediately deduce the existence of ξ ∈ (x1, x2) such that

v′′j < 0 in [x1, ξ), v′′j > 0 in (ξ, x2], (12)

and vj has exactly one inflection point in [x1, x2].
On the other hand, the inflection points of vi are the solutions of

gj(v
2
i (x)) = λj , x ∈ [x1, x2]. (13)

Since gj(v
2
i (x1)) > λj and gj(v

2
i (x2)) < λj (and again by Lemma 5.5), equation (13) has an odd

number of solutions. On the other hand, taking into account (12), equation (13) has at most one
solution in [x1, ξ] and one in [ξ, x2], respectively.

Collecting the previous results we have the following characterization of nontrivial solutions.

Proposition 5.8. If (v1, v2) is not the trivial solution, then there exists k ∈ N such that both v1
and v2 have exactly k critical points, all non degenerate, and k + 1 isolated inflection points in
(0, 1).

Proof. Let ni denote the number of critical points of vi in (0, 1) (they are well defined by Lemma
5.4), and mi the number of inflection points. By Lemma 5.7 we have that ni + 2 = mi = mj,
and the claim follows.

We are ready to conclude the proof of the main result of this section.

Proof of Theorem 1.7 (first part). First of all let C ⊂ S be a continuum of nontrivial solutions,
and

C ∋ (νn, v1,n, v2,n) → (ν̄, v̄1, v̄2), as n→ +∞.

Using Proposition 5.8, it is not difficult to prove that, if the number of interior critical points of
each vi,n is constant, equal to k, then

• either ν̄ = 0;

• or ν̄ > 0 and (v̄1, v̄2) is the trivial solution;

• or ν̄ > 0 and each v̄i has exactly k interior critical points.
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Now recall that, being N = 1 and Ω = (0, 1), the Neumann eigenvalues and eigenfunction of
−∂2xx have the form

µk = (kπ)2, ψk = A cos(kπ x) (A 6= 0), k ∈ N,

and every eigenvalue µk is simple. Applying Theorem 1.4 we have the existence, for every
k ≥ 1, of continua Ck ⊂ S which consist, locally near (µk, 1, 1), of pairs having exactly k − 1
critical points (by the local parameterization, because also ψk has exactly k − 1 critical points).
The initial argument tells that each Ck is characterized by the number of critical points of its
components, so that two of them cannot meet, and each of them is unbounded in the sense of
Theorem 1.4 (since we are in dimension N = 1 ≤ 3).

We are only left to prove segregation: this is the object of the next section.

6 Segregation in dimension N = 1

As we already mentioned (see Remark 1.6), we can not expect that all arbitrary families of
nontrivial solutions segregate. Nonetheless, restricting our attention to Ck as in Theorem 1.7, for
some fixed k, we can obtain more precise results.

In the following, we focus on (νn, v1,n, v2,n) ⊂ Ck, a sequence of solutions of (1), with ν =
νn > 0 and λi = λi,n, whose components have exactly k − 1 critical points in (0, 1), all non-
degenerate. For easier notation, we will drop the subscript n throughout the proofs, except when
some confusion may arise; in particular, properties of

v1, v2, λ1, λ2 as ν → 0,

are those of the considered sequence, when νn → 0 as n→ +∞.
As a first step, we want to rule out the possibility that the branch “collapses” to the trivial

solution as ν → 0.

Proposition 6.1. Suppose that

v1,n → 1, v2,n → 1, νn → ν̄,

where the convergence is uniform in [0, 1]. Then, λi,n → gi(1) and ν̄ > 0.

Proof. The proof will be carried out in three steps, and considering the system solved by ui :=
vi − 1, which is 





−νu′′1 = (λ1 −G1(1 + u2))(1 + u1), in (0, 1)
−νu′′2 = (λ2 −G2(1 + u1))(1 + u2),
u′1 = u′2 = 0 at {0, 1},∫ 1

0
(1 + u1)

2 =
∫ 1

0
(1 + u2)

2 = 1,

(14)

where we have set Gi(t) := gi(t
2) for all t ≥ 0. Note that ui → 0 uniformly in [0, 1].

Without loss of generality, we set (x̄ = x̄n)

M := max
i=1,2, x∈[0,1]

|ui(x)| = u1(x̄).

Step 1. |λi −Gi(1)|/M → 0 as n→ ∞. Indeed, note first that
∫ 1

0 (1 + ui)
2 = 1 implies that

∫ 1

0

ui = −1

2

∫ 1

0

u2i . (15)
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Moreover, a Taylor expansion in the equations of (14) gives

−νu′′i =

(
λi −Gi(1)−G′

i(1)uj −
G′′

i (ξ)

2
u2j

)
(1 + ui),

where ξ is a bounded function in (0, 1) (uniformly with respect to n). By integrating the equation
and using the boundary conditions we obtain

(λi −Gi(1))

∫ 1

0

(1 + ui) = G′
i(1)

∫ 1

0

uj +G′
i(1)

∫ 1

0

ui uj +

∫ 1

0

G′′
i (ξ)

2
u2j(1 + ui).

Hence, using (15),

|λi −Gi(1)|
∫ 1

0

(1 + ui) ≤
G′

i(1)

2

∫ 1

0

u2j +G′
i(1)

∫ 1

0

|ui| |uj|+
∫ 1

0

G′′
i (ξ)

2
u2j(1 + ui),

which leads to the assertion, as
∫ 1

0 (1 + ui) → 1, |ui|, |uj | ≤ M in [0, 1] and M → 0. The first
conclusion of the proposition also follows, as Gi(1) = gi(1).

Step 2. Assume by contradiction that ν̄ = 0. We proceed with a blow-up analysis, setting

ũi(x) =
1

M
ui
(√
ν x+ x̄

)
∀x ∈

(
− x̄√

ν
,
1− x̄√
ν

)
=: Ω̃n.

We have that |ũi| ≤ 1 in Ω̃n and ũ1(0) = 1. Moreover, ũi solves

−ũ′′i =

(
λi −Gi(1)

M
− (G′

i(1) + o(1))ũj

)
(1 + ui) in Ω̃n.

Note that (up to subsequences)

Ω̃n → Ω̃∞ :=





[X̄,+∞) if − x̄√
ν
→ X̄ < +∞

(−∞, X̄] if 1−x̄√
ν

→ X̄ < +∞
R otherwise.

Using the equation (twice) and the uniform boundedness of ũi on Ω̃n, we argue that ũ′′′i is

bounded on compact subsets of [0,∞), uniformly as n → ∞. Hence, ũi → Ũi ∈ C2(Ω̃∞) locally

in C2,α where Ũi has at most k intervals of monotonicity and solve, in Ω̃∞,

{
Ũ ′′
1 = G′

1(1)Ũ2

Ũ ′′
2 = G′

2(1)Ũ1,
(16)

in view of the conclusion of Step 1. Note that, in case Ω̃∞ 6= R, we can use the Neumann
conditions in order to extend Ũi by even reflection around X̄, in such a way that Ũ1, Ũ2 solve
(16) in the whole R.

Step 3. To reach a contradiction we are going to show that system (16) does not admit

nontrivial bounded solutions having a finite number of oscillations (recall that Ũ1(0) = 1). We
can reason as in Section 4, setting

W± =
√
α2Ũ1 ±

√
α1Ũ2,
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and obtaining a decoupled system:
{
W ′′

+ =
√
α1α2W+,

W ′′
− = −√

α1α2W−.

Therefore, since W+ is bounded it must be constant and identically zero. We deduce that Ũ1,

Ũ2 are proportional, so that
Ũ ′′
1 = −√

α1α2 Ũ1,

which forces Ũ1 ≡ 0 (since it has at most 2k monotonicity intervals in R).

Next we turn to the case in which ‖vi‖L∞ is uniformly bounded along the sequence, for both
i. To treat such case we need the following Liouville-type result.

Lemma 6.2. Let Vi ∈ C2(R), 0 ≤ Vi ≤M , Λi ≥ 0 be such that

−V ′′
i = (Λi − gi(V

2
j ))Vi in R.

If both Vi have at most a finite number of monotonicity intervals, then one of the following holds:

1. either V1 ≡ 0, Λ2 = 0,

2. or V2 ≡ 0, Λ1 = 0,

3. or V1 ≡ V2 ≡ 0,

4. or gi(V
2
j ) ≡ Λi, i = 1, 2.

Proof. First of all, we can reason as in Lemma 5.2 to show that, if some Vi is constant in an
interval, then (V1, V2) is constant in R, and as a consequence we always fall in one of the above
cases. Secondly, assume that some Λi = 0: then Vi is constant, and again the lemma follows by
elementary considerations.

We are left to deal with the case Λ1,Λ2 > 0 and V1, V2 non constant and strictly positive.
Since both Vi have a finite number of monotonicity intervals, the equations imply that they also
have a finite number of inflection points (and they have at least one, since they are bounded in
R). We deduce the existence of a ∈ R such that, say,

V ′
1 , V

′
2 , V

′′
1 , V

′′
2 do not change sign in (a,+∞).

In particular, the limits Vi(+∞) exist and V ′
i (+∞) = V ′′

i (+∞) = 0.
Assume that V ′

i ≥ 0 for x > a, so that V ′′
i ≤ 0 in the same interval. Then Vi(+∞) > 0, and

gi(V
2
j (x)) ≤ Λi in (a,+∞), gi(V

2
j (+∞)) = Λi −

V ′′
i (+∞)

Vi(+∞)
= Λi,

so that also V ′
j is non negative.

Now we can lower a in such a way that, say,

V ′′
1 (a) = 0.

If V ′
1 ≤ 0 for x > a, we deduce that also V ′

2 ≤ 0 in the same interval. But then Λ1 − g1(V
2
2 )

is increasing, and V ′′
1 ≤ 0 for x > a, a contradiction since V1 is decreasing and bounded.

On the other hand, let V ′
1 ≥ 0 for x > a. Then V1(+∞) > 0, and

g1(V
2
2 (a)) = Λ1 = g1(V

2
2 (+∞))− V ′′

1 (+∞)

V1(+∞)
= g1(V

2
2 (+∞)),

forcing V2 to be constant in [a,+∞), again a contradiction.
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Using the previous result, we can show that uniform L∞ bounds imply segregation.

Lemma 6.3. Assume that ‖vi,n‖∞ ≤ C for both i. Then, up to subsequences,

λi,n → 0, i = 1, 2,

as νn → 0.

Proof. Let us assume by contradiction that, for instance, λ1 6→ 0. We choose a sequence (x1,n)n ⊂
[0, 1] such that (omitting the subscript n)

v1(x1) := max
[0,1]

v1 ≥ 1, and put ṽi(x) := vi
(
x1 + x

√
ν
)
.

Then, ṽi solves

−ṽ′′i (x) =
(
λi − gi(ṽ

2
j (x))

)
ṽi(x) in (−x1ν−1/2, (1− x1)ν

−1/2),

‖ṽi‖∞ ≤ C, ṽi ≥ 0. The equations and (5) guarantee local C3 boundedness of ṽi, thus, up to
subsequences, ṽi → Vi locally in C2. Moreover, λi → Λi ≥ 0. We argue that, possibly up to an
even extension, each Vi has at most 2k intervals of monotonicity and

−V ′′
i = (Λi − gi(V

2
j ))Vi in R.

Then, Lemma 6.2 applies, but since V1(0) ≥ 1 and Λ1 > 0, we deduce that

gi(v
2
j (x1))− λi → 0 for both i, (17)

and also λ2 6→ 0 (as g2(v
2
1(x1)) ≥ g2(1) > 0). We can implement the same argument using

v1(x2) := min
[0,1]

v1 ≤ 1, and w̃i(x) := wi

(
x2 + x

√
ν
)
.

Passing to the limit (we keep the same sequence λi → Λi > 0 as before), and recalling Lemma
5.5, we have that W2(0) > 0 and then

gi(v
2
j (x2))− λi → 0 for both i. (18)

Combining (17) and (18), we deduce that v1 → 1 uniformly on [0, 1].
Now, since also Λ2 > 0, we can exchange the role of v1 and v2, obtaining that v2 → 1 too, in

contradiction with Proposition 6.1.

We are left to deal with the case of max[0,1](v1,n + v2,n) → +∞, namely when v1 or v2 are
not bounded uniformly in n. To treat this situation we need to exploit the finite number of
maxima of each component along Ck, as enlighten in the following lemma (for convenience we
write explicitely the dependence on n).

Lemma 6.4. Let max[0,1](v1,n + v2,n) → +∞. There exist and index i, constants C, δ > 0
(independent of n), and a sequence of intervals In ⊂ [0, 1] such that, up to subsequences:

|In| = δ

max
In

vi,n = max
∂In

vi,n → +∞

max
In

vj,n ≤ C.
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Proof. Let

Zn := {z ∈ [0, 1] : z is a local maximum for vi,n, for some i, and vi,n(z) → +∞} .

Since we are considering elements of Ck, we have that

Zn = {zl,n}l=1,...,h, z1,n < · · · < zh,n, h ≤ k + 1

(recall that, by Lemma 5.5, if z is a local maximum for vi then gi(v
2
j (z)) ≤ λi). Up to sub-

sequences, we can assume that each zl,n is a maximum for some vi,n, with i independent of n;
furthermore we can assume that, for each l, zl,n → zl ∈ [0, 1]. We distinguish three cases.

Case 1: for some l, zl < zl+1. We choose i so that zl,n is a local maximum for vi,n and

2δ = zl+1 − zl, In = [zl,n, zl,n + δ].

By construction, neither vi,n nor vj,n can have interior maxima which go to infinity; therefore
the required properties for maxIn vi,n follow from the fact that vi,n(zl,n) → +∞, while those for
maxIn vj,n descend again by Lemma 5.5.

Case 2: z1 = · · · = zh 6= 1. One can reason as above, by choosing i so that zh,n is a local
maximum for vi,n and

2δ = 1− zh, In = [zh,n, zh,n + δ].

Case 3: z1 = · · · = zh 6= 0. We can choose i so that z1,n is a local maximum for vi,n and

2δ = z1, In = [z1,n − δ, z1,n].

The last tool we need is the following standard comparison lemma.

Lemma 6.5 ([12, Lemma 4.4]). Suppose that u ∈ C2(a, b) ∩ C([a, b]) satisfies

−u′′(x) ≤ −Mu(x), 0 ≤ u(x) ≤ A, in (a, b)

for some A,M > 0. Then, for every 0 < δ < (b − a)/2,

u(x) ≤ 2Ae−δ
√
M in [a+ δ, b− δ].

Proof. By comparison with the solution of −w′′ = −Mw in (a, b), w(a) = w(b) = A.

Remark 6.6. By even reflection, we have that if u is as in Lemma 6.5 and furthermore u′(a) = 0,
then the estimate holds on any [a, b′] ⊂ [a, b), choosing δ = b− b′.

We are in a position to prove that segregation occurs also when some vi is unbounded, thus
completing the proof of Theorem 1.7.

Lemma 6.7. Let max[0,1](v1,n + v2,n) → +∞. Then (up to subs.) λi,n → 0, for some i (and
the corresponding vi,n is not uniformly bounded).

Proof. Let i, In =: [zn, zn + δ] be as in Lemma 6.4. We can assume, w.l.o.g.,

max
In

vi,n = vi,n(zn) → +∞.

We define the blow-up sequences

ṽi,n(x) :=
1

vi,n(zn)
vi,n(zn + x

√
νn)

ṽj,n(x) := vj,n(zn + x
√
νn).
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Then, ṽi,n = ṽi solves
−ṽ′′i = (λi − gi(ṽ

2
j ))ṽi

in (0, δν−1/2), 0 ≤ ṽi ≤ 1 and ṽi(0) = 1. Also λi − gi(ṽ
2
j ) is uniformly bounded in [0, δν−1/2], by

Lemmas 2.4 and 6.4. Since both ṽi and ṽ
′′
i are uniformly bounded on compact sets, we deduce

that also ṽ′i is bounded, and there exists V ∈ C1([0,+∞)) such that vi → V in C1([a, b]), for
every [a, b] ⊂ [0,+∞).

We claim that, if V > 0 in [a′, b′] ⊂ (0,+∞), then ṽj → 0 uniformly in [a′, b′]. Indeed, let
(a, b) ⊃ [a′, b′] be such that V ≥ η > 0 in (a, b). We deduce that, in such interval,

−ṽ′′j = (λj − gj(v
2
i (z)ṽ

2
i ))ṽj ≤

(
λj − C−1

g v2i (z)
1

2
V 2
i

)
ṽj ≤ −C2v2i (z)ṽj ,

where C > 0 depends on η and Cg. Lemma 6.5 applies, yielding

0 ≤ ṽj ≤ C1e
−C2vi(z) → 0 in [a′, b′],

as C2 > 0 and vi(z) → +∞.
Now, let λi → Λ ≥ 0. We can pass to the limit in the equation of ṽi, deducing that





V ∈ C1([0,+∞)), 0 ≤ V ≤ 1,

V > 0 =⇒ −V ′′ = ΛV

V (0) = 1.

Let [0, a), a ≤ +∞, be the maximal interval containing 0 in which V > 0. If a < +∞, by
convexity we obtain that V (a) = 0 and V ′(a) < 0, a contradiction since V (x) must be non
negative also for x > a. Therefore a = +∞ and V is a bounded, concave function on R

+, i.e.
V ≡ 1 and Λ = 0.

End of the proof of Theorem 1.7. Taking into account Corollary 2.5, the last part of the theorem
follows from Lemmas 6.3 and 6.7.

7 Further properties of the first branch

To conclude, we complete the analysis started in Section 6 by restricting our attention to the
first bifurcation branch C1. Since k = 1, such branch consists of monotone solutions, and for
concreteness we assume that the sequence we are considering is such that v1,n is decreasing and
v2,n is increasing (and νn → 0 as n → ∞). As before, we will omit the subscript n, when no
confusion arises. We denote by ξ1,n, ξ2,n ∈ (0, 1) the unique inflection points of the considered
pair:

−v′1,n(ξ1,n) = max
[0,1]

|v′1,n(x)|, v′2,n(ξ2,n) = max
[0,1]

|v′2,n(x)|.

A number of (rather elementary) a priori estimates can be deduced from the monotonicity of the
components. We collect them in the following three lemmas.
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Lemma 7.1. The following inequalities hold

v21(x) ≤
1

x
∀x > 0, v22(x) ≤

1

1− x
∀x < 1, (19)

ξ1[v
2
1(0) + v1(0)v1(ξ1) + v21(ξ1)] ≤ 3, (20)

(1 − ξ2)[v
2
2(1) + v2(1)v2(ξ2) + v22(ξ2)] ≤ 3, (21)

|v′1(x)|(x − x0) ≤ x
−1/2
0 ∀x0 ≥ ξ1, x ∈ [x0, 1], (22)

|v′2(x)|(x0 − x) ≤ (1− x0)
−1/2 ∀x0 ≤ ξ2, x ∈ [0, x0]. (23)

Proof. Estimates (19) follow by the L2 constraint:

1 ≥
∫ x

0

v21 ≥ x v21(x), 1 ≥
∫ 1

x

v22 ≥ (1− x)v22(x).

For the other estimates, it is crucial to observe that λ1 − g1(v
2
2(ξ1)) = 0, as v′′1 (ξ1) = 0 (ξ1 is a

point in (0, 1) where v′1 achieves its minimum). The function λ1 − g1(v
2
2) is decreasing, so by the

equation for v1 in (1) we deduce that v1 is concave on [0, ξ1] and convex on [ξ1, 1].
Concavity implies that

v1(x) ≥ v1(0) + ξ−1
1 (v1(ξ1)− v1(0))x

in [0, ξ1]. By invoking the L2 constraint of v1 and integrating,

1 ≥
∫ ξ1

0

v21(x)dx ≥ ξ1
3
[v21(0) + v1(0)v1(ξ1) + v21(ξ1)],

and (20) follows. Similarly, concavity of v2 on [ξ2, 1] produces (21).
By convexity of v1 on [x0, 1], and (19),

−v′1(x)(x − x0) ≤ −v′1(x)(x − x0) + v1(x) ≤ v1(x0) ≤ x
−1/2
0 ,

for all x ∈ [x0, 1], and we have (22). Similarly, (23) follows by concavity of v2 on [0, x0].

Lemma 7.2. Suppose that ‖v1,n‖∞ ≤ C1. Then,

v21,n(x) ≥
1

2
in [0, a1], (24)

where a1 = a1(C1). Similarly, if ‖v2,n‖∞ ≤ C2,

v22,n(x) ≥
1

2
in [a2, 1], (25)

where a2 = a2(C2).

Proof. In view of the L2 constraint on v1 and its monotonicity we have that

1 =

∫ x

0

v21 +

∫ 1

x

v21 ≤ x v21(0) + (1 − x)v21(x)

for all x ∈ [0, 1]. Therefore, if a1 = (2C2
1 − 1)−1,

v21(a1) ≥
1− a1v

2
1(0)

1− a1
≥ 1− a1C

2
1

1− a1
=

1

2
.

The assertion for v1 follows. The estimate (25) for v2 is analogous.
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Lemma 7.3. For both i it holds

|v2i,n(0)− v2i,n(1)| ≤ 2
λi,n
ν
, (26)

ν‖v′i,n‖2∞ ≤ λi,n‖vi,n‖2∞. (27)

Proof. We will prove the assertion when i = 1, the argument is analogous when i = 2. Multiply-
ing the equation for v1 by v1 and integrating on [0, x] yields

−νv′1(x)v1(x) + ν

∫ x

0

(v′1)
2 =

∫ x

0

(λ1 − g1)v
2
1 ,

thus
−ν
2
(v21)

′(x) = −νv′1(x)v1(x) ≤ λ1.

By integrating again on [0, 1] we obtain (26).
On the other hand, testing the equation for v1 by v′1 and integrating on [0, ξ1] we obtain

ν

2
v′1(ξ1)

2 =
λ1
2
v1(0)

2 +

∫ ξ1

0

g1v1v
′
1,

and (27) follows since v′1 ≤ 0 in [0, 1].

After the above preliminary estimates, the first part of our analysis is devoted to show that
C1 enjoys uniform L∞ bounds as ν → 0. To this aim we need two preliminary lemmas.

Lemma 7.4. Suppose that, for some i, ‖vi,n‖∞ ≤ C and λj,n → 0. Then, there exists C′ > 0
that does not depend on n such that

λi,n ≤ C′νn.

Proof. We will detail the proof in the case i = 1. Note that

g2(v
2
1(x)) − λ2 ≥ g2(1/2)− λ2 ≥ C−1

g /2− λ2 ≥ C−1
g /4 in [0, a1]

by the monotonicity of g2, (24), (2) and λ2 → 0. Hence,

−v′′2 = −g2(v
2
1)− λ2
ν

v2 ≤ C−1
g

4ν
v2

in (0, a1), and Lemma 6.5 (or better Remark 6.6) allows to conclude that

v2(x) ≤ 2v2(a1)e
−C/

√
ν in [0, a1/2], (28)

for some C = C(a1, C
−1
g ) > 0.

Recalling Definition 1.1, we choose w(x) :=
√

4
a1

cos
(

π
a1
x
)
for x ∈ [0, a1/2] and w ≡ 0 in

[a1/2, 1] to conclude that, for some C′ > 0,

λ1 ≤
∫ a1/2

0

ν(w′)2 + g1(v
2
2)w

2 ≤ νπ

a1
+ g1

(
4v22(a1)e

−2C/
√
ν
)
≤ νπ

a1
+

4Cge
−2C/

√
ν

1− a1
≤ C′ν,

by (2), (28) and (19).
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Lemma 7.5. Suppose that, for some i, ‖vi,n‖∞ → +∞. Then,

ν‖v′i,n‖2∞ ≤ Cλj,n

for some C > 0 that does not depend on n.

Proof. We will detail the proof in the case i = 1, thus assuming

v1(0) → +∞.

Note that |v′2| ≤ c2 in [0, 1/2] for some c2 > 0. Indeed, if v2 is bounded then Lemma 6.7 and
Lemma 7.4 imply that λ2 ≤ C′

2ν for some C′
2 > 0, and by (27) it follows that ‖v′2‖2∞ ≤ C′

2‖v2‖2∞.
On the other hand, if v2(1) is unbounded, then ξ2 → 1 (see (21)), and then we have the required
bound by (23) (choose, for example, x0 = 3/4).

We now integrate the equation for v2 on [ξ1, 1/2], use (2) and
∫
v22 = 1 to obtain

C−1
g

∫ 1/2

ξ1

v21v2 ≤
∫ 1/2

ξ1

g2(v
2
1)v2 = λ2

∫ 1/2

ξ1

v2 + ν(v′2(1/2)− v′2(ξ1)) ≤ λ2 + 2c2ν (29)

Let T 1 be the function

T 1(x) = ν(v′1(x))
2 + [λ1 − g1(v

2
2(x))]v

2
1(x) + 2

∫ x

1/2

g′1(v
2
2(σ))v

′
2(σ)v2(σ)v

2
1(σ)dσ.

T 1 is easily verified to be constant in [0, 1]. Since λ1−g1(v22(x)) is decreasing and λ1−g1(v22(ξ1)) =
0, λ1 − g1(v

2
2(1/2)) ≤ 0, as ξ1 ≤ 1/2 (ξ1 → 0 because v1(0) → +∞). Hence,

ν(v′1(ξ1))
2 + 2

∫ ξ1

1/2

g′1(v
2
2)v

′
2v2v

2
1dσ = T 1(ξ1)

= T 1(1/2) = ν(v′1(1/2))
2 + [λ1 − g1(v

2
2(1/2))]v

2
1(1/2)

and

ν‖v′1‖2∞ = ν(v′1(ξ1))
2 ≤ ν(v′1(1/2))

2 + 2

∫ 1/2

ξ1

g′1(v
2
2)v

′
2v

2
1v2dσ ≤ C(ν + λ2).

The last bound comes from |v′2| ≤ c2, |v2| ≤ 1 + c2/2, (29) and |v′1| ≤ c1 in [1/2, 1] (use (22): v1
is unbounded and ξ1 → 0).

As already mentioned, the previous results allow to obtain uniform bounds for the sequence
we are considering.

Lemma 7.6. There exists C∞ > 0, that does not depend on n, such that

‖vi,n‖∞ ≤ C∞, i = 1, 2.

Proof. Without loss of generality, we can assume by contradiction that

v1(0) → ∞, and λ2 ≤ λ1.

Indeed, if both v1(0) and v2(1) are unbounded, such condition can be guaranteed by interchanging
the role of v1 and v2. Otherwise, suppose that, say, v1(0) → ∞ and v2 is bounded: by Lemmas
6.7 and 7.4 there exists C > 0 such that λ2 ≤ Cν, while λ1/ν → ∞ (otherwise v1 would be
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bounded in view of (26)). Therefore, λ2 ≤ λ1 whenever ν is sufficiently small and we infer, by
Lemma 7.5, the existence of C > 0 such that

‖v′1‖∞ ≤ C

√
λ1
ν
. (30)

We proceed as in the proof of Lemma 6.7, by defining the blow-up sequences

ṽ1(x) :=
1

v1(0)
v1

(
x

√
ν

λ1

)
, ṽ2(x) := v2

(
x

√
ν

λ1

)
,

Note that 0 ≤ ṽ1 ≤ 1 in [0, λ
1/2
1 ν−1/2], and that ṽi(0) = 1. Since, in such interval,

|ṽ′1(x)| =
1

v1(0)

√
ν

λ1

∣∣∣∣v
′
1

(
x

√
ν

λ1

)∣∣∣∣ ≤
C

v1(0)
→ 0

(we used (30)), we deduce that ṽ1 → V ≡ 1, uniformly in every [a, b] ⊂ [0,+∞). As a conse-
quence, in any such interval,

−ṽ′′2 =

(
λ2
λ1

− g2(v1(0)ṽ
2
1)

λ1

)
ṽ2 ≤

(
1−

C−1
g

2λ1
v21(0)

)
ṽ2 ≤ −C2 v

2
1(0)

λ1
ṽ2,

with C > 0, and Remark 6.6 applies, yielding

ṽ2(x) ≤ ṽ2(b+ 1)e−Cv1(0)/
√
λ1 ≤ 2e−Cv1(0)/

√
λ1 for x ∈ [0, b],

for ν sufficiently small (recall (19)). Then

g1(ṽ
2
2)

λ1
≤ C1e

−C2v1(0)/
√
λ1

λ1
≤ C3

v21(0)
→ 0,

and we can plug such estimate in the equation for ṽ1

−ṽ′′1 =

(
1− g1(ṽ

2
2)

λ1

)
ṽ1,

in order to pass to the limit and obtain

−V ′′ = V in (0,+∞),

in contradiction with the fact that V ≡ 1.

Uniform L∞ bounds readily provide Lipschitz ones, thus yielding convergence to some limiting
profiles.

Proposition 7.7. There exists C′
∞ > 0, not depending on n, such that

‖v′i,n‖∞ ≤ C′
∞ i = 1, 2.

As a consequence, up to subsequences,

vi,n → Vi in C
0,α([0, 1]), with

∫ 1

0

V 2
1 =

∫ 1

0

V 2
2 = 1 and V1 · V2 ≡ 0 in [0, 1], (31)

and
λi,n
νn

→ ℓi > 0, (32)

as n→ +∞.
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Proof. Lemma 7.6 guarantees the uniform L∞ bound for v1, v2, hence λ1, λ2 → 0 by Lemma 6.3.
As a consequence we can apply Lemma 7.4, for both i, obtaining that there exists C′

i > 0 that
does not depend on ν such that

λi ≤ C′
iν.

This implies that both ν‖v′i‖2∞ ≤ νC′
i‖v1‖2∞, by (27), and, up to subsequences, both vi → Vi

in C0.α and λi/ν → ℓi ≥ 0. Since uniform convergence implies L2-one, the required properties
for the limiting profiles Vi follow (recall Corollary 2.5), and the only thing that remains to be
proved is that both ℓi > 0.

Assume by contradiction that, for instance, ℓ1 = 0. Then we can use equation (26) to infer
that V1 ≡ 1, in contradiction with (31).

Remark 7.8. Once we know that vi,n → Vi uniformly, the strong H1 convergence follows by
standard arguments. Indeed, integrating the equations we have

0 ≤ 1

ν

∫ 1

0

gi(v
2
j,n)vi,n dx =

λi,n
ν

∫ 1

0

vi,n dx ≤ C;

therefore, testing with vi,n − Vi we infer

∫ 1

0

v′i,n(v
′
i,n − V ′

i ) dx ≤ max
[0,1]

|vi,n − Vi| ·
1

ν

∫ 1

0

(λi,n + gi(v
2
j,n))vi,n dx→ 0.

As a consequence, weak H1 convergence implies convergence in norm, and finally strong H1 one.

The remaining part of the section will be devoted to fully characterize the limits Vi, ℓi. To
this aim, we need a sharper analysis of the convergence of vi,n.

Lemma 7.9. Suppose that, as n → +∞, v1,n(yn) ≥ cν
1/2−ǫ
n for some yn ∈ [0, 1), c > 0,

0 < ǫ ≤ 1/2. Then there exists c1 > 0 such that

v2,n(x) ≤ 2v2,n(yn)e
−c1(yn−x)ν−ǫ

n in [0, yn].

Proof. By the monotonicity of v1, (2) and (32),

g2(v
2
1(x)) − λ2 ≥ C−1

g v21(x)− λ2 ≥ C−1
g c2

2
ν1−2ǫ in [0, y]

as ν → 0. Hence,

−v′′2 = −g2(v
2
1)− λ2
ν

v2 ≤ −C
−1
g c2

2
ν−2ǫ v2

in (0, y), and we can conclude using Remark 6.6.

Remark 7.10. A direct consequence of the previous lemma, which will be used thoroughly in the
sequel, is that if lim infν→0 v1(y) > 0 for some y ∈ [0, 1), then there exists c2 > 0, y < b < 1
(that does not depend on ν) such that

v2(x) ≤ C∞e
− c2√

ν in [0, b]. (33)

Indeed, the assumption guarantees that v1(y) ≥ 2c > 0 for some c > 0, so, by Proposition 7.7,
v1(y

′) ≥ c for some y′ > y. Hence,

v2(x) ≤ C∞e
−c1(y

′−x)ν−1/2

in [0, y′],
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that implies (33) if we choose y < b < y′, and c2 = c2(c1, b, y, y
′) > 0.

Note that v1(0) ≥ 1 for all ν (otherwise the mass constraint
∫ 1

0 v
2
1dx = 1 would be violated),

thus
v2(0) ≤ C∞e

−c2ν
−1/2

= o(νa) for all a > 0. (34)

for some c2 > 0.
Analogous conclusions hold if v1 and v2 are interchanged.

Lemma 7.11. The limit Vi, ℓi satisfy, in [0, 1],

V1(x) =
2√
π

4

√
ℓ1 cos

(√
ℓ1x
)
· χ[

0, π

2

√
ℓ1

](x), (35)

V2(x) =
2√
π

4

√
ℓ2 cos

(√
ℓ2 (x− 1)

)
· χ[

1− π

2

√
ℓ2

,1

](x). (36)

Moreover, as n→ +∞,

ξ1,n → π

2
√
ℓ1
, ξ2,n → 1− π

2
√
ℓ2
. (37)

Proof. Let x1 > 0 be such that [0, x1) = {x : V1(x) > 0} (V1 is identically zero in [x1, 1]). If

y < x1, v1(y) is bounded away from zero, uniformly with respect to ν, hence v2(x) ≤ C∞e
− c2√

ν

in [0, y] by (33). Therefore, g1(v
2
2) = o(ν) uniformly in [0, y], that is

λ1 − g1(v
2
2)

ν
= o(1)

uniformly on compact subsets of [0, x1). Hence, we might pass to the limit (weakly) into the
equation for v1: let ϕ be a smooth test function, with support laying in [0, x1). The equation
reads ∫ x1

0

v′1ϕ
′dx =

∫ x1

0

λ1 − g1(v
2
2(x))

ν
v1ϕdx,

and passing to the limit (Proposition 7.7 ensures weak convergence in H1((0, 1)) of vi to Vi),

−V ′′
1 = ℓ1V1 in (0, x1),

V ′
1(0) = 0 and V1(x1) = 0. Thus, being V1 positive, it has to be of the formA cos

(√
ℓ1x
)
in (0, x1),

for some A > 0. This forces x1 = π/(2
√
ℓ1). Moreover,

∫ 1

0 V
2
1 = 1, since by uniform convergence

the L2-constraint passes to the limit, and A must satisfy A = 2√
π

4
√
ℓ1. The characterization of

V2 is analogous.

As for the second assertion, we argue that v1(ξ1) → 0. If not, v2(ξ1) ≤ C∞e
− c2√

ν = o(ν1/2)
by (33), that is not compatible with g1(v

2
2(ξ1)) = λ1 ≥ c1ν. Hence, lim ξ1 ≥ x1. Suppose that

lim ξ1 > x1; note that v1 is concave on (0, ξ1), so v1(x) ≥ v1(0) + (v1(ξ1) − v1(0))x/ξ1 in [0, ξ1].
We infer

lim v1(x1) ≥ v1(0)

(
1− lim

x1
ξ1

)
> 0,

which contradicts v1(x1) → V1(x1) = 0. Then, ξ1 → x1 = π/(2
√
ℓ1).

Lemma 7.12. For all a > 2 it holds true that
∫ 1

0

vai,nv
2
j,n dx = o(νn), as n→ +∞.
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Proof. The assertion will be proved for i = 1, the other case being completely analogous. Let us
define y ∈ (0, 1) as the unique point such that

v1(y) = ν1/6.

The point y is well defined and bounded away from zero because v1 is uniformly strictly positive
in a neighborhood of x = 0 and v1(1) = o(ν) (by (34) for v1). By Lemma 7.9 we also have

v2(x) ≤ Ce−c1(y−x)ν−1/3

in [0, y]. We split the interval [0, 1] into two subintervals, and exploit
‖vi‖∞ ≤ C∞.

In [0, y − ν1/6], by monotonicity we have v2(x) ≤ Ce−c1ν
−1/6

and

∫ y−ν1/6

0

va1v
2
2 dx ≤ Ce−2c1ν

−1/6

= o(ν).

In [y − ν1/6, 1], recalling that
∫ 1

0
v21v

2
2 ≤ C−1

g λ1 ≤ Cν by (2) and (32), we obtain

∫ 1

y−ν1/6

va1v
2
2dx ≤ va−2

1

(
y − ν1/6

)
·
∫ 1

0

v21v
2
2 ≤ va−2

1

(
y − ν1/6

)
· Cν = o(ν),

as v1
(
y − ν1/6

)
goes to zero (recall that v1 converges uniformly, and that v1(y) → 0).

The last part of our analysis focuses on the “interface” between v1 and v2, namely we are
going to consider the point xm = xm,n ∈ (0, 1) such that

mn = v1(xm,n) = v2(xm,n).

We follow ideas introduced in [5], to treat the one-dimensional variational case. Note that by
strict monotonicity of vi,n, xm,n ∈ (0, 1) is well-defined, and

mn → 0, xm,n → x0 ∈ (0, 1),

in view of (31) and the fact that v1,n and v2,n are bounded away from zero in neighborhoods of
x = 0 and x = 1 respectively (see Lemma 7.2).

In what follows, we will write

gi(s) = γis+ hi(s), for all s ≥ 0,

where γi = g′i(0) > 0, hi(0) = 0, h′i(0) = 0.

Remark 7.13. The functions hi have to be considered as “lower order terms” in the vanishing
viscosity limit, and we will usually Taylor expand them around s = 0, namely

hi(v
2
j (x)) = ai(x)v

4
j (x), h′i(v

2
j ) = bi(x)v

2
j (x),

where |ai(x)|, |bi(x)| ≤ C for some universal constant C > 0 (depending on g′′).

The “joint energy” is going to be crucial in our analysis:

T (x) :=
1

γ1

[
ν(v′1(x))

2 + [λ1 − h1(v
2
2(x))]v

2
1(x) + 2

∫ x

xm

h′1(v
2
2(σ))v

′
2(σ)v2(σ)v

2
1(σ)dσ

]

+
1

γ2

[
ν(v′2(x))

2 + [λ2 − h2(v
2
1(x))]v

2
2(x)− 2

∫ xm

x

h′2(v
2
1(σ))v

′
1(σ)v1(σ)v

2
2(σ)dσ

]

− v21(x)v
2
2(x).

Of course, along any pair (v1,n, v2,n), Tn(x) = T (x) is constant (indeed T ′
n(x) ≡ 0).
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Lemma 7.14. It holds

λ1,n
γ1

v21,n(0) + o(νn) = Tn =
λ2,n
γ2

v22,n(1) + o(νn), (38)

as n→ +∞.

Proof. Note firstly that
∣∣∣∣
∫ x

xm

h′i(v
2
j )v

′
jvjv

2
i dσ

∣∣∣∣ ≤
∫ 1

0

|biv′j |v3j v2i dσ ≤ C

∫ 1

0

v3j v
2
i = o(ν),

by Lemma 7.12 and Remark 7.13. Note also that v22(0) = o(ν) by (34).
Therefore, being v1 bounded by C∞,

T (0) =
λ1
γ1
v21(0)−

v21(0)

γ1
h1(v

2
2(0)) +

2

γ1

∫ 0

xm

h′1(v
2
2)v

′
2v2v

2
1dσ

+
λ2 − h2(v

2
1(0))

γ2
v22(0)−

2

γ2

∫ xm

0

h′2(v
2
1)v

′
1v1v

2
2dσ − v21(0)v

2
2(0) =

λ1
γ1
v21(0) + o(ν).

Similarly,

T (1) =
λ2
γ2
v22(1) + o(ν).

Lemma 7.15. It holds true that

lim sup
n→+∞

m4
n

νn
< +∞.

Proof. Arguing by contradiction,
m4

ν
→ ∞,

possibly along a subsequence. Let ṽi(x) :=
1
mvi

(
xm + x

√
ν

m

)
. Then, ṽi solves

−ṽ′′i =

(
λi
m2

− γiṽ
2
j −

hi(m
2ṽ2j )

m2

)
ṽi, in Iν =

(
−m

2

ν
xm, (1− xm)

m2

ν

)
.

Note that Iν tends to the whole real line as ν → 0 (xm is bounded away from x = 0 and x = 1,
and m2ν−1 → ∞), ṽi(0) = 1 and

|ṽi(y)− ṽi(0)| ≤ |y|‖v′i‖∞
√
ν

m2
→ 0, for all y ∈ [a, b] ⊂ Iν .

Thus, ṽi converges uniformly on compact subsets of Iν , as ‖v′i‖∞ is bounded by C′
∞. Moreover,

λim
−2 → 0 (by (32)) and hi(m

2ṽ2j )m
−2 → 0 uniformly on compact subsets of Iν (see Remark

(7.13)). Hence,
ṽi → 1, ṽ′i → 0 locally uniformly. (39)

We then have

∑

i=1,2

1

γi

[
(ṽ′i(0))

2 +

(
λi
m2

−
hi(m

2ṽ2j (0))

m2

)
ṽ2i (0)

]
− ṽ21(0)ṽ

2
2(0) =

T (xm)

m4
=

λ1
γ1m4

v21(0) + o(ν/m4) ≥ c1ν

γ1m4
v21(0) + o(ν/m4) ≥ 0 (40)

by (38) and (32) when ν is close enough to zero. On the other hand, the left hand side of (40)
goes to −1 as ν → 0 by (39), a contradiction.
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Lemma 7.16. As n→ +∞, there exists L > 0 such that

m4
n

νn
→ L. (41)

Moreover,
lim inf |v′i,n(xm,n)| > 0. (42)

Proof. Let us assume by contradiction that

m4

ν
→ 0.

Let ṽi(x) :=
1
mvi (xm +mx). Then, ṽi solves

−ṽ′′i =
m4

ν

(
λi
m2

− γiṽ
2
j −

hi(m
2ṽ2j )

m2

)
ṽi, in Iν =

(
−xm
m
,
1− xm
m

)
.

Note that Iν tends to the whole real line as ν → 0, ṽi(0) = 1 and ‖ṽ′i‖∞ = ‖v′i‖∞ ≤ C′
∞, so ṽi

converges uniformly on compact subsets of Iν . Moreover, λim
−2 → 0 and hi(m

2ṽ2j )m
−2 → 0

uniformly on compact subsets of Iν (as in the proof of the Lemma 7.15). Hence, ṽi →Wi locally
in C2(R), and W ′′

i = 0. Since Wi is positive we have

Wi ≡ 1 in R, i = 1, 2. (43)

Therefore,

∑

i=1,2

1

γi

[
(ṽ′i(0))

2 +
m4

ν

(
λi
m2

−
hi(m

2ṽ2j (0))

m2

)
ṽ2i (0)

]
− m4

ν
ṽ21(0)ṽ

2
2(0) =

T (xm)

ν
=

λ1
γ1ν

v21(0) + o(1) ≥ c1
γ1
v21(0) + o(1) > 0

by (38) and (32) when ν → 0. However, the left hand side of (40) goes to zero as ν → 0 by (43),
that is not possible. Hence, L > 0.

To prove (42) we proceed as before, setting ṽi(x) :=
1
mvi (xm +mx). We have that ṽi →Wi

locally in C2(R), and (W1,W2) solve

{
W ′′

1 = Lγ1W
2
2W1,

W ′′
2 = Lγ2W

2
1W2.

in R. W1 and W2 are also also positive and monotone, so W ′
i (0) 6= 0. We conclude by observing

that |v′i(xm)| = |ṽ′i(0)| → |W ′
i (0)| > 0.

Lemma 7.17. As n→ +∞, it holds true that

ξ1,n ≤ xm,n ≤ ξ2,n,

and
ξ1,n → x0, ξ2,n → x0. (44)
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Proof. Since ξ1 is the inflection point of v1 we have

C−1
g v22(ξ1) ≤ g1(v

2
2(ξ1)) = λ1 ≤ C′

1ν,

also by invoking (2) and (32). Hence, v2(ξ1) ≤
√
(CgC′

1)ν, but v2(xm) = m ∼ 4
√
Lν by (41), so

v2(ξ1) ≤ v2(xm) for ν sufficiently small. Monotonicity of v2 implies that ξ1 ≤ xm, while xm ≤ ξ2
is obtained by an analogous argument at the inflection point ξ2 of v2.

Suppose now that ξ2−ξ1 = 4η and η is uniformly bounded away from zero as ν → 0. Assume,
without loss of generality, that xm ∈ [ξ1, ξ1 + 2η] (on the other hand, if xm ∈ [ξ1 + 2η, ξ2] we
interchange the roles of v1 and v2). Note that ξ2 is the inflection point of v2, so v2 is convex on
(0, ξ2), which provides v2(x) ≥ v2(xm) + v′2(xm)(x− xm) for all x ∈ (0, ξ2). Therefore,

v2(ξ1 + 3η) ≥ v2(xm) + v′2(xm)(ξ1 + 3η − xm) ≥ c(ξ1 + 3η − xm) ≥ cη > 0,

for some positive c in view of (42). Now we reason as in Remark 7.10 (in particular we apply
(33) with v1 and v2 interchanged) to get

v1(ξ1 + 3η) ≤ C∞e
− c2√

ν = o(ν1/2),

but C−1
g v21(ξ2) ≥ g2(v

2
1(ξ2)) = λ2 ≥ c2ν (again by (2) and (32)), so v1(ξ2) ≥ v1(ξ1+3η) as ν → 0.

Being v1 decreasing, ξ2 ≤ ξ1 + 3η = ξ2 − η, which is impossible. Then, 0 ≤ ξ2 − ξ1 → 0 follows,
and the second assertion is proved as xm → x0.

Proof of Theorem 1.8. In view of Propositions 3.3, 7.7 and Remark 7.8, the theorem will follow
once we show that the following equalities hold:

ℓ2
ℓ1

=

(
γ2
γ1

)2/3

and x0 =
3
√
γ2

3
√
γ1 + 3

√
γ2
.

To this aim, we put together all the asymptotic information (as ν → 0) we obtained so far.
Firstly, πv21(0) ∼ 4

√
ℓ1 and πv22(1) ∼ 4

√
ℓ2 by (35) and (36). Hence, if we divide (38) by ν we

obtain
ℓ1
√
ℓ1

γ1
=
ℓ2
√
ℓ2

γ2
, (45)

which is the first stated equality. Then, x0 = π
2
√
ℓ1

by (37) and (44). Moreover,

π

2
√
ℓ1

+
π

2
√
ℓ2

= 1.

By plugging (45) in the last equality we conclude.
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