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Abstract 

Assembly-level geometric errors such as backlash, center distance errors and shaft misalignments may 

adversely affect the operation of a gear train. The tolerance analysis method proposed in the paper estimates 

these errors from tolerance specifications on gears and mounting parts (shafts, bearings, housings). The 

problem is solved by analogy with an equivalent problem of force analysis: on a properly defined structure, 

external forces correspond to the assembly-level error, and calculated internal forces and support reactions 

provide the sensitivities of part tolerances on the total error. Previously developed for generic assemblies, the 

approach proves especially simple for gear systems compared to existing methods of tolerance analysis, as it 

relies upon structural analysis procedures that are customary in mechanical design. The method based on 

static analogy includes a two-level classification of geometric errors, which helps overcome the complexity 

of tolerance analysis problems for gearings. Two examples of gear trains of different types and 

configurations are presented to demonstrate the calculation procedure and verify its correctness by 

comparison with geometric considerations. 
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1 Introduction 

Any mechanical device has to meet functional requirements, i.e. precision-related conditions for 

assemblability, durability and operational performance. A requirement is associated with a geometric key 

characteristic involving different parts of the assembly; its variation cannot be inspected during the 

manufacturing process, as it results from the stackup of tolerances on individual parts. Tolerance analysis 

estimates the errors on a functional requirement from the deviations allowed on part features, defined as 

either worst-case limits or statistical distributions. Several methods, reviewed in [1, 2, 3], are available for 

this task under different sets of assumptions. 

Mechanisms involve special difficulties in tolerance analysis. They tend to have many parts in mutual 

contact along different directions, and their degrees of freedom can cause displacements of contact points 

due to internal forces. As a result, functional requirements and part dimensions are not usually related by 

simple mathematical equations. This paper deals with gear trains, which raise all the above issues and may 

come in widely different configurations, even if based on similar part types (gears, shafts, bearings, 

housings) and on a typical functional scheme (transmission of rotary motion between two end shafts). 

Tolerance specifications on gears are discussed in specialized technical literature, e.g. [4]. The importance of 

functional requirements such as backlash and transmission error is pointed out for applications in instruments 

and control systems. Traditionally, the errors on these characteristics were almost exclusively measured 

through direct procedures based on master gears [5]. More recently, coordinate measuring machines have 

allowed an easier inspection of the active surfaces of gear teeth [6, 7], giving an impulse to the evolution of 

geometric specifications and related standards [8, 9, 10]. Therefore, there is a growing need for 

computational methods for estimating the variation of functional requirements from specified tolerances. 

On a meshing pair, geometric errors influence the actual contact conditions between gear teeth causing 

deviations from correct kinematic and static behavior. Tooth contact analysis simulates such effects from 



assumptions or measured data on tooth geometry. Initially, a differential-geometry model was built on 

involute profile equations [11] and implemented as a simulation tool for estimating transmission error [12, 

13, 14]. The approach has been extended to different gear types [15, 16], and the discretization of tooth 

surfaces has allowed meshing simulation from either mathematically generated deviations [17] or point 

clouds collected from actual gears [18]. 

Tooth contact analysis has later been integrated into methods for the statistical analysis of geometric 

tolerances in accordance with international standards. In [19, 20, 21], a vectorial tolerancing model of 

geometric specifications is used to generate random error variables in the transformation matrices associated 

with tooth contacts, allowing a Monte Carlo simulation of transmission error. The concept of skin model 

shapes is adopted in [22, 23, 24], where deviations from nominal tooth profile are generated by random 

fields on discretized geometric models of the gears; interference detection algorithms on such models allow 

us to simulate gear meshing and estimate transmission error, with validation through measured data. A 

related topic is the evaluation of the dynamic effects of geometric errors, carried out by different methods in 

[25, 26, 27, 28]. 

When dealing with gear trains, simulating all meshes may become impractical, while additional error sources 

are to be considered, such as the eccentricities of mounting surfaces on gears and other parts of the 

transmission. An early procedure for the analysis of backlash and transmission error for spur gears was 

proposed in [5]: for each tolerance type, e.g. diameter, runout or profile, an individual contribution to the 

total error is calculated by equations deriving from geometric considerations; the contributions are then 

linearly combined with both worst-case and statistical approaches. In [29], functional errors are similarly 

estimated by solving linear systems of equations developed for different gear types. 

While the above methods associate a fixed contribution to each type of tolerance, the layout of the gear train 

may influence the impact of geometric errors; for example, the same position error on a support bore may 

cause different mesh eccentricities depending on how far the support is located from gears and other 

supports. Such effects could be better captured by existing methods for the tolerance analysis of other types 

of mechanisms. The direct linearization method has first been developed for generic assemblies [30, 31], 

then adapted to mechanisms [32], and recently extended to deal with overconstraining and part compliance 

[33, 34]. Other methods express part relations by explicit equations, which lead to Monte Carlo simulation of 

assembly errors [35, 36] or to probabilities of violating correct operational conditions [37, 38]. 

The specific geometry and working principle of gearings might call for an alternative approach, referred to as 

kinematic tolerance analysis, where errors on key characteristics of mechanisms (e.g. drive ratio, backlash, 

and jerk) are calculated with the help of known procedures of kinematic analysis. Early methods were based 

on Monte Carlo simulation [39, 40, 41]; formulations with improved efficiency have later been developed 

based on the concept of configuration space [42, 43, 44]. An application of this approach to a gear 

mechanism is reported in [45] without details on mesh kinematics. Further methods have been proposed for 

robotic manipulators, where joint clearances create additional difficulties to the analysis of kinematic errors. 

These are treated by defining additional entities (virtual links) in existing models including the vector loop 

[46], Denavit-Hartenberg equations [25, 47, 48], and the screw theory [49, 50, 51, 52]. 

In this paper, the tolerance analysis of gear trains will be carried out by a method based on an analogy with 

force analysis problems. The potential advantage of this approach is the opportunity of doing tolerance 

calculations by using known procedures of statics as well as computer-aided tools for structural analysis. The 

static analogy has been proposed in [53] as an application of the principle of virtual work of rigid bodies, and 

later applied to mechanisms and exactly constrained assemblies [54]. A few other approaches relying on 

statics are available in literature for the tolerance analysis of manipulators [55, 56, 57, 58, 59]. The links 

between tolerance analysis and statics have also been recognized for overconstrained and compliant 

assemblies, where stress analysis is needed to evaluate the deformations induced at assembly stage. In this 

context, the method of influence coefficients [60] is praised to allow an especially efficient use of finite-

element solvers, which reduces or completely avoids the need for Monte Carlo simulation. 



In principle, the static analogy is applicable to any type of assembly after a careful definition of the static 

model equivalent to the specific tolerance analysis problem. For gear trains, such task is more difficult due to 

the high number and diversity of part features that are related to the functional requirements of interest. The 

need to simplify the static model as much as possible has led to an original approach based on a hierarchy of 

geometric errors. A first level defines composite errors at significant sections of the gear train, which are 

evaluated by analogy with simple beam systems. The second level breaks down each composite error as the 

sum of errors on coaxial part features located at the same section. The approach has been developed into an 

original method of tolerance analysis for gear trains, which is the main contribution of the present work. 

Section 2 recalls the static analogy for generic mechanical assemblies. Section 3 describes the proposed 

method for gear trains, which is demonstrated on a basic example in Section 4. Calculation results are 

presented in Section 5, and further application details are illustrated in Section 6. The conclusions in section 

7 discuss the potential of the method. 

2 Static analogy  

Tolerance analysis estimates the error y on a functional requirement y from the errors xi on n dimensions xi 

of part features that are thought to influence it. Errors are usually much smaller than dimensions, so their 

stackup is approximately linear: 
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In cases of realistic complexity, an explicit equation y = f(x1, …, xn) is unavailable and the sensitivities si 

have to be evaluated from part geometry and assembly relations. This is done differently by existing methods 

in literature. In the method based on static analogy [53, 54], the requirement y is associated with a force F, 

which is applied as an external load to the assembly. After solving this static model, regarded as equivalent 

to the tolerance analysis problem, the sensitivities are calculated as 

F
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where Fi is a support reaction or an internal force, properly chosen in association with xi. A justification of 

this result has been proposed by considering errors xi and y as virtual displacements of the points where Fi 

and F act, then noting that the error stackup model corresponds to the equality of the virtual works of internal 

and external forces, which is an equilibrium condition for the system. 

In previous papers [53, 54], the static analogy was applied to several examples of assemblies and 

mechanisms, in order to clarify how the static model can be built in different cases. The main choices are 

summarized below: 

• The load F is defined according to the type of requirement to be analyzed. If the requirement is a 

linear (angular) distance between two features, the load includes two opposing forces (torques) 

acting on the two features in the same direction of the distance (angle). 

• The reactions or internal forces Fi are associated to the different part features according to few basic 

rules. A distance corresponds to a normal force between two points or planes (positive if tensile, 

negative if compressive). An angular position correspond to a bending moment (positive or negative 

with the same convention of the angle). A radius corresponds to a sum of radial forces acting on the 

circle (positive if directed outwards, negative if directed inwards). In a cylindrical fit, the diameters 

of the two features correspond to half the contact force (positive for the hole, negative for the shaft). 

In [53], the correctness of the static analogy was verified on simple examples by comparison with geometric 

reasoning, graphic procedures, and the direct linearization method [30] widely used in tolerance analysis. 

Even without a full validation, it is expected that in general cases the static analogy would provide roughly 

the same results as existing methods. Compared to these, a possible advantage is the use of well-established 



calculation procedures such as the force analysis of free body diagrams, reducing the need for special types 

of abstract models (such as the vector loop in the cited method). 

3 Main approach 

The proposed method analyzes the variation on given functional requirements for a gear train. The paper 

mainly deals with compound gear trains consisting of spur or helical gears; with minor extensions, however, 

the same calculation procedures are applicable to bevel gears or planetary gear trains. The functional errors 

usually considered for gear trains include: 

• linear and angular misalignments between end shafts (Fig. 1a); 

• deviations on nominal center distances of meshing gears (fig. 1b); 

• angular backlash at the output shaft (fig. 1c). 

These errors are assumed to depend only on the manufacturing errors on part features, without considering 

additional variation sources such as thermal expansion and deflections due to operating loads. Angular 

mounting positions of meshing gears are assumed to be random without any runout-compensating 

adjustment. 

 
Fig. 1: Types of functional requirements: a) shaft alignment, b) center distance, c) backlash 

3.1 Data 

A gear train generally includes gears, shafts, bearings and housings. All types of parts have an influence on 

functional errors, along with possible other ones (keys, seals, etc.) that will not be considered in this work. 

Some part dimensions are needed for the analysis; these include the pitch diameters of the gears, and the 

axial positions of the sections where the gears and the bearings are mounted on the shafts. 

The tolerances specified on the parts of the gear train must also be collected for the analysis. In general, the 

features of interest include external cylinders (shaft journals, bearing outer rings), and internal cylinders 

(gear bores, bearing inner rings, housing bores). Each feature is assumed to have a diameter tolerance and a 

positional tolerance with respect to given datum features (bores of gears and bearings, journal pairs of shafts, 

external mating features of the housing). The gears are assumed to have no profile shifting and to be 

toleranced on pitch circle runout, tooth thickness and tooth profile. 

The above tolerances can be classified into four types: 

• diameter tolerances on journals and bores: as a general notation, the error  on an outside diameter is 

limited by a tolerance Td (−Td/2    Td/2), while the error  on an inside diameter is limited by a 

tolerance TD (−TD/2    TD/2); 

• positional tolerances on journals and bores and on the pitch circles of gears; the radial displacement  
of the axis of a cylindrical feature is limited by a tolerance Te (−Te/2    Te/2); 

• tooth thickness tolerances (−Tt/2    Tt/2); 

• tooth profile tolerances, defined along the pitch circle arc (−TE/2    TE/2). 

The positional tolerances may control different characteristics depending on whether the feature is a toothed 

surface (pitch circle runout), a journal (coaxiality to other journals), a bore (coaxiality and center distance), 



or a bearing outer ring (radial play and coaxiality to the inner ring). Each error is assumed to be normally 

distributed with zero mean and standard deviation  in a fixed relationship with the tolerance, e.g. T = 3. 

3.2 Static model and composite errors 

According to the static analogy, a problem of tolerance analysis requires the solution of an equivalent 

problem of force analysis. In a gear train, forces are decomposed into radial, tangential, and axial 

components. Each type of force component will provide the sensitivities of different types of tolerances: 

• radial forces correspond to diameter and positional tolerances, which cause radial eccentricities; 

• tangential forces correspond to tooth thickness and profile tolerances, which cause displacements 

along the pitch circle arcs of gears; 

• axial forces correspond to positional tolerances of axial features (e.g. shaft sleeves), which cause 

axial displacements that may be relevant for helical or bevel gears. 

A gear train has to be described by a static model, i.e. a simplified representation suitable to force analysis. 

For general assemblies, the static model is a system of rigid parts connected through mating features; the 

difficulty of static calculations depends on the degree of constraining and on the types of mating relations. If 

correctly designed and operated, a gear train is statically determinate due to the clearances between meshing 

teeth. Moreover, the free-body diagrams for gears and bearings of a gear train share a typical configuration: 

these parts can be regarded as hollow cylinders subject to opposing radial forces, one directed inwards on the 

outer diameter, the other directed outwards on the inner diameter. Therefore, the minimum complexity for 

the static model for a gear train can be achieved by considering only the shafts as representative of the whole 

set of parts: these correspond to a skeletal structure of beams subject to bending (radial), twisting 

(tangential), and normal (axial) forces. The beams are loaded or supported at points corresponding to the 

mounting sections of gears and bearings. 

The above choice is equivalent to clustering the errors of all the parts at the same section i into a composite 

error ei, which is the displacement of the corresponding point of the structure. As the structure can deform 

along different directions (radial, axial, tangential), each section may be associated to multiple composite 

errors. Each composite error has a composite sensitivity si. 

3.3 Force analysis and breakdown of composite errors 

To analyze a functional requirement, the skeletal structure is loaded by a suitable force or torque. The 

support reactions are calculated for each beam by appropriate equilibrium equations in translation and 

rotation. As a result, each point of the structure is associated with a force (load or reaction); the composite 

sensitivity at the point results from dividing the force by the load intensity. 

Each composite error is related to the manufacturing errors on the part features located at the corresponding 

section. By extending the results already discussed for cylindrical fits, the sensitivity of a feature is 

calculated by multiplying the composite sensitivity by an appropriate factor depending on feature type: 

• 1/2 for inside diameters; 

• −1/2 for outside diameters and tooth thicknesses; 

• 1 for positional and profile errors. 

4 Reference case 

An example will now be presented to demonstrate the steps of the procedure, to check some results by 

geometric reasoning, and to highlight useful properties for handling different cases. 

4.1 Assembly layout and data 

The compound gear train in the schematic drawing of Fig. 2 includes four spur gears: pinion 1 integral to the 

input shaft, gears 2 and 3 mounted on intermediate shaft 5, and gear 4 mounted on output shaft 6. Bearing 



sets 7-8, 9-10 and 11-12 supporting the three shafts are fit to bores in housing 13; for demonstration 

purposes, different bearing arrangements have been chosen for the three shafts even if possibly non-optimal 

for rigidity and space saving. Some axial dimensions are defined at selected shaft sections (A, B,…, N); to 

simplify calculations, they are standardized into three types: length a of end journals on shafts, distance b 

between gears and bearings, and distance c between bearings. The gears have pitch circle radii r1, r2, r3 and 

r4, which satisfy the condition for a reverted gear train (r1 + r2 = r3 + r4). 

 
Fig. 2: Example of gear train 

Tab. 1 lists the geometric errors for which tolerances are specified on the parts of the gear train. These are 

named with reference to the parts (1, 2, … 13) and the shaft sections where they are located (A, B,…, N). 

Bearing inner rings and corresponding shaft journals are not included in the list because they are press-fit 

datum features, whose deviations do not create radial clearance or runout. 

4.2 Composite errors 

For the gear train in Fig. 2, the static model is a system of three beams corresponding to the input, 

intermediate and output shaft. Under the loads corresponding to the different functional requirements, the 

beams will be subjected to only radial forces (along direction X) and tangential forces (along direction Z); 

there will be no axial forces (along direction Y), as the assembly does not include helical or bevel gears.  

The radial forces will correspond to a first subset of composite errors (eA, eB, … eN), each related to the X 

coordinate of a different point of the structure. The tangential forces will correspond to a second subset of 

composite errors (e1, e2, e3, e4), each representing the deviation on the pitch point of a different gear along 

direction Z. This leads to the following set of composite sensitivities: 
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For each functional requirement, the composite sensitivities will be evaluated by force analysis of the static 

model under a suitable load. As a last step, the sensitivities of part features will be calculated from the 

composite sensitivities by applying the factors listed in Section 3. To help this task, Tab. 2 expresses each 

composite error as an algebraic sum of feature errors, so that the related factor could be readily calculated as 

a derivative. For example, the error on the bore diameter of gear 2 will have the following sensitivity: 
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Tab. 1: Geometric errors on the parts of the gear train 

Part Section Errors Description 

1 A 1A Shaft 1, end section: coaxiality to support journals 

 D 1D, 1D, 1D Shaft 1, pinion: coaxiality to support journals, tooth thickness and profile 

2 F 2F, 2F, 2F, 2F  Gear 2: bore diameter, pitch circle coaxiality to bore, tooth thickness and profile 

3 H 3H, 3H, 3H, 3H  Gear 3: bore diameter, pitch circle position, tooth thickness and profile 

4 L 4L, 4L, 4L, 2L Gear 4: bore diameter, pitch circle position, tooth thickness and profile 

5 F 5F, 5F Intermediate shaft 1, journal for gear 2: diameter and position 

 H 5H, 5H Intermediate shaft 2, journal for gear 3: diameter and position 

6 L 6L, 6L Output shaft 6, journal for gear 4: diameter and coaxiality to support journals 

 N 6N Output shaft 6, end section: coaxiality to support journals 

7 B 7B, 7B Bearing 7, outer ring: diameter and coaxiality to inner ring 

8 C 8C, 8C Bearing 8, outer ring: diameter and coaxiality to inner ring 

9 E 9E, 9E Bearing 9, outer ring: diameter and coaxiality to inner ring 

10 G 10G, 10G Bearing 10, outer ring: diameter and coaxiality to inner ring 

11 K 11K, 11K Bearing 11, outer ring: diameter and coaxiality to inner ring 

12 M 12M, 12M Bearing 12, outer ring: diameter and coaxiality to inner ring 

13 B 13B, 13B Housing 13, bore for bearing 7: diameter and position to datum reference frame 

 C 13C, 13C Housing 13, bore for bearing 8: diameter and position to datum reference frame 

 E 13E, 13E Housing 13, bore for bearing 9: diameter and position to datum reference frame 

 G 13G, 13G Housing 13, bore for bearing 10: diameter and position to datum reference frame 

 K 13K, 13K Housing 13, bore for bearing 11: diameter and position to datum reference frame 

 M 13M, 13M Housing 13, bore for bearing 12: diameter and position to datum reference frame 

 

Tab. 2: Composite errors  

Error Expression 

eA 1A 

eB − 7B/2 + 7B + 13B/2 + 13B 

eC − 8C/2 + 8C + 13C/2 + 13C 

eD 1D 

eE − 9E/2 + 9E + 13E/2 + 13E 

eF 2F + 2F/2 − 5F/2 + 5F 

eG − 10G/2 + 10G + 13G/2 + 13G 

eH 3H + 3H/2 − 5H/2 + 5H 

eK − 11K/2 + 11K + 13K/2 + 13K 

eL 4L + 4L/2 − 6L/2 + 6L 

eM − 12M/2 + 12M + 13M/2 + 13M 

eN 6N 

e1 − 1D/2 + 1D 

e2 − 2F/2 + 2F 

e3 − 3H/2 + 3H 

e4 − 4L/2 + 4L 

 



4.3 Analysis of static misalignment 

A first requirement to be controlled on the gear train is the alignment of the input and output shafts 

connected with external devices. In general cases, the position of each shaft may have to be separately 

controlled with respect to a common set of features on the housing, e.g. a mating plane and a centering bore. 

For the sake of simplicity, the relative position of the two shafts will be analyzed considering the two distinct 

requirements of translational and rotational alignment. 

The translational error is the radial displacement between points A and N. In the equivalent static model 

shown in Fig. 3a, two opposing forces F are applied to the two points along X. These have effects on two of 

the three beams, because gear meshes do not transmit shaft deflections due to radial tooth clearances. The 

support reactions are calculated by solving the static model. All the forces are then divided by F to get the 

composite sensitivities: 
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The sensitivities of the errors on part features can now be calculated by the expressions in Tab. 2. For 

example, the following sensitivities are found for the errors on the housing bore diameter in B (13B) and on 

the corresponding bearing outer-ring diameter (7B): 
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For a geometric check, it can be noted that both a larger bore on the housing and a smaller outer ring on the 

bearing in B involve an increased radial clearance between them. The input shaft is thus allowed a larger 

rotation angle about the other support in C, and its end journal in A moves further away from its nominal 

position. The absolute value of the two sensitivities comes from the radial clearance (half the diametral 

clearance) amplified by lever effect from B to A. 

 
Fig. 3: Force analysis for shaft misalignment: a) translational, b) rotational 

The rotational error is the angular displacement between A and N. In the static model of Fig. 3b, opposing 

torques M are applied to the two points. The support reactions are calculated and divided by M to get the 

following sensitivities: 
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The torques at A and N are also divided by M yielding unit sensitivities for the angular errors A and N at 

the two points. These errors are not directly toleranced, but their maximum values are related to the position 

errors by the following expressions: 

aeae
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This gives two additional sensitivities on the angular misalignment: 
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The sensitivities of part feature errors are calculated as explained for the translational error. The sensitivities 

of the same two errors considered above are 
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and can be immediately checked by geometric reasoning. 

4.4 Analysis of center distance errors 

The variation of the center distance of meshing gears must be controlled in order to avoid radial tooth 

jamming, reduction of contact ratio, and deviations on the nominal pressure angle with possible overloading 

and vibration. The actual center distance depends on the pitch circle runout of the gears as well as on the 

eccentricities of mounting parts. For the reference case, the requirement will be separately analyzed for 

meshes 1-2 and 3-4. In both cases, the center distance error is the relative displacement along X of the two 

points corresponding to the gear sections in the skeletal structure. 

 
Fig. 4: Force analysis for center distance errors: a) mesh 1-2, b) mesh 3-4 

In the first static model, shown in Fig. 4a, two opposing forces F are applied horizontally to points D and F. 

As previously noted, these loads are equilibrated by support reactions on the same two beams, while the third 

beam remains unloaded. The reactions are calculated and divided by F to get the composite sensitivities: 
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Again, the expressions in Tab. 2 lead to the sensitivities related to individual features. For example: 
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Expectedly, a given amount of pitch circle runout 1D on pinion 1 causes an equal amount of radial 

displacement with respect to the toothed surface of gear 2. 

In the second static model, shown in Fig. 4b, the same loads are applied to points H and L. Solving the free-

body diagrams and dividing the forces by F, the following composite sensitivities result: 
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Among feature errors, the highest sensitivities are related to the housing bore in G (diameter error 13G, 

position error 13G): 
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As it can also be noted for shaft misalignment and consistently with practical experience, meshing precision 

thus seems relatively critical for outboard gears. 

4.5 Analysis of backlash 

Backlash is a key issue for gear drives of servomotors and fine mechanisms, which are subject to motion 

reversals and thus to possible lost motion caused by angular tooth clearances. To avoid tooth jamming and 

allow thermal expansion and lubricant space, a deliberate backlash is created by a small allowance on tooth 

thickness. Random deviations from average backlash are due to several error sources, including tooth 

thickness and profile errors, pitch circle runouts, and eccentricities of mounting parts. Considering the 

stackup of backlashes over the stages of a gear train, this functional requirement may involve a large set of 

tolerances, whose contributions to total error are especially difficult to analyze. 

For the reference case, the static analogy will be used to evaluate the angular backlash on the output shaft 

once the rotation of the input shaft is restrained. The equivalent static model, shown in Fig. 5, includes the 

skeletal structure and the pitch circles. The load applied to the structure is an axial torque M on point N, 

while point A is clamped against axial rotation.  The solution of the static model involves a larger set of 

equilibrium conditions than in previous analyses (translations along X and Z, rotations about Y and Z). 

These yield the components of reaction and internal forces along X and Z, which are summed vectorially and 

divided by M, thus obtaining the following set of composite sensitivities: 
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where  is the pressure angle of all the gears. 

The two dimensionless sensitivites (sA and sN) are related to the angular errors on shaft ends, arising from 

possible clearances on keyways that are not considered in this example. The remaining composite 

sensitivities have dimensions of reciprocal lengths, i.e. transform linear dimensions into angles. Consistently 

with known properties of backlash, the main contributions are on the output shaft, where eccentricities and 



radial clearances cause a considerable variation of the center distance of mesh 3-4. The following 

sensitivities are found for the errors on the toothed surface of gear 4: 

( )
4

LL4LLL4

tan

r
sess

 ===  

( )
4

4L444L4
2

1
2

r
sess −=−==   

( )
4

4L444L4

1

r
sess ===   

The above expressions multiplied by r4 give the sensitivities of the same errors on the linear backlash of 

mesh 3-4. Consistently with known results, it can be recognized that pitch circle runout 4L creates an equal 

increase of peak center distance, which in turn influences the linear backlash through a factor tan. A 

reduction of tooth thickness −4L and a tooth profile error 4L have similar effects, without the multiplicative 

factor as they are defined along the pitch circle arc. 

 
Fig. 5: Force analysis for backlash 

5 Results 

The sensitivities calculated in Section 4 allow to estimate the variation of each functional requirement from a 

given set of part tolerances, along with the contribution of each tolerance to total variation. Results for the 

example are presented below under the assumptions listed in Tab. 3 about dimensions and tolerances. For 

diameters and tooth thicknesses, an allowance (i.e. average deviation from nominal fitting dimension) equal 

to half the tolerance is assumed in order to ensure a locational clearance fit with the mating feature. With the 

exception of bearings, diameter and positional tolerances are set to a common value to allow a direct 

appreciation of error stackup. In practical applications, this would be done at the first iteration of an 

allocation procedure where the tolerances with the largest contributions are later reduced in the attempt to 

satisfy given functional specifications at lower cost. 

The variation of a requirement y is expressed as a mean Y0 and a tolerance Ty: 
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where the summations are extended to each single error listed in Tab. 1, whose tolerance Ti and allowance i 

are given, and whose sensitivity si is calculated by static analogy. Tolerance Ty has the same meaning of part 



tolerances, e.g. corresponds to 3 times the standard deviation of the normally distributed error y. The 

equations assume the statistical independence of feature errors, although some eccentricities are actually the 

sum of independently phased periodic errors with the same frequency (corresponding to shaft rotation); 

corrections for such issue are available in literature [5]. 

Tab. 3: Assumptions about dimensions and tolerances  

Type Data 

Pitch circle radii [mm]  r1 = 24, r2 = 60, r3 = 36, r4 = 48 

Pressure angle  = 20° 

Axial distances [mm] a = 100, b = 60, c = 80 

Diameter and tooth tolerances [mm] Td = TD = Tt = 0.02 (bearings: 0.005) 

Diameter and tooth allowances [mm] d = D = t = 0.01 (bearings: 0.0025) 

Positional tolerances [mm] Te = TE = 0.02 (bearings: 0.005) 

 

With the same notation, the percentage contribution of each tolerance to the variation of y is calculated as 
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In what follows, the total variation will be presented as Y0  Ty/2, and the error causes will possibly be 

aggregated according to some criterion (type of tolerance, type of component, location) by summing their 

percentage contributions. 

5.1 Shaft misalignment 

Translational misalignment is estimated at 0.040  0.040 mm. Fig. 6a shows the percentage contributions 

aggregated by feature type: bearings give a marginal contribution due to their high manufacturing accuracy; 

housing bores are especially critical (82% of total error), while shaft journals have a minor impact (12%) due 

to their small number. Fig. 6b details the contributions of individual tolerances, showing that the two most 

critical housing bores are the ones closer to the end journals on the input shaft (31%) and on the output shaft 

(21%); the difference is related to the shorter span of the supports on the input shaft, which causes a higher 

amplification of eccentricities. 

 
Fig. 6: Contributions to shaft misalignment: translational error, a) by feature type, b) individual tolerances; 

rotational error, c) by feature type, d) individual tolerances 



Rotational misalignment is estimated at 0.015  0.015 degrees. As shown in Fig. 6c-d, housing bores account 

for most of the variation (71%), especially at the input side due to the closer supports. Not entirely negligible 

is the influence of the eccentricities of shaft end journals (25%), with equal contributions from the input and 

output side due to the equal journal lengths. 

As an insight for tolerance allocation, it can be noted again that positional errors have double sensitivities 

compared to diameter errors on the same features. For housing bores, this magnifies the contribution of 

positional error to both translational and rotational misalignment. To reduce total variation, positional 

tolerances should be reduced with equal diameter tolerances; such choice would probably require a different 

layout of the housing where all the boring operations could be done in the same setup and a rigid boring tool 

could freely approach the machining areas. 

5.2 Center distance errors 

Center distance errors are estimated at 0.027  0.030 mm for mesh 1-2 and 0.042  0.033 mm for mesh 3-4. 

As shown in Figs. 7a-b, pitch circle runouts give a minor contribution to total variation (22% and 19% for 

the two gear pairs). More critical are the errors on non-meshing features, such as housing bores (57% and 

49%) and mating features between shafts and gears (adding up to 17% and 29%); the different contributions 

can be explained considering that the integral pinion in the first mesh avoids additional errors due to 

mounting features. In Figs. 7c-d, a first consideration is that pitch circle runouts on meshing gears give equal 

contributions to total variation. Moreover, the most critical features are located at the sections next to 

outboard gears (C and G), suggesting that such arrangements of supports should be avoided for the sake of 

precision. As already noted, a reduction of positional tolerances on housing bores would be mostly 

beneficial, while tighter diameter tolerances would give little improvement.  Again, this choice would create 

difficulties in manufacturing due to approach limitations for the boring tool. Redesigning the housing in 

multiple parts to allow an axial fitting of shaft subassemblies would probably improve the control of center 

distances despite the additional error sources due to the mating features at housing part connections. 

 
Fig. 7: Contributions to center distance errors: mesh 1-2, a) by feature type, b) individual tolerances; 

mesh 3-4, c) by feature type, d) individual tolerances 



5.2 Backlash 

Angular backlash is estimated at 1.15  0.66 mrad; the lower limit avoids tooth jamming, while the upper 

limit would corresponds to a backlash within 0.1% of driven hub diameter. Fig. 8a confirms the major role 

(55% of total variation) of housing bore errors, which cause center distance errors with an indirect effect on 

backlash. The second most important source of backlash (33%) is related to gear teeth, while the remaining 

features (including pitch circles) individually have a negligible influence. The results in Fig. 8b seem to 

contradict the well-known fact that backlash at the output shaft is mostly determined by the last stages of a 

reduction gear unit. Although the calculation correctly accounts for the effect of velocity ratio, the output 

shaft subassembly in the example has the advantage of a higher rigidity, as it does not include outboard gears 

(which turns out to be a good choice). 

The contributions of individual tolerances are shown in Figs. 8c-d-e for the three shaft subassemblies. Once 

again, positional errors of housing bores are especially critical at the sections close to outboard gears, with an 

obvious prevalence of the intermediate shaft (point G) with respect to the input shaft (point C). Tooth errors 

have a sharply increasing influence from the first to the second mesh; profile errors give a larger 

contributions than thickness errors if, as assumed as a baseline, equal tolerances are specified for the two 

characteristics. As an improvement, tooth profile tolerances should be reduced for gears 3 and 4 at least; this 

choice would balance the contribution of the different tooth errors with a slight reduction of total backlash. 

 
Fig. 8: Contributions to backlash: a) by feature type, b) by shaft; individual tolerances on c) input shaft, 

d) intermediate shaft, e) output shaft 

6 Further application 

The example discussed so far has allowed a straightforward application of the static analogy due to the 

simple force flow created by spur gears and radial bearings. More complex gear train designs may require 

careful attention in defining the static model, choosing the external forces, and matching reaction forces with 

toleranced part features. An example of different configuration in given below. 

For the two-stage reduction unit with helical gears in Fig. 9a, the angular backlash at the output shaft is to be 

analyzed. The shaft and the bearings are radially assembled into a split housing, and thrust covers are fit to 

bores in the housing to axially restrain the bearings where indicated by arrows. As in the main example, the 

equivalent static model in Fig. 9b includes three beams corresponding to the shafts (input, intermediate, 

output) and the pitch circles of the gears (1, 2, 3, 4). An axial torque M acts at the end of the output shaft, 



while the input shaft is rotationally restrained. Focusing on the input shaft subassembly, the static model 

boils down to a single beam with gear 1 mounted at point C at distances a and b from supports A and B, the 

former providing registration against axial displacements. 

 
Fig. 9: Backlash on parallel helical gears: a) assembly, b) static model, c) forces on input shaft, d) solution 

Fig. 9c shows the components of the meshing force on gear 1. In addition to tangential force T and radial 

force R, there is an axial force A acting at distance r1 from shaft center (r1 being the pitch radius of pinion 1); 

the three forces are readily calculated from known geometric relations regarding helical gears: 
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where ri is the pitch radius of gear i, and n and  are the normal pressure angle and the helix angle of the 

pinion. Fig. 9d shows the free-body diagram of the input shaft. 

The tangential force on the pitch circle divided by M gives the composite sensitivity at the pitch point: 
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It transforms displacements along the pitch circle arc into contributions to angular backlash. From s1, the 

sensitivities of tooth thickness and tooth profile errors can be derived by applying the appropriate factors 

(−1/2 and 1). 

Dividing the resultant radial forces by M gives three composite sensitivities at points A, B and C: 
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They transform radial displacements into contributions to angular backlash. At the supports, sA and sB 

determine the sensitivites of the diameter tolerances on bearing outer rings and housing bores (respectively 

with factor −1/2 and 1/2), and on the position errors on the same features (with factor 1). For the pinion, sC 

determines the sensitivity of the tolerance on pitch circle runout (with factor 1). 

The torque in C divided by M gives a further composite sensitivity in C: 
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which is dimensionless and represents the contribution of an angular displacement about an axis normal to 

the shaft. The cause of such rotation is the angular misalignment between the pitch circle and the shaft 

journal at C (referred to shaft journals at A and B), whose maximum value is equal to the runout divided by 

w1 (width of the pinion). A term equal to sC2/w1 is thus added to the sensitivity of pitch circle runout. 

Lastly, the compressive force between A and C gives the sensitivity 
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which represent the contribution of an axial displacement of the shaft. The cause of such displacement is the 

possible axial clearance between the bearing and the cover in A. In operation, such clearance is equal to zero 

because the axial force on the pinion pushes the bearing against the cover without creating additional 

backlash; therefore, sAC does not correspond to any tolerance on part features. If the unit were subject to 

motion reversals, the axial clearance in B would also have to be avoided, e.g. by a preload or a shim pack. 

Axial forces could also play a role for bevel gears depending on the bearing arrangement. 

7 Conclusions 

A gear train may require a tight control of several geometric characteristics, each depending in a possibly 

complex way on many features on gears and mounting parts. The impact of individual tolerances on the 

variation of the functional requirements can be evaluated through a few methods available in literature. 

However, they either involve complex mathematical procedures or do not take full account of the detailed 

assembly layout and dimensions. The method based on static analogy, previously developed for generic 

assemblies and here proposed with some adaptations in the context of gear systems, has the potential for 

simplifying tolerance analysis for this class of mechanisms due to the following reasons: 

• it treats different requirements (shaft alignment, center distances, backlash) with a similar 

formulation and geometric model; 

• it converts tolerance analysis problems into equivalent force analysis problems, which are easily 

solved through free-body diagrams due to the static determinacy of gear systems; 

• it divides the analysis into two hierarchical levels, the first one using force analysis to find aggregate 

results for each section of the transmission (composite sensitivities), the second one allocating the 

aggregate results to the part features located in the same sections (sensitivities of part tolerances); 

• it uses known equations giving the meshing forces between gears of various types (spur, helical, 

bevel); 

• it can deal with complex gear trains, where a similar static analysis with the actual operating loads is 

needed for the structural design of gears, shafts and bearings. 

The application of the method to a basic example has given correct results in comparison to geometric 

reasoning. As demonstrated on a further application, the static analogy is suitable to a wider range of gear 



train configurations; a further validation will be needed for more complex cases in comparison to existing 

tolerance analysis methods, possibly supported by computer-aided tools. 

Future developments will also aim at overcoming some current limitations of the method. Specifically, an 

equivalent static model should be developed for the transmission error, which cannot be analyzed by the 

method in its current formulation. Moreover, the pre-selection of part features for different functional 

requirements should rely upon a more structured procedure, which could avoid the subjective judgement now 

required for a correct application of the method. 

Other limitations that will have to be released are related to thermal expansion and bending deflection, which 

are currently neglected by the method. Since, as it has been mentioned, the meshing conditions of involute 

gears are robust with respect to variation of center distance, including the deformations in the analysis would 

not violate the basic assumption of statical determinacy. The extension would therefore require a separate 

evaluation of the thermal and elastic effects, to be combined appropriately with the sensitivities of 

manufacturing errors. 

A further objective is the development of a software tool for the tolerance analysis of gear trains based on the 

static analogy. As an alternative to a full integration with CAD modelers, the tool should probably provide an 

interactive construction of a geometric representation of the gear train at a level of detail consistent with the 

required input data (layout, diameters, axial dimensions, and tolerances). For a given range of allowable 

configurations, the construction and resolution of the free body diagrams could easily be automated. For the 

same tasks, procedures based on the use of commercial software packages for finite element analysis might 

also be devised. 
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