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Summary

Computational models of cardiovascular physiology can inform clinical decision-making, 

providing a physically consistent framework to assess vascular pressures and flow distributions, 

and aiding in treatment planning. In particular, lumped parameter network (LPN) models that 

make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the 

circulatory physiology. The complexity of LPN models can vary significantly to account, for 

example, for cardiac and valve function, respiration, autoregulation, and time-dependent 

hemodynamics. More complex models provide insight into detailed physiological mechanisms, 

but their utility is maximized if one can quickly identify patient specific parameters. The clinical 

utility of LPN models with many parameters will be greatly enhanced by automated parameter 

identification, particularly if parameter tuning can match non-invasively obtained clinical data. We 

present a framework for automated tuning of 0D lumped model parameters to match clinical data. 

We demonstrate the utility of this framework through application to single ventricle pediatric 

patients with Norwood physiology. Through a combination of local identifiability, Bayesian 

estimation and maximum a posteriori simplex optimization, we show the ability to automatically 

determine physiologically consistent point estimates of the parameters and to quantify uncertainty 

induced by errors and assumptions in the collected clinical data. We show that multi-level 

estimation, that is, updating the parameter prior information through sub-model analysis, can lead 

to a significant reduction in the parameter marginal posterior variance. We first consider virtual 

patient conditions, with clinical targets generated through model solutions, and second application 

to a cohort of four single-ventricle patients with Norwood physiology.
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1. Introduction

Recent developments in medical imaging, computational mechanics, and uncertainty 

analysis of computer models are now enabling non-invasive assessment of hemodynamics 

through patient specific simulations. Use of this approach is particularly promising when 

clinical data collection is limited due to patient risk or ethical considerations.

Use of computer models to simulate the human circulation dates back to the late 1960s, 

where analog computer surrogates of the human cardiovascular system were formulated to 

investigate mechanisms of venous return and physiologic response during unusual 

acceleration conditions [1]. These models share the same governing equations with electrical 

circuits in which flow is analogous to current and pressure drop is analogous to voltage. 

Improved lumped modeling for the human ventricle was proposed in the 1980s [2], followed 

by applications to closed-loop cardiovascular systems [3].

Our focus in this paper is on physiologies characterized by the presence of a single 

functional ventricle. These are caused by severe forms of congenital heart disease, typically 

treated by surgical transition to the Fontan circulation, where a series arrangement is 

restored between the systemic and pulmonary blood flow [4]. Because of the high PVR 

typically observed in the early stages of life and to allow the patient to gradually adapt to the 

new circulation paradigm, palliation of single-ventricle is typically preformed in stages. 

Three stages are usually implemented: Norwood procedure (stage I [5]), superior 

cavopulmonary connection (SCPC stage II, either bi-directional Glenn or hemi-Fontan 

surgeries) and Fontan completion (stage III). We are particularly interested in the first stage 

of palliation, associated with the highest reported mortality [6]. Applications of lumped 

parameter network (LPN) models to study this specific physiology are reported in [7] and in 

[8]. Recent review articles also discuss modeling approaches to study the Fontan circulation 

[9] as well as physiologies characterized by an implanted systemic-to-pulmonary shunt [10].

Complex LPN models may include detailed sub-models of organs, effect of respiration and 

autoregulatory mechanisms (see, e.g., [11]) and have been shown to accurately reproduce 

normal and pathologic physiology. However, prognostic use of these models is often 

hindered by the difficulty of estimating patient specific parameter values. In other words, 

complex models are likely to contain unidentifiable parameter combinations due to model 

non-linearity, and possible inconsistencies in the clinical measurements. Thus, manual 

tuning is often adopted in practice but suffers from non-repeatability, high user-time 

requirements, and failure to account for clinical data uncertainty. Automated tuning is, in our 

opinion, critical to the use of lumped circulation models for patient specific simulations. 

Moreover, these models are cheap to solve on a modern computer and therefore well suited 

to optimization and uncertainty quantification for which multiple model solutions are 

needed.
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Several approaches to automatic tuning have been proposed in the literature. Some have 

included automatic parameter estimation of three-element Windkessel open-loop boundary 

conditions [12], or iterative parameter identification of sub-compartments, thus reducing the 

number of parameters identified simultaneously [13, 14]. Others have proposed 

optimization, sensitivity analysis, recursive least squares, auto-regressive models, and 

Kalman filtering [15–24].

This study focuses on pre-operative model tuning for surgical planning in single-ventricle 

palliation surgery. In this context, the ability to accurately simulate the physiological 

transition between two successive stages is greatly affected by both the fidelity in 

representing local hemodynamics and the availability of an accurate representation of the 

peripheral and cardiac circulations in the patient. Capturing both local and circulatory pre-

operative hemodynamics ensures that the post-operative physiology is well captured after 

the change in circulatory layout (represeting the immediate postoperative patient 

conditions). This can only be achieved when the heart model parameters are reliably 

identified, and when the correct distribution of circulatory resistances and compliances 

(typically associated with significant inter-patient variability) are well captured. We 

therefore develop an effective pre-operative model identification strategy (‘a necessary 

preliminary step’, as discussed in [25, 26]) for over-parameterized LPN models and show 

how clinical data uncertainty affects this process. The proposed LPN formulation includes a 

detailed non linear description of the cardiac contraction mechanism to realistically model 

patients with severe heart pathologies and capture post-operative changes.

While prior approaches have focused either on cycle-averaged targets or on the availability 

of time-dependent patient data (rarely available in practice), the proposed approach offers 

more flexibility to account for multiple time statistics (e.g., average, maximum and 

minimum values of target quantities) and peaks in the pressure/flow rate curves. Also, prior 

approaches have mostly been applied to LPN layouts with few elements or have made use of 

a priori information to significantly reduce the number of parameters. Finally, although 

many studies in the literature (see, e.g., [15, 17, 20–24]) employ a Bayesian representation 

of the unknown parameters through a vector of random variables, they often aim primarily to 

determine optimal parameter estimates, without deriving associated confidence metrics.

We present an application of Bayesian estimation with adaptive MCMC as a means to 

generate samples from the joint distribution of the 0D model parameters. This is 

complemented by a preliminary analysis of the Fisher Information matrix (FIM) rank and 

eigenvectors, to determine unimportant parameter combinations. Prior knowledge is 

specified either in the form of admissible ranges (from experience, expert judgment) or 

through a multi-level approach, where priors are updated from analysis of circulation sub-

models. Maximum a posteriori (MAP) parameter estimates are finally computed using 

simplex optimization.

The LPN models used in this study are first derived in Section 2 with details reported in the 

Appendix. This is followed, in Section 3, by a discussion of the clinical data collection and 

the selection of target quantities and parameter ranges for patient-specific simulations. In 

Section 4, we discuss the formulation of the statistical estimation problem and introduce the 
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numerical algorithms used for identifiability analysis, multi-level adaptive MCMC and MAP 

optimization. A computational framework supporting both single-level and multi-level 

estimation for LPN model parameters is presented in Section 4.5. Results are presented in 

Section 5, first for a simplified peripheral circulation model (Section 2.1), and then for a 

complete model of the Norwood circulation subject to virtual patient (Section 5.2) and 

patient specific conditions (Section 5.3). Finally, conclusions and future work are discussed 

in Section 6. The acronyms used throughout the paper are listed in Table I.

2. Lumped Parameter Models

In this section, we describe the three LPN models that will be used for our numerical 

investigations in Section 5. These are: i) a RCRCR representation of the peripheral 

circulation; ii) a submodel of the heart with prescribed venous and aortic flows, and iii) a 

complete closed-loop LPN circulation model, including the heart, pulmonary and systemic 

circulations, and systemic-to-pulmonary shunt.

2.1. RCRCR model

RCRCR blocks are typically used (in combination with inductance elements), to mimic the 

peripheral circulation and organ blocks (e.g., lungs, liver, intestine, etc.), with the three 

resistance values, R1, R2, and R3, typically used to represent the arterial, capillary and 

venous resistances (see, e.g., [25]), and the capacitances, C1 and C2, associated with the 

arterial and venous compliances, respectively (Figure 1a). Pressure is defined at four 

locations, P0, P1, P2, P3, while flow rates Q1, Q2, Q3 are defined at the respective resistors 

R1, R2, R3. The inlet and outlet flow rates Q1 and Q3, assumed periodic, are prescribed in 

terms of a truncated Fourier coefficient expansion, see appendix A.

The system has 7 parameters: the total resistance Rtot = R1 + R2 + R3, τ = Rtot Ctot, where 

Ctot = C1 + C2, the compliance ratio (C1/C2), the resistance ratios (R1/R2), (R3/R2) and the 

initial conditions for P1 and P2. ODE models for RCRCR circuits are obtained by combining 

basic formulations from simpler RC components, that is,

(1)

where Pup, Pdw, Qup, and Qdw denote the upstream and downstream pressures and flow 

rates, respectively.

2.2. Heart sub-model

The heart model illustrated in Figure 1(b) consists of five main components: single atrium, 

atrioventricular (AV) valve, single ventricle, aortic valve and aorta (AO), and is 

characterized by 20 parameters (Table II), including resistance and compliance elements, 

parameters characterizing atrial and ventricular contractility, and nonlinear diodes for the AV 

and aortic valves. It includes four state variables, the atrial and ventricular volumes Vsv and 

Vsa, the aortic pressure Pao and the AV flowrate Qav. The aortic and venous flow rates are 

prescribed as boundary conditions using the Fourier coefficients reported in the Appendix. 
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The interested reader is referred to the literature on the subject (see, e.g., [2, 3, 27]) for a in-

depth discussion on this lumped parameter formulation.

2.3. Norwood circulation models

A schematic representation of a complete circulation model used to study stage I single-

ventricle physiology is illustrated in Figure 1(c). It includes three main compartments: the 

heart, systemic, and pulmonary circulations. The heart model is the same as described in the 

previous section, while circulatory blocks in the upper/lower body and the lungs are 

modeled using RLCRCR circuits. The systemic-to-pulmonary shunt combines linear and 

nonlinear resistive components, accounting for both major and minor (e.g., shunt-pulmonary 

anastomosis) pressure losses [28]. Both resistive terms are parameterized as functions of the 

shunt equivalent diameter Dsh (see detailed formulation in the Appendix). The effects of 

coronary circulation, gravity, and respiration are neglected [28].

For the arterial blocks (subscript ‘1’ in Figure 1(c)), which include inertance, Equation (1) is 

re-formulated as

(2)

The sum of arterial, capillary bed and venous resistances Rtot = Rart + Rbed + Rven = R1 + R2 

+ R3 is set equal to the total systemic and pulmonary vascular resistances (SVR and PVR,

which can be clinically measured, as reported in Section 3.1), while total compliance for

upper/lower body and lungs is related to the associated vascular resistance as Ctot = τ/Rtot.

Ranges for τ are determined from the literature [29–31]. Resistances and compliances in the

peripheral circulation blocks are determined through the ratios (R1/R2, R3/R2, C1/C2) with

ranges from literature data representing separate contributions of arterial, capillary bed, and

venous circulation [30, 31].

The resulting system of ODEs is solved numerically using a 4th order Runge-Kutta scheme 

with constant time step size (4.0 × 10−4 s in the present study) for all models. The full list of 

equations used can be found in the Appendix.

3. Clinical Data Collection and Target Selection

Following the parameter definitions and ODE model formulation, we now identify the target 

clinical quantities that should be matched by model outputs following an optimal parameter 

selection. With reference to these targets, the results in Section 5 will refer to virtual or 

patient specific conditions. In the former case model outputs resulting from known input 

parameter sets will be used, while in the latter case, clinically collected targets will be 

directly employed. Finally, we discuss an a priori selection for the ranges of model 

parameters subject to identification.
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3.1. Clinical data collection

Four patients were enrolled in the study at medical centers in Europe and the US, after 

institutional review board approval and obtaining informed consent (Table III). These 

centers included the Medical University of South Carolina (patient MUSC7), Great Ormond 

Street Hospital in London (patient GOSH22) and the University of Michigan Medical Center 

(patients UM5 and UM10). For each patient, clinical data were collected, including 

catheterization-derived pressure tracings, MRI flow tracings and echo-Doppler velocity 

tracings. Clinical measurements were obtained prior to the stage II procedure, from a few 

hours up to a few weeks prior to the date of surgery. Pre-operative echocardiograms were 

performed under sedation following routine clinical protocols, while MRI was performed 

under general anesthesia for each patient. Cardiac catheterization for pre-operative testing 

was performed under conscious sedation, using routine clinical protocols. Flow 

measurements were obtained using an ECG-gated, free-breathing, cine-phase contrast 

velocity-encoded pulse sequence, and commercially available cardiac analysis software.

Volumetric blood flow rates were acquired through MRI at the ascending AO, inferior vena 

cava (IVC) and superior vena cava (SVC), pulmonary veins (PV) and pulmonary arteries 

(PA). Velocities in the AO, inferior vena cava, superior vena cava, atrio-ventricular valve and 

Blalock-Thomas-Taussig (BT) shunt were also collected using echo-Doppler and 

consistency between MRI and echo-Doppler measurements was assessed based on 

reasonable differences in the patient's heart rate. Blood pressure was collected at the AO, 

atrium, ventricle and only indirectly in the PA using wedge pressures recorded in the 

pulmonary veins (PVW). Figure 2 summarizes locations in the circulation layout, where 

MRI, echo-Doppler or catheter data were collected. In this figure, two measurement 

locations are shown for the pulmonary venous flow to indicate that at least one measure was 

present for each side (flow returning from the left or right lung). First, the consistency 

among collected flow data was verified (i.e., the cardiac output, calculated as cycle-averaged 

flow Qao has to be equal to Qven calculated as the sum of all the cycle-averaged venous 

flow). In case of small differences (typically observed in clinical measurements) the flow 

data were properly scaled to respect conservation of mass. Two possible approaches were 

adopted in this context, depending on a reliability assessment of measured MR flow from 

the clinicians in our research group: either the most reliable between the two flows (Qao or 

Qven) was kept unchanged, correcting the other one, or both flows were corrected, 

considering their average as the most reliable estimate. Then, patient-specific pulmonary 

vascular resistances (PVR, SVR) were derived using the ratio of the pressure drop across the 

compartment of interest to the flow passing through it, that is,:

(3)

where Ppa, Psa, and Pao represent the cycle-averaged values of main pulmonary artery 

(estimated using PVW), atrial and ascending AO pressures, QRPV, QLPV, QSVC, QIVC 

denote the cycle-averages of right and left pulmonary and upper and lower body systemic 

flows, respectively. Note how QRPV and QLPV in (3) correspond to the sum of the flows 
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measured in the left or the right PV, respectively (one or two veins, depending on the 

selected patient).

SVR and PVR for the four patients, AV valve area segmented from clinical image data and 

heart rates are repoted in Table III. Note that the heart rate is a known parameter and it is not 

subject to estimation.

3.2. Clinical target selection

Atrial, ventricular, and aortic pressures are included as clinical targets both in the heart sub-

models (Section 2.2) and full Norwood circulation models (Section 2.3). Mean and 

maximum aortic pressures Pao,av, Pao,max are included as targets for the heart sub-model, 

while the minimum values Pao,min are also considered in the Norwood model, to capture 

physiologically realistic pulsatility.

The minimal ventricular pressure Psv,min is not included as a target quantity due to its close 

relationship with the atrial pressure Psa,av. The end diastolic pressure (EDP) is in fact related 

to Psv,min through the passive ventricular curve, typically having a small slope in the 

pressure-volume plane. Thus, values of Psa,av should be similar to EDP and, in turn, to 

Psv,min. Proper identification of the atrial parameters is therefore expected to produce a 

reasonable estimate of the minimum ventricular pressure.

In the ventricle, the cardiac output CO is prescribed either directly (Norwood model) or 

through the time history of the aortic flow rate (heart sub-model). Vsv,min can therefore be 

automatically determined as Vsv,min = Vsv,max – CO · HR. The prescription of the minimum 

ventricular volume (although being indirectly imposed) is expected to help in the proper 

identification of the unstressed volume of the single ventricle Vsv,0. Other target quantities 

included the average regurgitation flow rate (patient UM10 only), the Qp/Qs ratio and the 

average minimum and maximum pulmonary artery pressures Ppa,av, Ppa,min, Ppa,max.

Moreover, we wanted the Norwood model to generate venous flow rate time histories 

matching the clinical measurements and consistent with those prescribed to the heart sub-

model. As venous flow is characterized by a bi-phasic waveform (for single ventricle 

patients with aorto-pulmonary shunts see, e.g., [32]), we used the systolic peak (S), the 

diastolic peak (D) and the two minima between these peaks (M and A, respectively) to 

quantify the agreement between clinical and simulated venous flow rates.

Finally, standard deviations of clinical measurements were estimated using 5% of their 

expected values (compatible with observations in intensive care units, see e.g., [13]), and 

amplified with weights inversely proportional to their clinical importance. For example, a 

weight of 1/2 was assigned to both Pao,av and CO, which we considered the most critical 

targets to match. A unit weight is applied to all other targets, except SMDA locations in 

venous curves. In this case, a weight of eight was applied to the systemic SMDA targets and 

12 to the PV. With eight targets for venous flow rates at SMDA locations, these higher 

weights ensured that the posterior was not excessively dependent on the agreement for these 

quantities, for which the confidence in the clinical tracings is relatively low. Higher weights 

were assigned to the pulmonary rather than the systemic circulation blocks, as they seem to 
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consistently generate better registration results. This is likely due to the higher complexity of 

estimating the pulmonary circulation parameters, as they are in series with the non linear 

shunt compartment.

A complete list of the selected clinical targets is reported in Table IV. Echo-Doppler tracings 

(namely AV valve velocity and shunt velocity) were not used as targets for identification, as 

they were often recorded under HR conditions quite different from the HR measured during 

the MR aquisition.

3.3. Parameter ranges

Parameter ranges (Table V) were determined from literature data and previous experience 

with manual tuning. The ratios between atrial and ventricular activation times and heart 

cycle duration were constrained based on literature data [28]. Ranges of systemic and 

pulmonary compliances (i.e., Ctot = C1 + C2) were obtained by assuming the quantity τ = 

Ctot Rtot to vary in the interval [0.5, 3.0] [29–31]. Use of ratios for activation times, 

resistances, and compliances in the pulmonary and systemic circulations, allows us to reduce 

the overall number of parameters (e.g., by prescribing PVR and SVR measurements), and 

often leads to a reduced variability in the associated ranges (e.g., use of the time constant τ 
instead of the total compliance Ctot).

4. Methodology

4.1. Statistical model

We consider a set of d parameters y = [y1, y2, …, yd] ∈ Ω ⊂ ℝd statistically characterized

through their joint probability distribution ρ(y1, y2, …, yd) and denote yk as the generic k-th

realization. The circulation model G : ℝd → ℝm establishes a typically non-linear 

relationship between yk and the realization ok of the outputs o = [o1, o2, …, om] ∈ ℝm, or, in

other words o = G(y). Direct or indirect measurements for quantities of clinical relevance are 

expressed through the random variables d = [d1, d2, …, dm] ⊂ ℝm with joint distribution

ρ(d1, d2, …, dm) assumed Gaussian with average equal to the model response G(y) and 

diagonal covariance Cd, consistent with a statistical model of the form

(4)

In Equation (4) the error term ∊ ∼ N(0, Cd) combines errors introduced by both 

experimental data and model formulation. An unknown, full covariance Cd could be 

estimated as suggested in [33, 34] by assimilating differential circulation models to 

multiresponse systems. These are characterized by multiple sets of possibly correlated 

observations (e.g., pressures and flow rates at various locations). In our case, Cd is not full 

but typically block diagonal, due to the different physiological conditions commonly 

observed during clinical measurements of blood pressures (i.e., catheter measurements on a 

sedated patient) and flow rates (i.e., acquired through non-invasive MRI or echoDoppler). 

Finally, the lack of data on the correlation between pressure or between flow rate 
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measurements suggests the adoption of a diagonal covariance. As a result of these 

assumptions, the likelihood function assumes the form

(5)

where we added the weights wi for each clinical target, as discussed in Section 3.2. The 

parameter posterior is finally formulated through Bayesian conjunction

(6)

In our study, we use uniform priors if no previous information is available for a specific 

parameter, while we use independent Gaussians for parameters whose first and second 

moments are available from previous analysis (i.e., multi-level estimation discussed in 

Section 5).

4.2. Local and global parameter identifiability

Before proceeding further, it is important to understand if and under what circumstances it is 

possible to estimate the parameters of a given system from the available data, that is, if the 

system is identifiable. A review of several methodologies on identifiability is provided in 

[35] in the context of nonlinear ODE models of viral dynamics. Two methodologies are used

in this work to detect unimportant parameters or non identifiable combinations of

parameters.

First, we investigate the FIM rank as a local measure of identifiability, that is, the ability to 

learn parameters in a neighborhood of a specific realization under varying availability of 

measured data [36]. As a direct result of assuming the likelihood in Equation (5), we have:

(7)

Note that Equation (7) is easily obtained by combining the matrix ∂G(y)/∂y ∈ ℝd×m of local 

derivatives (e.g., computed using a finite difference approximation) with the diagonal matrix 

 obtained from the assumed precisions (inverse variances) associated with the available 

targets. As discussed in [36] the rank of ℐ(y) reveals the presence of non-identifiable 

combinations of parameters, and an analysis of the eigenvectors associated with the zero 

eigenvalues (the so-called null eigenvectors) can be useful to identify such combinations.

Second, we propose systematic MAP estimation. The FIM approach discussed above 

provides information on the identifiability at specific locations in parameter space, that is, 
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those selected to calculate the matrix ∂G(y)/∂y. To better understand the degree of convexity 

of the posterior distribution, we select a realization y* in parameter space and evaluate the 

corresponding virtual targets o* = G(y*). We then try to recover the parameters y* from o* 

by performing MAP estimation (i.e., determining the maximum of the posterior distribution 

using optimization) starting from random locations in parameter space within a prior 

admissible range. We denote the MAP parameter estimate determined through optimization 

as ŷ. Finally, we report the results in a graph, where the maximum posterior value resulting 

from optimization is plotted on the abscissa, while the ℓ2 distance between ŷ and y*, that is, 

, is plotted on the ordinate and yi,u, yi,l are the upper 

and lower bounds for parameter yi.

We use these strategies, together with posterior probability profiling to reveal features in the 

objective function (or posterior distribution) that are otherwise difficult to understand in 

several dimensions.

4.3. Differential Evolution adaptive Metropolis estimation

As discussed in Section 5, issues of non-identifiability in over-parametrized models typically 

result in non-convex posterior distributions with an abundance of local minima/maxima. 

This prevents optimization methods from efficiently finding the parameter set associated 

with a global posterior maximum. Moreover, we are also interested in characterizing the 

variability in our estimate of the parameters.

This justifies our choice of performing Bayesian parameter identification, using MCMC [37, 

38] to iteratively sample from the posterior P(y|d). It is well known that specification of prior

knowledge can substantially improve parameter learning in a Bayesian framework [39]. A

Bayesian approach also provides ways to detect unidentifiable parameter combinations. For

example, marginal posteriors that resemble uniform distributions may indicate low

sensitivity or unimportant parameters. Non identifiable combinations involving three or

more parameters, may be also detected from a heat map of the correlation matrix (see, e.g.,

[40]).

Many MCMC algorithms have been proposed in the literature. Because of the non-linearity 

of G, the likelihood in Equation (5) is not generally normally distributed, and classical 

random walk Metropolis may exhibit slow convergence in such cases. Numerous approaches 

are discussed in the literature (see, e.g., [41–47]) to automatically adapt the scale and 

orientation of the trial distribution to achieve faster convergence while still satisfying 

detailed balance (see, e.g., [48, 49]). Differential evolution adaptive Metropolis (DREAM) 

[50] combines differential evolution [51] and self adaptive randomized subspace sampling

from N < d multiple Markov chains { , i = 1, …, N}, to adapt the scaling and orientation 

of the trial distribution without explicitly updating its covariance. It also shows a substantial 

improvement with respect to other adaptive MCMC schemes when sampling from heavy 

tailed or multi-modal posteriors, and we have adapted this approach for the present problem 

as described below.
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Convergence is assessed using the Gelman-Rubin (GR) diagnostic [52]. Extensions of 

DREAM are discussed, for example, in [53] where parallel implementation in combination 

with a multiple-try-Metropolis strategy were used to sample from hydrologic models with up 

to 241 random parameters.

It is worth noting that DREAM performs a random exploration of Ω, asymptotically 

generating samples from a distribution proportional to ρ(y1, y2, …, yd). This exploration can 

be used to improve the robustness of an optimization-based MAP estimate of the parameters, 

with clear similarities to stochastic optimization algorithms such as simulated annealing 

[54]. In practice, we start from the parameter set that maximizes the posterior during 

DREAM and employ gradient-free hillclimb optimization (i.e., Nelder-Mead (NM) 

simplicial optimization [55, 56]) to further refine our MAP estimate. This reduces the 

chance that our optimal parameter set will be trapped in a local posterior maximum.

4.4. Multi-level Bayesian estimation

Parameter estimation under virtual patient conditions using the Norwood model was first 

performed using uninformative parameter priors. Both identifiability and Bayesian 

estimation results showed that the heart sub-model is the main source of non-identifiability, 

with a regular FIM typically resulting from fixing the heart parameters.

We therefore take advantage of both the compartmental nature of our circulation models and 

the underlying Bayesian framework, and propose a multi-level estimation strategy, where 

parameter posteriors determined through the heart sub-model provide informative priors for 

estimation of parameters in the full Norwood model. Accordingly, we partition the 

parameter set y into heart model parameters yh ∈ ℝdh and full model parameters yf ∈ ℝdf,

where clearly dh + df = d. Registration of heart sub-model parameters provides the posterior 

Ph(yh|d) that is used to update the full circulation posterior as follows:

(8)

where Pf(yf) identifies the prior knowledge for the parameters yf. We note that this two-level 

Bayesian update can be generalized to multiple levels by increasing the number of sub-

models. Iterative tuning of separate compartments is, for example, applied in [13] and seems 

to offer an interesting regularization mechanism, which could be explored further in future 

work.

4.5. Computational framework

A schematic of the computational framework developed for this study is illustrated in Figure 

3. This is designed to automatically run DREAM on multiple models (e.g., the heart sub-

model and full Norwood model), followed by NM optimization. Optionally, multi-level

estimation can be performed by first running the heart sub-model and then exchanging prior

information before running the full Norwood circulation model.
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Single-level parameter estimation is performed following path 2–4, that is, without taking 

advantage of the underlying nested model arrangement. Multi-level estimation is carried out 

following path 1–5–4. Identifiability of the heart model is first assessed, followed by 

estimation of the heart sub-model parameters through adaptive MCMC. Estimation of the 

complete set of circulation parameters using refined heart parameter priors is finally carried 

out.

5. Results

5.1. RCRCR Model

We first explore the application of the above tools to a reduced representative RCRCR model 

shown in Figure 1(a). A parameter set is selected for identifiability analysis as (Rtot, τ, 

C1/C2, R1/R2, R3/R2, P1,i, P2,i) = y* = (3.07, 0.56, 0.2, 0.2, 0.2, 5.0, 5.0), and a diagonal 

covariance Cd assembled using standard deviations equal to 5% of the associated model 

solutions. The total number of parameters for this model is 7 (including initial conditions on 

P1 and P2) with 21 available targets (minimum, average and maximum pressure and flow 

rate at all locations). Analysis of identifiability and parameter estimation are performed for 

this model under 4 scenarios, with differences in the number of parameters to identify and 

available measurements to be matched:

• Scenario 1: all 7 parameters need to be determined from all targets.

• Scenario 2: 5 parameters need to be determined from 5 targets.

• Scenario 3: 5 parameters need to be determined from 3 targets.

• Scenario 4: 3 parameters need to be determined from 5 targets.

Parameters and targets for each scenario are provided in Table VI. Note that scenario 1 is 

characterized by a complete knowledge of the available measurements and by including the 

initial conditions as parameters. The other 3 scenarios were instead selected to test 

identifiability in situations characterized by equal number of parameters and measurements 

(scenario 2), more parameters than measurements (scenario 3), more measurements than 

parameters but without including initial conditions (scenario 4).

5.1.1. Local Identifiability—Figure 4 shows the matrix ∂G(y)/∂y of local sensitivities. 

The following features are apparent: input and output flow rates Q1 and Q3 are prescribed 

quantities and result in zero sensitivities (not shown); the total resistance Rtot does not 

influence the flowrate Q2, as expected; derivatives of G(y) with respect to the initial pressure 

conditions are equal for all output pressures and zero for the flow rates. From the above 

sensitivities, rank and eigenvectors of ℐ(y) are computed as in (7), with the following results 

obtained for the four scenarios:

Scenario 1: The eigenvalues are (0.000, 2.052, 441.938, 4110.692, 8593.620, 12941.682, 

189749, 442). The FIM is therefore rank deficient with null eigenvector equal to (0.0, 0.0, 

0.0, 0.0, 0.0, 0.9806, −0.1962). This is consistent with the observed constant sensitivities, 

meaning that any opposite change in the pressure initial conditions with relative magnitude 

proportional to the null eigenvector does not alter the output pressures and flow rates in the 
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model. This is an interesting case, as non-identifiable combinations of parameters are 

observed in a situation characterized by an abundance of available measurements.

Scenario 2: Eigenvalues are obtained in the range [0.413, 101.384 × 103]. No eigenvalue is 

zero in this case, suggesting that all 5 parameters are locally identifiable. On the other hand, 

the large spectrum of eigenvalues will affect our ability to estimate the parameters, as 

discussed in the next sections.

Scenario 3: The 5 parameters are not identifiable (FIM rank of 3) but the physical 

interpretation of the null-eigenvectors is not straightforward, unlike in Scenario 1.

Scenario 4: the FIM has full rank and narrower eigenvalue spectrum, suggesting perfect 

identifiability.

We explore these scenarios further in the next section through MAP parameter estimation.

5.1.2. MAP Identifiability—We recover y* from d ̄ = G(y*) using 50 optimization runs,

each characterized by a uniformly sampled initial guess from the ranges Rtot = [2.0, 4.0], τ = 

[0.5, 3.0], (C1/C2) = [0.1, 10.0], (R1/R2) = [0.1, 2.0], (R3/R2) = [0.1, 1.0]. We denote each 

optimal estimate as ȳI, i = 1, …, 50 and, in Figure 5, report the optimal log-likelihood and 

the ∓2 distance in parameter space between ȳi and y* for scenarios 2, 3 and 4.

Optimal parameter locations appear dispersed in the (log ℓȳ(d ̄), dy) plane for scenario 2,

suggesting the presence of multiple local minima (Figure 5). None of these minima, 

however, is able to reproduce accurately the target set of parameters. MAP convergence 

profiles for scenario 2 are also characterized by an initial steep descent followed by several 

iterations with relatively small improvements, suggesting the presence of ridges in the log-

likelihood function. When the current optimum reaches these locations, only limited 

improvement is obtained even after substantially increasing the number of iterations, as 

confirmed by our tests using 2000 and 5000 iterations. This situation was revealed by near 

singularity of the FIM and a corresponding wide eigenvalue spectrum. Finally, we note that 

by selecting the parameter set ȳs characterized by s = argmaxj log ℓȳj (d ̄), one can get close

to the true sets of RCRCR parameters in scenario 2, as shown in Figure 5.

In scenario 3, 5 parameters need to be estimated from only 3 measurements. In this case, 

multiple parameter combinations (with variable distances dy) lead to a zero log-likelihood, 

confirming the intuition provided by the rank of the FIM. In other words, multiple non-

identifiable combinations of parameters are determined that generate the same measurement 

vector d̄.

Finally, all the estimated parameter sets match the true set in Scenario 4 (perfect 

identifiability), where optimization profiles confirm the convexity of the log-likelihood 

function.

5.1.3. Bayesian parameter estimation—Figure 6 illustrates the GR statistics, showing 

a rapid convergence of DREAM for all 3 scenarios. As expected, scenario 4 produces the 
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best results characterized by unimodal marginal distribution and small variance. Results in 

terms of 95% confidence intervals are also illustrated in Table VII.

The ability of MCMC to learn the parameters under various scenarios is quantified using

(9)

where  [yj|d] denotes the marginal posterior variance for parameter yj while  [yj] denotes 

its prior marginal variance. When the prior variance is not effectively reduced by 

conditioning the model results to the available observations, the ratio  [yj|d]/  |yj| ≈ 1 and 

limited learning (θ ≈ 0) is achieved. Conversely, satisfactory learning (θ ≈ 1) characterizes 

situations, where the posterior marginal variance is reduced to a small fraction of its prior 

counterpart. We compute , that is, the variance of a uniform random variable 

in the interval [a, b].

Resulting values of θ for (Rtot, τ, C1/C2) in Table VII show effective learning even for the 

less identifiable scenarios 2 and 3. In scenario 3, clearly unidentifiable as discussed in 

Section 5.1.2, relatively large values of θ are obtained for C1/C2 due to the high sensitivity 

of P0,max to this quantity (Figure 4). Learning for Rtot is however limited, while practically 

no variance reduction is observed for τ. Finally, we note that the true value of R1/R2 is 

outside the 95% confidence interval in scenario 3 consistent with the singularity in the FIM.

5.2. Full Norwood model with virtual targets

After discussing the results of identifiability and parameter estimation on a simplified and 

reduced model to develop intuition, we proceed by applying the same tools to a complete 

Norwood model. We start by studying the conditions for structural identifiability and 

parameter estimation, trying to retrieve a known set of parameters (Table VIII) from virtual 

measurements generated through model solutions.

5.2.1. Local Identifiability—The null FIM eigenvectors with dominant components (i.e., 

a single component close to one and all others with a value close to zero) were employed to 

determine unimportant parameters. Using this approach, the initial conditions Qav, Pubv, 

Quba, Puba, Plung, Ppv, Qpa, Ppa were removed from the parameter set, resulting in a FIM 

containing 32 parameters with rank 21. The remaining parameters were grouped according 

to anatomical proximity. Those in the atrium, t1,r, tsas,r, Vsa,0, dsa, csa, Csa, were first 

removed, resulting in a FIM of dimension 26,still with rank 21. We then removed the 

ventricle parameters tsvs,r, Vsv,0, dsv, csv, b, a, leading to a 20-dimensional FIM with rank 19. 

A full rank 15-dimensional FIM is obtained by finally removing the parameters Rmyo, α, β, 

Kao, Cao.

From the above changes of the FIM rank, one should conclude that the parameters in the 

heart model play an important role in the identification of the full LPN system, and that 
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specification of prior information on those parameters will likely improve the overall 

estimation process. To further highlight this point, in the next section, we show the effects of 

removing atrial and ventricular model parameters on MAP estimation.

5.2.2. MAP Identifiability—MAP estimation is performed without the unimportant initial 

conditions found in the previous section, by first removing the atrial parameters followed by 

those remaining in the heart sub-model. Figure 7 shows that the optima progressively shifts 

towards the origin of the (log ℓȳ(d ̄), dy) plane. While a trend of improved identifiability

(decreasing distance from the origin) is noticed by progressively removing atrial and 

ventricular model parameters, all three conditions behave similarly to scenario 2 in Figure 5.

5.2.3. Bayesian parameter estimation—Optimal parameter estimates are computed 

first using DREAM, and successively performing NM optimization with initial guess at the 

parameter location with maximal posterior. The agreement between measured and predicted 

clinical targets and parameters is reported in Tables IX and X, respectively.

While the agreement on the clinical targets is remarkably good, not all parameters are 

identified equally well. Parameters with normalized distance from their true value less than 

about 10% are highlighted in Table X. In particular, good agreement is obtained for the 

ventricular unstressed volume Vsv,0, aortic compliance Cao, shunt diameter Dsh and for most 

of the systemic and pulmonary circulation parameters. It also suggests that changes in 

combinations of atrial and ventricular model parameters may be performed without 

significantly altering the targets, that is, that the atrial and ventricular parameters appear to 

be the source of non-identifiability in the model.

Finally, Figures 8 and 9 confirm that the estimated time histories of pressure and flow rate 

are in good agreement with the true virtual patient physiology, the most significant 

difference being in the unstressed atrial volume. This will be further discussed in Section 

5.3.3, where we show that preliminary estimation on a sub-model is essential to significantly 

improve the learning factor θ for Vsa,0 in four patient-specific simulations.

5.3. Parameter estimation with patient specific targets

From the results in the previous sections, it is apparent that estimation of the heart sub-

model parameters is particularly challenging. This is due to several factors: the heart sub-

model contains a relatively large number of parameters, it is the primary source of non-

linearities (heart contraction mechanism and unidirectional flow in valves) and only a few 

targets are available for the atrial compartment.

To improve parameter estimation in this sub-system, we therefore create a sub-model 

isolating the heart from the other LPN components, with prescribed venous and aortic flow 

conditions at the boundary. We then study separate identification properties in the heart and 

full Norwood models and finally show that the best results are provided by a multi-level 

Bayesian estimation approach.

5.3.1. Parameter estimation for patient specific heart sub-models—FIM analysis 

on the heart sub-model reveals unimportant initial conditions Qav, Pao, Vsa, Vsv, and AV 
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inductance parameter β, resulting in an 18-dimensional FIM with rank 7. Further reduction 

in the number of parameters is not possible as no clear patterns are identified from the FIM 

null eigenvectors.

Parameter distributions are then estimated using DREAM with typical GR convergence 

shown in Figure 10. Estimated marginal distributions are shown in Figure 11, highlighting 

corresponding prior ranges. The aortic compliance Cao shows a significant reduction in 

variance for all patients. This is likely due to the abundance of target quantities available in 

the proximity of the aortic capacitor (i.e., cardiac output, minimum, average and maximum 

aortic pressures). Values of Cao estimated by DREAM were also found to be compatible to 

those determined from manual tuning in previous work from our research group [57].

The variance of the unstressed atrial volume Vsa,0 is also significantly reduced in all 

patients, in contrast to what was observed with the full model. This mainly relates to the 

limited variability in the venous flow rate, that is prescribed through its Fourier coefficients, 

unlike in full circulation models. On the other hand, it is also likely that excessive prior 

ranges were adopted in this case, although justified by atrial dilation typically observed in 

single-ventricle patients [58].

Patient UM10 is the only one with AV valve regurgitation with a non-zero kbw, the 

regurgitant AV valve area ratio. Patient UM5 shows variability in the AV resistance 

coefficient α and time delay parameter td,1. A marked variability in td,1 only observed in this 

patient suggests possible inconsistency between the prescribed venous and aortic flow rates 

and will be further discussed in Section 5.3.3.

A heat map representation of the correlations between heart model parameters is illustrated 

in Figure 12. An inverse correlation is observed between csa and dsa in the atrium similarly 

to csv and dsv in the ventricle. An increase in csa leads to an increased passive atrial pressure 

at a given target volume that may be reversed by decreasing the exponent dsa. All models 

also show a direct correlation between Vsa,0 and dsa and an inverse correlation between Vsa,0 

and Csa, as the heart sub-model reacts to an increase in Vsa,0 by increasing dsa and 

decreasing Csa to satisfy the average and maximum atrial pressure targets. All models also 

show direct correlation between Vsv,0 and b, while there is little correlation between Vsv,0 

and a. This shows that changes in the active pressure negative curvature are less effective in 

reproducing the measured heart physiology than changes in its slope, governed by the 2 

parameters Vsv,0 and b. Finally, the AV compliance Cao is correlated to the input and output 

flow time delay td,1, because of their proximity in the circulation layout.

5.3.2. Single-level estimation for patient specific Norwood circulation models
—A small variance is consistently obtained in the aortic compliance Cao for the full LPN 

model (results for single-level estimation are not shown), similar to what was observed in 

the heart sub-model. The absence of a prescribed aortic flow rate is, in this case, 

compensated by the addition of CO as a target. Conversely, as previously observed under 

virtual patient conditions, unstressed atrial volume variability increases. Also, consistent 

with the heart sub-model, a large variability persists for the AV resistance coefficients α in 

patient UM5.

Page 16



The shunt diameter Dsh, not included in the heart sub-model, is also associated with a 

limited variance, with values of 3.0470 ± 0.0379 mm for patients MUSC7, 3.4633 ± 0.0322 

mm for GOSH22, 3.0744 ± 0.0360 mm for UM5 and 3.4046 ± 0.0404 mm for UM10, 

compatible with the shunt diameters that were implanted during Norwood surgery, that is, 

4.0 mm, 3.5 mm, 4.0 mm and 4.0 mm for patients MUSC7, GOSH22, UM5 and UM10, 

respectively. This is consistent with expectations, as the shunt lumen diameter is known to 

progressively shrink following implantation due to endotheliaization.

The systemic circulation block is similarly identified for all four patients, where proximal, 

intermediate and distal resistances are consistently determined with a relative order R1 > R2 

> R3 (Figure 13). These values seem to be affected by the different targets (SDMA peaks

and CO, respectively) specified for the venous and systemic flows. Thus, the identified

parameters suggest that an arteries+capillaries - small veins - great veins model explains the

target quantities better than an arteries - capillaries - veins model when the systemic

circulation is simulated using three resistors. Similarly, estimation does not consistently

identify a predominant compliance between C1 and C2. Resistance and compliance

parameters in the pulmonary circulation block behave differently from those in the systemic

block, likely due to the presence of additional elements, the linear and non linear shunt

resistances Rsh, Ksh and the pulmonary compliance Cp. Also, maximum and minimum

pulmonary pressure measurements are prescribed at these locations, while no measurements

are provided for the systemic block other than the Qp/Qs ratio and the systemic venous

return flow rate at SDMA locations.

5.3.3. Multi-level estimation for patient specific Norwood circulation models—
Multi-level Bayesian estimation results for marginal parameter posteriors and parameter 

correlations are shown in Figures 13 and 14, respectively. A large variance in α (the AV 

resistance coefficient) for patient UM5 is consistently estimated from heart and Norwood 

models. As patient UM5 has the largest AV area, α needs to be increased to produce similar 

AV resistances as in other patients. This effect is amplified by the squared inverse 

dependence between resistance and area. Higher variability in the time delay td,1 for this 

patient also highlights a lack of compatibility between the clinically measured aortic and 

venous flow curves.

The adoption of prior parameter knowledge from the heart sub-model has improved the 

estimation of the parameters and decreased the resulting variance. Table XI shows the 

average parameter learning factors θ for all patients. The multi-level estimator consistently 

results in reduced variance and parameter learning is significantly improved by this 

approach. The value of θ averaged across all parameters and patients improves from 0.28 to 

0.39 using a multi-level instead of a single-level approach. Moreover, some parameters can 

only be determined using a multi-level approach. For example, the learning factor improves 

from 0.04 to 0.84 for Vsa,0, and from 0.03 to 0.33 for t1,r (Table XI).

5.3.4. Optimal patient-specific circulation models—Optimal parameter estimates 

under multi-level estimation produce realistic physiology and closely approximate patient-

specific targets as shown in Tables XII and XIII. Figure 15 shows the AV flow rate for 

patient UM10, characterized by the expected retrograde behavior during ventricular systole 
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as a result of valve regurgitation. The computed mean regurgitant flow rate Qreg agrees well 

with clinical measurements, and the two positive peaks in Qav, that is, filling and atrial 

contraction, are consistent with literature findings for single ventricle patients [58]. 

Pulmonary and caval vein flows show retrograde behavior during atrial contraction, 

consistent with the MRI flow profiles measured on the patients. Realistic tracings with 

correct relative timings are also observed for atrial, ventricular and aortic pressures.

Computed atrial pressure-volume loop (PV-loops) for all patients (Figure 16) are consistent 

with the underlying model formulation, where hysteresis characterizes atrial contraction and 

is absent during filling. Also, atrial volumes in patient UM10 are notably larger than in other 

patients with comparable BSA, possibly as a result of AV valve regurgitation in this patient 

(see, e.g., [59]).

Ventricular PV-loops show volume ranges and max pressures in perfect agreement with the 

clinical data, indicating that ventricle-arterial coupling is properly modeled by the proposed 

lumped parameter formulation. All patients except UM10 are characterized by ventricular 

PV-loops with isovolumic contraction and relaxation. Conversely, patient UM10 does not 

exhibit the typical isovolumic behavior due to AV valve regurgitation, and maximum 

ventricular pressure is higher than in other patients.

6. Conclusions

This work focuses on automatic estimation of Norwood circulation model parameters, and 

on how uncertainty in the clinical data collection affects these estimates. We argue that 

quantifying variability in the model parameters is key to characterizing the confidence in the 

numerical predictions produced by these models. However, this variability is typically 

neglected in manual tuning, resulting in deterministic parameters with no associated 

measures of confidence.

We considered three model formulations of increasing complexity, starting from a typical 

peripheral circulation circuit and progressing to a full Norwood circulation model. We 

combined tools from identifiability analysis and Bayesian estimation to reduce the variance 

in the estimated parameters and to maximize the physiological consistency of predicted 

physiologies.

We first conclude that a preliminary identifiability analysis is an important prerequisite to 

maximize predictive ability. Complex models with an excessive number of parameters may 

offer a detailed description of certain physiological mechanisms, but may pose identifiability 

challenges when trying to reproduce the response of specific patients. Using the 

methodologies discussed in the paper, one can seek an optimal combination of parameters 

and target quantities with significant benefits for automatic parameter estimation.

Second, we have shown that multi-level Bayesian estimation takes advantage of the 

compartmental nature of LPN circulation models, leading to a reduction in the variance of 

the estimated parameters, and a corresponding improvement in the learning factor θ across 

all analyzed patients. Moreover, this approach is essential for effective learning of certain 

parameters, particularly the unstressed atrial volume Vsa,0. Estimates of aortic compliance 
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Cao, BT-Shunt diameter Dsh and systemic compliances/resistances ratios showed a 

particularly limited variance across all patients and MAP parameter estimates reproduced 

well the target clinical measurements, as shown in Table XII and XIII.

This study also confirms that proximity, in the LPN circuit, between the target clinical 

measurements and the parameters to estimate is beneficial and generally leads to a reduction 

in the estimated parameter variance.

Moreover, the randomized exploration of the parameter space provided by DREAM is 

important to find a robust initial guess for optimization algorithms, preventing convergence 

to local maxima.

Future work will be devoted to development of hemodynamic surrogates of the three-

dimensional vasculature, to extend this parameter learning framework to patient-specific 

multiscale models. Also, further investigation on optimal model complexity will be required 

to understand the potential of improving parameter estimates by looking at an ensemble of 

circulation models.
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Appendix

A.1. Heart model equations

The pressure-volume relationships in the atrial and ventricular chambers are formulated 

using a combination of activation function, active and passive curves, characterized by the 

expressions [2, 28]:

(A.1)

where Psa,act, Psa,pas are the active and passive pressure curves for the atrium, while Psv,act, 

Psv,pas refer to the ventricle. The quantities Av, Aa are the ventricular and atrial activation 

functions, expressed by
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(A.2)

where tma and tmv are relative cycle-times measured from the beginning of atrial and 

ventricular activation and tsvs and tsas the total ventricular and atrial activation times, 

respectively. The aortic valve is regulated by the pressure difference between the ventricle 

and ascending AO. The left ventricular outflow (LVOF) is computed from the following 

equation:

(A.3)

The effective pressure in the left ventricle that accounts for the pressure drop due to the 

viscous resistance in the myocardium is evaluated as [2, 28]:

(A.4)

The AV valve is simulated as an assembly of one resistance and one inductance [60], where 

the two parameters α and β are used to better capture the shape of the AV flow rate curve, 

characterized by a first peak with the atrium behaving as a reservoir/conduit and a second 

peak characterized by atrial contraction

(A.5)

where the factor NUM takes into account the conversion between units and other constants 

and Afw is reported in Table III for the selected patients.

Flow in the AV valve is described by the equation

(A.6)

where the AV flow Qav is prevented from assuming negative values for cases where no valve 

regurgitation is observed. The model is completed by the following three equations

Page 20



(A.7)

The cardiac cycle is assumed to start at the onset of ventricular activation. As MRI clinical 

measurements of venous and aortic flow rates may not be synchronized with this choice, we 

adopt an additional parameter td,1 accounting for the possible time delay between the 

prescribed flow curves (assumed synchronous) and the simulated heart cycle.

Finally, we again stress that the heart model is non linear, due to the activation mechanism in 

the heart contraction and unidirectional flow in the valves.

A.2. Peripheral circulation model equations

Circulatory blocks in the upper/lower body and in the lungs were modeled by RLC-R-CR 

blocks (Figure 1(c)). In the pulmonary block, the flow rate through the lungs and time 

variation of incoming pulmonary flow rate and lung pressure is described by

(A.8)

Similarly, the following equations describe the venous side of the pulmonary circulation:

(A.9)

while evolution in time of flow rate and pressure in the systemic block are instead:

(A.10)

Conservation of mass in the atrium and ventricle are expressed as:
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(A.11)

and, finally, aortic and pulmonary artery compliance are accounted using the following 

relationship:

(A.12)

In this study the effect of the respiration is neglected, therefore we set DPith = 0.

A.3. Non linear shunt resistance

The aorto-pulmonary shunt is modeled using a non linear pressure-flow rate relationship of 

the form [28]:

(A.13)

The linear and non-linear pressure loss coefficients Rsh and Ksh, are expressed as a function 

of the shunt diameter Dsh, through the following empirical relationships:

(A.14)

where k1 and k2 are proportionality constants, which can be derived experimentally or 

computationally; k1 is dependent on shunt length and blood viscosity, and k2 depends on 

local geometry (shunt angle of insertion, length, and subclavian and pulmonary arterial 

diameters). In this study, k1 and k2 values were set as 960 and 5200 mmHg l min-2 mm4, as

in [28].

A.4. Fourier coefficients for aortic and venous flow rates

The Fourier coefficients used to prescribe aortic and venous flow rates are reported in this 

section, for the heart model under real and virtual patient conditions. The current simulation 

time is denoted with tk, while a time delay td,1 is introduced to account for possible shifts 

between the onset of ventricular contraction in the heart sub-model and the time origin used 

during MRI acquisitions, that is,
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(A.15)

We set the fundamental frequency equal to ω = 2:0 π/tc with tc the heart cycle time, and 

compute the venous flow rate as follows:

(A.16)

Numerical values of ain,i, aout,i, bin,i and bout,i for both real and virtual patient conditions, are 

reported in Table A.1, A.2 and A.3.

Table A.1

Fourier coefficients for prescribed aortic and venous flow in the heart sub-model for patient 

MUSC7 and GOSH22.

Coefficient

Aortic flow rate

Coefficient

Venous flow rate

MUSC7 GOSH22 MUSC7 GOSH22

ain,1 4.21 × 10+00 1.26 × 10+01 aout,1 2.98 × 10+00 −6.94 × 10+00

ain,2 −1.57 × 10+01 −5.85 × 10+00 aout,2 −2.00 × 10+01 −1.95 × 10+01

ain,3 8.73 × 10−01 2.26 × 10+00 aout,3 −4.37 × 10+00 −4.98 × 10+00

ain,4 1.96 × 10+00 5.42 × 10+00 aout,4 −3.96 × 10+00 −6.82 × 10−01

ain,5 −9.14 × 10−01 1.12 × 10+00 aout,5 3.37 × 10−01 9.30 × 10−01

ain,6 −8.62 × 10−01 −9.53 × 10−01 aout,6 −1.41 × 10+00 2.62 × 10+00

ain,7 −7.60 × 10−01 2.30 × 10−02 aout,7 4.66 × 10−01 −3.76 × 10−01

ain,8 −3.59 × 10−01 1.70 × 10+00 aout,8 1.09 × 10−01 3.03 × 10+00

ain,9 2.52 × 10+01 3.09 × 10+01 aout,9 2.52 × 10+01 3.09 × 10+01

bin,1 8.91 × 10−01 8.08 × 10+00 bout,1 3.87 × 10+01 4.49 × 10+01

bin,2 1.81 × 10+01 1.29 × 10+01 bout,2 5.51 × 10+00 −5.84 × 10+00

bin,3 1.36 × 10+01 1.45 × 10+01 bout,3 −2.79 × 10+00 −1.72 × 10+00

bin,4 1.18 × 10+00 5.50 × 10+00 bout,4 −2.69 × 10+00 −7.19 × 10+00

bin,5 −9.28 × 10−01 −2:40 × 10+02 bout,5 −1.73 × 10+00 −1.34 × 10+01

bin,6 −7.00 × 10−01 1.28 × 10+00 bout,6 −7.53 × 10+01 −2.50 × 10+00

bin,7 −7.78 × 10−01 2.04 × 10+00 bout,7 −1.52 × 10+00 2.26 × 10+01

bin,8 −2.04 × 10−01 1.18 × 10+00 bout,8 −1.97 × 10+01 9.81 × 10+01
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Table A.2

Fourier coefficients for prescribed aortic and venous flow in the heart sub-model for patient 

UM5 and UM10.

Coefficient

Aortic flow rate

Coefficient

Venous flow rate

UM5 UM10 UM5 UM10

ain,1 7.54 × 10+00 5.21 × 10+01 aout,1 −3.36 × 10+00 −2.13 × 10+01

ain,2 −6.66 × 10+00 4.15 × 10+01 aout,2 −2.70 × 10+01 −6.09 × 10+00

ain,3 9.32 × 10+00 −1.09 × 10+01 aout,3 2.72 × 10+00 −5.57 × 10+00

ain,4 2.71 × 10+00 −2.48 × 10+00 aout,4 −4.47 × 10+00 3.53 × 10+00

ain,5 −2.08 × 10+00 5.62 × 10+00 aout,5 6.09 × 10+00 −3.42 × 10−02

ain,6 6.89 × 10−01 −3.14 × 10+00 aout,6 6.24 × 10−03 2.06 × 10+00

ain,7 1.48 × 10−01 −7.53 × 10−01 aout,7 3.61 × 10+00 3.55 × 10−01

ain,8 −1.46 × 10−01 6.09 × 10−01 aout,8 −8.96 × 10−01 −3.21 × 10−01

ain,9 2.70 × 10+01 3.10 × 10+01 aout,9 2.70 × 10+01 3.10 × 10+01

bin,1 −1.38 × 10+01 4.86 × 10+01 bout,1 4.57 × 10+01 3.85 × 10+01

bin,2 4.64 × 10+00 −1.63 × 10+01 bout,2 −6.21 × 10+00 −1.04 × 10+01

bin,3 5.27 × 10+00 −1.56 × 10+01 bout,3 −5.34 × 10+00 −8.66 × 10−01

bin,4 −4.03 × 10+00 8.58 × 10+00 bout,4 −4.27 × 10+00 −1.75 × 10+00

bin,5 6.40 × 10−01 −2.68 × 10+00 bout,5 −3.46 × 10+00 −1.97 × 10+00

bin,6 9.53 × 10−01 −1.91 × 10+00 bout,6 1.07 × 10+00 1.06 × 10−01

bin,7 −4.54 × 10−01 2.06 × 10+00 bout,7 −4.04 × 10−01 −8.59 × 10−01

bin,8 1.48 × 10−01 −6.84 × 10−02 bout,8 2.68 × 10+00 1.99 × 10+00

Table A.3

Fourier coefficients for prescribed aortic and venous flow in the heart sub-model for virtual 

patient conditions.

Coefficient Aortic flow rate Virtual Patient Coefficient Venous flow rate Virtual Patient

ain,1 −5.99 × 10−01 aout,1 3.64 × 10+01

ain,2 1.04 × 10+01 aout,2 5.57 × 10+2

ain,3 1.68 × 10+00
aout,3 −2.71 × 10+01

ain,4 4.64 × 10+00 aout,4 −3.01 × 10+01

ain,5 4.06 × 10−01 aout,5 −1.68 × 10+01

ain,6 −8.77 × 10−01 aout,6 −3.75 × 10+00

ain,7 5.77 × 10−02 aout,7 1.33 × 10+00

ain,8 −4.66 × 10−01 aout,8 1.01 × 10+00

ain,9 2.63 × 10+01 aout,9 2.67 × 10+01

bin,1 −7.74 × 10+00 bout,1 3.72 × 10+01

bin,2 7.62 × 10+00 bout,2 4.77 × 10+01

bin,3 4.99 × 10+00 bout,3 2.97 × 10+01

bin,4 −1.94 × 10−01 bout,4 3.66 × 10+00
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Coefficient Aortic flow rate Virtual Patient Coefficient Venous flow rate Virtual Patient

bin,5 1.68 × 10+00 bout,5 −1.05 × 10+01

bin,6 −7.00 × 10−01 bout,6 −1.02 × 10+01

bin,7 7.95 × 10−01 bout,7 −4.43 × 10+00

bin,8 1.19 × 10−01 bout,8 −7.53 × 10−01
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Figure 1. 
(a) Schematic representation of a simple RCRCR circuit, (b) heart sub-model and (c)

compete Norwood Stage I model with one systemic and one pulmonary circulation blocks.
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Figure 2. 
Schematic layout showing the locations where MRI, echo-Doppler and catheter data was 

collected according to the Leducq Network protocol.
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Figure 3. 
Inputs and outputs for the DREAM estimation and NM optimization tasks (a and b, 

respectively). The adopted computational framework is also schematically represented (c). 

Single-level optimal parameter estimation follows the path 2–4, while multi-level estimation 

follows 1–5–4. Separate optimal estimation of the heart sub-model parameters can be carried 

out following path 1–3.
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Figure 4. 
Local sensitivity indexes for the RCRCR model.

Page 32



Figure 5. 
MAP estimation for RCRCR model parameters under scenarios 2,3, and 4. The graph on the 

left shows the optimal estimates in the (log ℓȳ(d̄), dy) plane whereas likelihood convergence

profiles during NM optimization are illustrated in the other two graphs for scenario 2 and 4.
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Figure 6. 
Gelman-Rubin convergence and distributions of Rtot, τ and C1/C2 estimated through 

MCMC. Graphs in the upper row refer to scenario 2 while the central and bottom rows refer

to scenario 3 and 4, respectively.
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Figure 7. 
Result of randomized MAP estimation on the Norwood circulation model under virtual 

patient conditions. While removal of the heart model parameters leads to optimal estimates 

closer to the origin of the (log ℓȳ(d ̄), dy) plane, no distinct regimes (as in Figure 5) can be

identified.
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Figure 8. 
Estimated and virtual patient time histories of pressure and flow rate. Estimated MAP curves 

are drawn using dashed lines whereas continuous curves identify reference virtual patient 

conditions.
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Figure 9. 
Estimated and virtual patient pressure-volume loops. Estimated MAP curves are drawn 

using dashed lines whereas continuous curves identify reference virtual patient conditions.
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Figure 10. 
Gelman-Rubin diagnostic profiles for heart sub-model parameter estimation using DREAM. 

A sufficient number of iterations is executed to reduce this quantity below 1.2 for each 

Markov chain.
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Figure 11. 
Box whiskers representation of heart sub-model parameter distributions. Estimates of the 

unstressed volume in the atrium Vsa,0 are consistently characterized by a smaller variability 

than the same quantities for the ventricle Vsv,0. Values of aortic compliance Cao are well 

indentified. Differences are observed in the prescribed inflow/outflow time shift parameter 

td,1 and atrio-ventricular resistance coefficient α for patient UM5. Finally, the ratio kbw is 

estimated for patient UM10, the only patient with a regurgitant atrio-ventricular valve.

Page 39



Figure 12. 
MCMC parameter correlations for the heart sub-model of patients MUSC7 and GOSH22. 

Strong correlations can be observed between parameters belonging to the same functional 

compartment (e.g., atrial and ventricular model parameters).
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Figure 13. 
Box whiskers representation of Norwood model parameters identified using multi-level 

adaptive MCMC. The plots show the limited variance associated with estimates of 

unstressed atrial volume Vsa,0, aortic compliance Cao, BT-Shunt diameter Dsh and systemic 

capacitance and resistance ratios.
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Figure 14. 
Parameter correlation matrix computed from MCMC using multi-level Bayesian inference 

for patient UM10.
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Figure 15. 
Flow and pressure time tracings estimated for patient UM10. The regurgitant AV valve flow 

rate, pulmonary and caval vein flows and pressure tracings are consistent with the expected 

physiology.
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Figure 16. 
Atrial and ventricular PV-loops for all patients. Ventricular PV-loops are similar for the four 

patients, consistently with the similarity in the BSA. Isovolumic contraction and relaxation 

are not present in patient UM10 due to AV valve regurgitation, as expected. Larger atrial 

volumes are observed for patient UM10, again consistent with leakage in the AV valve
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Table I

List of acronyms.

Acronym Description Acronym Description

MRI Magnetic resonance imaging MCMC Markov chain Monte Carlo

BT Blalock-Thomas-Taussig MAP Maximum a posteriori

SVR Systemic vascular resistance DREAM Differential evolution adaptive Metropolis

PVR Pulmonary vascular resistance NM Nelder-Mead

AV Atrio-ventricular GR Gelman-Rubin

ODE Ordinary differential equation SDMA Maxima and minima in biphasic flow rate

LPN Lumped parameter network PV-loop Pressure-volume loop

FIM Fisher Information matrix PA Pulmonary arteries

SVC Superior vena cava

Pedix Description Pedix Description

sa single atrium sv single ventricle

ao aorta av atrio-ventricular

s systemic p/lung pulmonary

ub upper body lb lower body

myo myocardial sh shunt

vc venae cavae pv pulmonary veins

fw forward bw backwords

*a (suffix) arterial *v (suffix) venous
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Table III

Patient data at Norwood surgery.

Patient age (months) BSA [m2] AV Valve area Afw [cm2] Heart Rate [bpm]

MUSC7 3 0.26 2.8 117.65

GOSH22 4 0.27 3.3 116.0

UM5 4 0.28 4.2 90.0

UM10 5 0.34 3.7 141.0

Patient pathology MR shunt diameter [mm] SVR [mmHg·s cm−3] PVR [mmHg·s cm−3]

MUSC7 HRHS, tric., pulm. atresia 4.0 3.07 0.750

GOSH22 HLHS, Ao, mitral atresia 3.5 3.15 0.301

UM5 HLHS, Ao, mitral atresia 4.0 3.17 0.663

UM10 HLHS, Ao, mitral atresia 4.0 6.18 0.500

BSA - Body surface Area; MR - Magnetic resonance; HRHS - Hypoplastic right heart syndrome; HLHS -Hypoplastic left heart syndrome; tric. - 
tricuspid valve; pulm. - pulmonary
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Table IV

Patient-specific target clinical quantities used for parameter identification in both the heart sub-model and full 

circulation model with systemic and pulmonary circulation blocks.

n. Target Qty. Units Description

1 Pao,av [mmHg] Average aortic pressure

2 Pao,max [mmHg] Maximum aortic pressure

3 Psa,av [mmHg] Average atrial pressure

7 Psa,max [mmHg] Maximum atrial pressure

4 Psv,max [mmHg] Maximum ventricular pressure

5 Vsv,max [cm3] Maximum ventricular volume

6 Psv,0 [mmHg] Ventricular pressure at the start of systole

8 Qreg,av [cm3 s−1] Average regurgitant flow rate in AV valve

9 Pao,min [mmHg] Minimum aortic pressure

11 Qp/Qs - Pulmonary to systemic flow split ratio

12 Ppa,av [mmHg] Average pulmonary pressure

14 Ppa,min [mmHg] Minimum pulmonary pressure

15 Ppa,max [mmHg] Maximum pulmonary pressure

16 CO [cm3 s−1] Cardiac output

17 Qvc,S [cm3 s−1] Flow rate in venae cavae, point S

18 Qvc,M [cm3 s−1] Flow rate in venae cavae, point M

19 Qvc,D [cm3 s−1] Flow rate in venae cavae, point D

20 Qvc,A [cm3 s−1] Flow rate in venae cavae, point A

21 Qpv,S [cm3 s−1] Flow rate in pulmonary veins, point S

22 Qpv,M [cm3 s−1] Flow rate in pulmonary veins, point M

23 Qpv,D [cm3 s−1] Flow rate in pulmonary veins, point D

24 Qpv,A [cm3 s−1] Flow rate in pulmonary veins, point A
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Table VI

Selected scenarios for RCRCR parameter estimation.

Scen. Parameters Data

SC1 All parameters and initial conditions All data

SC2 (5) Rtot, τ, C1/C2, R1/R2, R3/R2 (5) P0,min, P0,av, P0,max, P3,av, P3,max

SC3 (5) Rtot, τ, C1/C2, R1/R2, R3/R2 (3) P0,av, P0,max, P3,av

SC4 (3) Rtot, τ, C1/C2 (5) P0,min, P0,av, P0,max, P3,av, P3,max



Page 52

Table VII

Estimation of 95% confidence intervals for RCRCR parameters and learning factors θ for scenarios 2, 3, and 

4.

Parameter Units True average True Std. Adm. range

Rtot [mmHg s cm−3] 3.07 0.153 [2.0 – 4.0]

τ [s] 0.56 0.028 [0.5 – 3.0]

C1/C2 - 0.2 0.01 [0.1 – 10.0]

R1/R2 - 0.2 0.01 [0.1 – 2.0]

R3/R2 - 0.2 0.01 [0.1 – 1.0]

P1,i [mmHg] 5 0.25 -

P2,i [mmHg] 5 0.25 -

Parameter Units Scenario 2 Scenario 3 Scenario 4

Rtot [mmHg s cm−3] [2.931 – 3.967] [3.161 – 4.069] [2.943 – 3.189]

τ [s] [0.494 – 0.564] [0.347 – 2.705] [0.522 – 0.600]

C1/C2 - [0.164 – 0.750] [0.062 – 0.838] [0.173 – 0.229]

R1/R2 - [0.201 – 0.777] [0.425 – 1.021] [0.2 – 0.2]

R3/R2 - [0.108 – 0.604] [0.052 – 0.684] [0.2 – 0.2]

P1,i [mmHg] [5 – 5] [5 – 5] [5 – 5]

P2,i [mmHg] [5 – 5] [5 – 5] [5 — 5]

Learning factor θ Units Scenario 2 Scenario 3 Scenario 4

Rtot [mmHg s cm−3] 0.455 0.522 0.870

τ [s] 0.970 0.006 0.967

C1/C2 - 0.938 0.917 0.994
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Table X

Virtual patient parameters and computed MAP estimates for Norwood circulation model. Rows in gray 

indicate close agreement between true and estimated parameters.

Parameter Units Virtual patient MAP estimate* Norm. dist. [%]

HR [bpm] 117.65 117.65 -

Csa [cm3 mmHg−1] 0.766 0.472 15.0

csa [mmHg] 0.01 0.29 35.2

dsa [cm−3] 0.8 0.55 38.9

Vsa,0 [cm3] 2.5 0.28 14.9

tsas,r - 0.25 0.19 65.5

t1,r - 0.1 0.03 52.3

a [mmHg cm6] −0.12 −0.17 24.3

b [mmHg cm−3] 14.0 11.9 30.6

csv [mmHg] 1.0 2.2 23.6

dsv [cm−3] 0.065 0.036 71.7

Vsv,0 [cm3] 9.8 8.4 10.3

tsvs,r - 0.31 0.35 31.5

Rmyo [mmHg s cm−3] 0.1 0.12 16.9

α - 24.5 16.2 28.5

Kao [mmHg s2 cm−6] 0.000250 0.000173 51.3

Cao [cm3 mmHg−1] 0.24 0.24 0.35

β - 0.95 0.12 82.8

Dsh [mm] 3.0 3.0 2.7

Cp [cm3 mmHg−1] 0.31 0.17 47.8

SVR [mmHg s cm−3] 3.07 3.07 -

PVR [mmHg s cm−3] 0.75 0.75 -

Ctot,SVR [cm3 mmHg−1] 0.77 0.52 30.3

(C1/C2)SVR - 5.0 5.8 4.2

(R1/R2)SVR - 0.9 3.7 93.1

(R3/R2)SVR - 0.1 0.04 2.2

LSVR [mmHg s2 cm−3] 0.007 0.021 32.1

Ctot,PVR [cm3 mmHg−1] 0.97 1.20 7.0

(C1/C2)PVR - 5.0 4.8 1.0

(R1/R2)PVR - 0.1 0.3 7.7
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Parameter Units Virtual patient MAP estimate* Norm. dist. [%]

(R3/R2)PVR - 1.0 1.3 9.4

LPVR [mmHg s2 cm−3] 0.026 0.032 14.6

kbw - 0.0 0.0 -

Vsv [cm3] 38.9 26.1 36.4

Vsa [cm3] 2.6 1.3 9.3

Pao [mmHg] 38.0 36.8 1.7

Qav [cm3 s−1] 50.0 50.0 -

Pubv [mmHg] 22.0 22.0 -

Quba [cm3 s−1] 14.0 14.0 -

Puba [mmHg] 15.0 15.0 -

Plung [mmHg] 16.0 16.0 -

Ppv [mmHg] 13.0 13.0 -

Qpa [cm3 s−1] 15.0 15.0 -

Ppa [mmHg] 10.0 10.0 -

*ℓ2 distance between true parameters and MAP estimate is equal to 0.316.
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Table XI

Parameter learning factors θ for Bayesian estimation of heart and full circulation models.

Patient Heart average θ Single-level average θ Multi-level average θ

MUSC7 0.30 0.28 0.41

GOSH22 0.30 0.31 0.41

UM5 0.21 0.28 0.38

UM10 0.26 0.26 0.35

Patient Multi-level improvement Average Vsa,0 θS – θM t1,r θM/θS

MUSC7 5.62 0.04 - 0.77 0.00 - 0.19

GOSH22 2.64 0.00 - 0.63 0.16 - 0.24

UM5 2.58 0.04 - 0.84 0.03 - 0.33

UM10 3.86 0.00 - 0.66 0.06 - 0.23

*
Average learning factor computed from the parameters Csa, csa, dsa, a, b, csv, dsv, Vsv,0, tsvs,r, Rmyo, Cao, θM is parameter learning factor 

under multi-level estimation, while θS is the same quantity for single-level estimation.
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	AppendixA.1. Heart model equationsThe pressure-volume relationships in the atrial and ventricular chambers are formulated using a combination of activation function, active and passive curves, characterized by the expressions [2, 28]:(A.1)where Psa,act, Psa,pas are the active and passive pressure curves for the atrium, while Psv,act, Psv,pas refer to the ventricle. The quantities Av, Aa are the ventricular and atrial activation functions, expressed by(A.2)where tma and tmv are relative cycle-times measured from the beginning of atrial and ventricular activation and tsvs and tsas the total ventricular and atrial activation times, respectively. The aortic valve is regulated by the pressure difference between the ventricle and ascending AO. The left ventricular outflow (LVOF) is computed from the following equation:(A.3)The effective pressure in the left ventricle that accounts for the pressure drop due to the viscous resistance in the myocardium is evaluated as [2, 28]:(A.4)The AV valve is simulated as an assembly of one resistance and one inductance [60], where the two parameters α and β are used to better capture the shape of the AV flow rate curve, characterized by a first peak with the atrium behaving as a reservoir/conduit and a second peak characterized by atrial contraction(A.5)where the factor NUM takes into account the conversion between units and other constants and Afw is reported in Table III for the selected patients.Flow in the AV valve is described by the equation(A.6)where the AV flow Qav is prevented from assuming negative values for cases where no valve regurgitation is observed. The model is completed by the following three equations(A.7)The cardiac cycle is assumed to start at the onset of ventricular activation. As MRI clinical measurements of venous and aortic flow rates may not be synchronized with this choice, we adopt an additional parameter td,1 accounting for the possible time delay between the prescribed flow curves (assumed synchronous) and the simulated heart cycle.Finally, we again stress that the heart model is non linear, due to the activation mechanism in the heart contraction and unidirectional flow in the valves.A.2. Peripheral circulation model equationsCirculatory blocks in the upper/lower body and in the lungs were modeled by RLC-R-CR blocks (Figure 1(c)). In the pulmonary block, the flow rate through the lungs and time variation of incoming pulmonary flow rate and lung pressure is described by(A.8)Similarly, the following equations describe the venous side of the pulmonary circulation:(A.9)while evolution in time of flow rate and pressure in the systemic block are instead:(A.10)Conservation of mass in the atrium and ventricle are expressed as:(A.11)and, finally, aortic and pulmonary artery compliance are accounted using the following relationship:(A.12)In this study the effect of the respiration is neglected, therefore we set DPith = 0.A.3. Non linear shunt resistanceThe aorto-pulmonary shunt is modeled using a non linear pressure-flow rate relationship of the form [28]:(A.13)The linear and non-linear pressure loss coefficients Rsh and Ksh, are expressed as a function of the shunt diameter Dsh, through the following empirical relationships:(A.14)where k1 and k2 are proportionality constants, which can be derived experimentally or computationally; k1 is dependent on shunt length and blood viscosity, and k2 depends on local geometry (shunt angle of insertion, length, and subclavian and pulmonary arterial diameters). In this study, k1 and k2 values were set as 960 and 5200 mmHg l min-2 mm4, as in [28].A.4. Fourier coefficients for aortic and venous flow ratesThe Fourier coefficients used to prescribe aortic and venous flow rates are reported in this section, for the heart model under real and virtual patient conditions. The current simulation time is denoted with tk, while a time delay td,1 is introduced to account for possible shifts between the onset of ventricular contraction in the heart sub-model and the time origin used during MRI acquisitions, that is,(A.15)We set the fundamental frequency equal to ω = 2:0 π/tc with tc the heart cycle time, and compute the venous flow rate as follows:(A.16)Numerical values of ain,i, aout,i, bin,i and bout,i for both real and virtual patient conditions, are reported in Table A.1, A.2 and A.3.Table A.1Fourier coefficients for prescribed aortic and venous flow in the heart sub-model for patient MUSC7 and GOSH22.CoefficientAortic flow rateCoefficientVenous flow rate

MUSC7GOSH22MUSC7GOSH22ain,14.21 × 10+001.26 × 10+01aout,12.98 × 10+00−6.94 × 10+00ain,2−1.57 × 10+01−5.85 × 10+00aout,2−2.00 × 10+01−1.95 × 10+01ain,38.73 × 10−012.26 × 10+00aout,3−4.37 × 10+00−4.98 × 10+00ain,41.96 × 10+005.42 × 10+00aout,4−3.96 × 10+00−6.82 × 10−01ain,5−9.14 × 10−011.12 × 10+00aout,53.37 × 10−019.30 × 10−01ain,6−8.62 × 10−01−9.53 × 10−01aout,6−1.41 × 10+002.62 × 10+00ain,7−7.60 × 10−012.30 × 10−02aout,74.66 × 10−01−3.76 × 10−01ain,8−3.59 × 10−011.70 × 10+00aout,81.09 × 10−013.03 × 10+00ain,92.52 × 10+013.09 × 10+01aout,92.52 × 10+013.09 × 10+01bin,18.91 × 10−018.08 × 10+00bout,13.87 × 10+014.49 × 10+01bin,21.81 × 10+011.29 × 10+01bout,25.51 × 10+00−5.84 × 10+00bin,31.36 × 10+011.45 × 10+01bout,3−2.79 × 10+00−1.72 × 10+00bin,41.18 × 10+005.50 × 10+00bout,4−2.69 × 10+00−7.19 × 10+00bin,5−9.28 × 10−01−2:40 × 10+02bout,5−1.73 × 10+00−1.34 × 10+01bin,6−7.00 × 10−011.28 × 10+00bout,6−7.53 × 10+01−2.50 × 10+00bin,7−7.78 × 10−012.04 × 10+00bout,7−1.52 × 10+002.26 × 10+01bin,8−2.04 × 10−011.18 × 10+00bout,8−1.97 × 10+019.81 × 10+01Table A.2Fourier coefficients for prescribed aortic and venous flow in the heart sub-model for patient UM5 and UM10.CoefficientAortic flow rateCoefficientVenous flow rate

UM5UM10UM5UM10ain,17.54 × 10+005.21 × 10+01aout,1−3.36 × 10+00−2.13 × 10+01ain,2−6.66 × 10+004.15 × 10+01aout,2−2.70 × 10+01−6.09 × 10+00ain,39.32 × 10+00−1.09 × 10+01aout,32.72 × 10+00−5.57 × 10+00ain,42.71 × 10+00−2.48 × 10+00aout,4−4.47 × 10+003.53 × 10+00ain,5−2.08 × 10+005.62 × 10+00aout,56.09 × 10+00−3.42 × 10−02ain,66.89 × 10−01−3.14 × 10+00aout,66.24 × 10−032.06 × 10+00ain,71.48 × 10−01−7.53 × 10−01aout,73.61 × 10+003.55 × 10−01ain,8−1.46 × 10−016.09 × 10−01aout,8−8.96 × 10−01−3.21 × 10−01ain,92.70 × 10+013.10 × 10+01aout,92.70 × 10+013.10 × 10+01bin,1−1.38 × 10+014.86 × 10+01bout,14.57 × 10+013.85 × 10+01bin,24.64 × 10+00−1.63 × 10+01bout,2−6.21 × 10+00−1.04 × 10+01bin,35.27 × 10+00−1.56 × 10+01bout,3−5.34 × 10+00−8.66 × 10−01bin,4−4.03 × 10+008.58 × 10+00bout,4−4.27 × 10+00−1.75 × 10+00bin,56.40 × 10−01−2.68 × 10+00bout,5−3.46 × 10+00−1.97 × 10+00bin,69.53 × 10−01−1.91 × 10+00bout,61.07 × 10+001.06 × 10−01bin,7−4.54 × 10−012.06 × 10+00bout,7−4.04 × 10−01−8.59 × 10−01bin,81.48 × 10−01−6.84 × 10−02bout,82.68 × 10+001.99 × 10+00Table A.3Fourier coefficients for prescribed aortic and venous flow in the heart sub-model for virtual patient conditions.CoefficientAortic flow rate Virtual PatientCoefficientVenous flow rate Virtual Patientain,1−5.99 × 10−01aout,13.64 × 10+01ain,21.04 × 10+01aout,25.57 × 10+2ain,31.68 × 10+00aout,3−2.71 × 10+01ain,44.64 × 10+00aout,4−3.01 × 10+01ain,54.06 × 10−01aout,5−1.68 × 10+01ain,6−8.77 × 10−01aout,6−3.75 × 10+00ain,75.77 × 10−02aout,71.33 × 10+00ain,8−4.66 × 10−01aout,81.01 × 10+00ain,92.63 × 10+01aout,92.67 × 10+01bin,1−7.74 × 10+00bout,13.72 × 10+01bin,27.62 × 10+00bout,24.77 × 10+01bin,34.99 × 10+00bout,32.97 × 10+01bin,4−1.94 × 10−01bout,43.66 × 10+00bin,51.68 × 10+00bout,5−1.05 × 10+01bin,6−7.00 × 10−01bout,6−1.02 × 10+01bin,77.95 × 10−01bout,7−4.43 × 10+00bin,81.19 × 10−01bout,8−7.53 × 10−01
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