NONEXISTENCE OF SOLUTIONS TO PARABOLIC DIFFERENTIAL
INEQUALITIES WITH A POTENTIAL ON RIEMANNIAN MANIFOLDS

P. MASTROLIAH, D. D. MONTICELLH AND F. PUNZOH,

ABSTRACT. We are concerned with nonexistence results of nonnegative weak solutions for a class of
quasilinear parabolic problems with a potential on complete noncompact Riemannian manifolds. In
particular, we highlight the interplay between the geometry of the underlying manifold, the power

nonlinearity and the behavior of the potential at infinity.

1. INTRODUCTION

In this paper we investigate the nonexistence of nonnegative, nontrivial weak solutions (in the sense
of Definition 2] below) to parabolic differential inequalities of the type
(L1) Opu — div (|Vu|p72Vu) > V(z,t)u? in M x (0,00)
u = ug in M x {0},
where M is a complete, m—dimensional, noncompact Riemannian manifold with metric g, div and V are
respectively the divergence and the gradient with respect to g, p > 1,¢ > max{p — 1,1}, the potential
satisfies V =V (a,t) > 0 a.e. in M x (0,00) and the initial condition ug is nonnegative.

Local existence, finite time blow-up and global existence of solutions to parabolic Cauchy problems
have attracted much attention in the literature. In particular, the following semilinear parabolic Cauchy

problem

Ou—Au = u?  in R™ x (0,00)
(1.2)
u = U in R™ x {0},

where ¢ > 1,u9 > 0,ug € L (R™), has been largely investigated. Indeed (see [5], [6] and [15]), problem
([C2) does not admit global bounded solutions for 1 < ¢ < 1+ % On the contrary, for ¢ > 1 + %
global bounded solutions exist, provided that ug is sufficiently small. For initial conditions ug € LP(R™)
similar results have been obtained in the framework of mild solutions in the space C([0,T); LP(R™)) in
1291, [30].

Problem (1)) with (M, g) = (R™, gfiat), where ggat is the standard flat metric in the Euclidean space,
together with its generalization to a wider class of operators of p—Laplace type or related to the porous
medium equation, has also been largely studied; without claim of completeness we refer the reader to
[7, [8, 9], [20], [21], [23], [26], and references therein. In particular, in [20] it is shown that problem
([CI) with M = R™ and V =1 does not admit nontrivial nonnegative weak solutions, provided that

2m

>
P m—+1

L g<p-1+L.
m

Mathematics Subject Classification. 35K59; 35K92; 35R01; 563C20.

Key words and phrases. Parabolic inequalities on manifolds; weighted volume growth; nonexistence of solutions.
1

Universita degli Studi di Milano, Italy. Email: paolo.mastrolia@Qunimi.it.
2

Universita degli Studi di Milano, Italy. Email: dario.monticelli@unimi.it.
3

Universita degli Studi di Milano, Italy. Email: fabio.punzoQunimi.it.

The three authors are supported by GNAMPA project “Analisi globale ed operatori degeneri” and are members of the
Gruppo Nazionale per I’Analisi Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di
Alta Matematica (INAAM).


http://arxiv.org/abs/1502.07593v1

Moreover, the blow-up result given in [5] has been extended to the setting of Riemannian manifolds.
To further describe such results, let us introduce some notation. Let (M, g) be a complete noncompact
Riemannian manifold, endowed with a smooth Riemannian metric g. Fix any point x¢g € M, and for any
x € M denote by r(x) = dist(zg, z) the Riemannian distance between zy and x. Moreover, let B(xq, )
be the geodesics ball with center zy € M and radius r > 0, and let x4 be the Riemannian volume on M
with volume density |/g.

In [3T] it is proved that no nonnegative nontrivial weak solutions to problem (L) with p = 2 exist,
provided there exist C' > 0, > 2, 8 > —2 such that, for all » > 0 large enough:

(a) pw(B(x,r)) < Cre for all z € M;
Jdlog /g C.
(b) =% < 55
() V=V(x),VeLX(M)and C~r(z)? < V(z) < Cr(z)?
Observe that if the Ricci curvature of M is nonnnegative, then (a) — (b) are satisfied, see e.g. [?].
On the other hand (see Theorem 5.2.10 in [4], or Section 10.1 of [I0]), hypotheses (a) — (b) imply that

A1 (M) = 0, where \;(M) is the infimum of the L?— spectrum of the operator —A on M .
The semilinear Cauchy problem

Ou = Au + h(t)u” in H™ x (0,7)
(1.3)
u = U in H™ x {0}

has been studied in [I], where H™ is the m—dimensional hyperbolic space, ug is nonnegative and bounded

on M and h is a positive continuous function defined in [0, 00); note that in this case we have A\; (HY) =
(N—1)*
T

To be specific, it has been shown that if A(t) =1 (¢ > 0), or if
(1.4) at? < h(t) < ast?  for any t > to,

for some a1 > 0,0 > 0,f9 > 0 and ¢ > —1, then there exist global bounded solutions for sufficiently

small initial data ug. Moreover, when h(t) = e** (¢ > 0) for some a > 0, the authors showed that:

(1) ifl<g<1+ X7 then every nontrivial bounded solution of problem (T3) blows up in finite
time;
(1i) if g>1+ W, then problem (3] posses global bounded solutions for small initial data ;
(i17) if g =1+ Ty and a > 2A1(H™), then there exist global bounded solutions of problem (L3)

for small initial data.

Analogous results to those established in [I] have been obtained in [24], for the problem
O = Au + h(t)u? in M x (0,T)

(1.5)
u = ug in M x {0},

where M is a Cartan-Hadamard Riemannian manifold with sectional curvature bounded above by a

negative constant, and ug € L (M). Moreover, for initial conditions uy € LP(M) similar results have
been established for mild solutions belonging to C([0,7); LP(M)) in [25].

Let us mention that nonexistence results of nonnegative nontrivial solutions have been also much
investigated for solutions to elliptic equations and inequalities both on R™ (see, e.g., [2], [19], [18], [21],
[22], [3]) and on Riemannian manifolds (see [11], [12], [14] [16], [I7], [27], [28]). In particular, the present
paper is the natural continuation of [I6], where some ideas and methods introduced in [12], [I1] and [14]
have been developed. Indeed, our results can be regarded as the parabolic counterpart of those shown

in [I6], concerning nonnegative weak solutions to the inequality

—div (|Vu|p72Vu) >V(z)u?! in M.
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In [T6], as well as in [IT], [I2], [27] and [28], the key assumptions are concerned with the parameters p, g
and the behavior of a suitable weighted volume of geodesic balls, with density a negative power of the
potential V(z).

As for the case of R™, also on Riemannian manifolds the parabolic case presents substantial differences
with respect to the elliptic one. In fact, new test functions have to be used, and suitable estimates of
new integral terms are necessary. On the other hand, as in the case of elliptic inequalities on Riemannian
manifolds, a simple adaptation of the methods used in R™ does not allow to obtain results as accurate
as those we prove in the present work. In the next two subsections we describe our main results and

some of their consequences; furthermore, we compare them with results in the literature.

1.1. Main results. In order to formulate our main results, we shall introduce some further notation
and hypotheses. For each R >0, 01 > 1, 03 > 11let S := M x [0,00) and

Eg:={(z,t) €S : r(x)" +t% < R%}.

Let 1
S1 = q 92, Sy = —
qg—1 qg—1
_ Dq - p—1
§3 = ————0y, 34 _
qg—p+1 q—p+1

The following conditions, that we call HP1 and HP2, are the main hypotheses under which we will
derive our nonexistence results for nonnegative nontrivial weak solutions of problem (L.TJ).

HP1. Assume that: (¢) there exist constants ; > 1, 0 > 1, Cy > 0, C > 0, Ry > 0, g9 > 0 such
that for every R > Ry and for every 0 < € < g¢ one has

(1.6) / / 1O -D(FE o)y = dudt < CR%+C0%(log R)*: ,
E,1/09 n\ER

for some 0 < s9 < §9;

(#i) for the same constants as above, for every R > Ry and for every 0 < € < g one has

(1.7) //E . T(z)(BZ_l)p( ey qf;il“'adudt < CR®%C%(log R)*
21/02 g \E'R
for some 0 < s4 < 54.

HP2. Assume that: (¢) there exist constants ; > 1, 0 > 1, Cy > 0, C > 0, Ry > 0, g9 > 0 such
that for every R > Ry and for every 0 < € < g¢ one has

(1.8) // tOD(FE )yt dudt < CRM+%(log R)*
E,1/05 g \ER
(1.9) // (O DGy TS audt < CRO T4 (log R)™
E,1/0, ;\ER
7 or the same constants as a ove, 1I0r every > 0 al or every < g < gp one has
i) for th bove, f R > Ry and f 0 h
(1.10) / / r(a) O r(Gm ) v asi e audt < CR™TO0%(log R)™
E 170, s \ER
(1.11) // r(x)(92_1)p(q—2+1+5)v_quil_ed,udt < CR%T%(log R)% .
E 170, ;\ER

Remark 1.1. Passing to the limit as ¢ — 0 we see that, if HP1 holds, then for the same constants as
above conditions (LE) and (L) hold also for ¢ = 0. Similarly, if HP2 holds then (L&) and (IIQ) (or
equivalently (L9) and (CTT) are satisfied also with £ = 0.

We prove the following theorems (for the definition of weak solution see Definition [Z1] below).



Theorem 1.2. Let p > 1, ¢ > max{p — 1,1}, V > 0 a.e. in M x (0,00), V € L} (M x [0,00)) and
ugp € L}, (M), up > 0 a.e. in M. Let u be a nonnegative weak solution of problem ([LI). Assume
condition HP1. Then u=0 a.e. in S.

loc

Theorem 1.3. Let p > 1, ¢ > max{p — 1,1}, V > 0 a.e. in M x (0,00), V € L}, (M x [0,00)) and
up € L}, (M), ug > 0 a.e. in M. Let u be a nonnegative weak solution of problem (). Assume
condition HP2. Then u=0 a.e. in S.

We should note that, to the best of our knowledge, no nonexistence results for linear or nonlinear
parabolic equations on complete, noncompact Riemannian manifolds have been obtained in the literature
under conditions similar to HP1 and HP2, nor using the techniques that we exploit to prove Theorems
and Even if Theorems and can be regarded as the natural parabolic counterparts of
the results in [16] for elliptic equations, their proofs are substantially different from those in the elliptic
case. Moreover, we should also observe that in [16] a nonexistence result for the stationary problem was
obtained under a different assumption than the stationary counterparts of the conditions HP1 and HP2
introduced in the present work (see [16, condition HP3]). An analogous result which could give rise to
nontrivial applications cannot be deduced using our methods for parabolic equations, and the question
whether a hypothesis corresponding to [16, condition HP3] can be introduced also in the parabolic

setting in order to prove nonexistence results still remains to be understood.

1.2. Applications. This subsection is devoted to the discussion of some consequences of Theorems

and and to comparison with existing results in the literature.

Corollary 1.4. Let (M,g) = (R™, gaa), V=1, p > 1. Suppose that

(1.12) max{l,p—1}<q§%+p—1.

Let u be a nonnegative weak solution of problem ([IIl). Then u=0 a.e. in S.

Note that condition (ILI2]) in particular requires that p > 2. Note also that Corollary [ agrees
with results in [20]. Furthermore, for p = 2 we recover the results on the Laplace operator in [5] [13].

Corollary 1.5. Let M be a complete noncompact Riemannian manifold, p > 1, ¢ > max{p — 1,1} and
up € L} (M), ug >0 a.e. in M. Suppose the potential V € L} (M x [0,00)) satisfies

loc loc

(1.13) V(z,t) > f(t)h(z) for a.e. (z,t) €S,
where [:(0,00) = R, h: M — R are two functions satisfying

(1.14) 0< f(t) <C(A+1t)* for ae te (0,00) and 0 < h(z) < C(1+7r()? forae zeM

and
T | T 1
(1.15) / ft)" 7T dt < CT??(logT)% , / f@)" 7w dt < CT(logT)%
0 0
(1.16) / h(z) o1 du < CR% (log R)® / h(z)~ 777 dy < CR% (log R)°
Br Br

for T, R large enough, with a,6,01,02,03,04,61,62,63,64 >0 and C > 0. Assume that
i) 51+52<L, 55 + 04 <
ii) 0< oy < —1 0<o3<
iil) if o9 = q o q+1
iv) o104 < ((Fil — 02) (qf;qﬂ — 03) .

Then problem (L)) does not admit any nontrivial nonnegative weak solution.

q— p+1 7
Pq
—p+1’

then 01=0, if o3 = then o4 = 0;

Corollary 1.6. Let M be a complete noncompact Riemannian manifold, p > 1, ¢ > max{p — 1,1} and
up € L}, (M), ug > 0 a.e. in M. Assume that V € L} (M x [0,00)) satisfies condition (II3) with



f:(0,00) >R, h: M — R such that

Cla4+t)y < ft)y<Cl+1t)° for a.e. t € (0,00)

C 1 +7(@) " <hx) <CA+r@x)? forae zeM

and (LI3), [LIG) hold for T, R sufficiently large, o, 3,01, 02,03, 04,01,02,03,04 > 0 and C > 0. Suppose
that

(1.17)

. 1 -1 .
i) 1+02< =5, 0340 < g
i) 0o <7, 0<o3< Al
iii) if og = # then o1 =0, if 03 = pquqﬂ then o4 =0 ;

: a_ _ pg__ _
iv) o104 < (qi1 02) (q7p+1 03).

Then problem (1)) does not admit any nontrivial nonnegative weak solution.

Remark 1.7. i) We explicitly note that the hypotheses in Corollaries and allow for a
potential V' that can also be independent of z € M or of t € [0, c0).
ii) In the particular case of the Laplace—Beltrami operator, i.e. for p = 2, from Corollaries [T
we have the following results:
Let V' satisfy condition (LI3)), with f: (0,00) — R, hM — R such that (LI4) holds and

T
(1.18) /‘Mmﬁiwgcmm%Rﬁ, L/f@ﬁimgcwm%ﬂ%
Br 0
for T, R large enough, with «, 3,01,02,01,02 >0, C' >0 and
1 2
0+ 6 < ——, U1+202§—q-
q—1 q—1

Then there exists no nonnegative, nontrivial weak solution of problem (1) with p = 2.

Similarly, if condition (LI3) on V holds with f,h satisfying (LIT) and (LIX) for T, R suffi-
ciently large, o, 8,01,02,01,02 > 0, C >0 and if

1 2
01+ 02 < ——, Ul+202§—qa
q—1 q—1
then there exists no nonnegative, nontrivial weak solution of problem ([Tl) with p = 2.

We should note that, even if in view of Remark [[7}) problem (IZ3]) on the hyperbolic space could in
principle be addressed, we cannot actually obtain nonexistence results for it using our results. In fact,
condition (LI6]) is not satisfied if M = H™ and h = 1, due to the exponential volume growth of geodesic
balls in the hyperbolic space. Therefore, we do not recover the results given in [I] (see also [24]). This is
essentially due to the fact that in [I] spectral analysis and heat kernel estimates on H™ have been used.
Similar methods have also been used on Cartan-Hadamard manifolds in [24]. Clearly, such tools are
not at disposal on general Riemannian manifolds, that are the object of our investigation. On the other
hand, our hypotheses HP1 and HP2 include a large class of Riemannian manifolds for which results
in [I] or in [24] cannot be applied. In particular, this includes the case of Riemannian manifolds that
satisfy (a), (b), (¢) above, also treated in [31].

In [31] quite different methods from ours have been employed, but also porous medium type nonlinear
operators have been considered. However, we remark that in this work we introduce new techniques
in the setting of parabolic equations on Riemannian manifolds. We obtain completely new results in
the case of the p-Laplace operator, which improve on those already present in the literature even in
the particular case of semililinear equations involving the Laplacian. Indeed, we obtain more general

nonexistence results than those in [31] (see Example Bl below).

The paper is organized as follows: in Section 2l we prove some preliminary results, that will be used
in the proof of the theorems and corollaries stated in the Introduction; Section [3] contains the proof of
Theorems and [[.3], while Section @l is devoted to the proof of the Corollaries.



2. AUXILIARY RESULTS

We begin with

Definition 2.1. Let p > 1, ¢ > max{p — 1,1}, V > 0 a.e. in M x (0,00), V € L} (M x [0,00)) and
up € L}, (M), up > 0 a.e. in M. We say that u € VVllp(M x [0,00)) N L (M x [0,00); Vdpudt) is a

weak solution of problem L)) if u > 0 a.e. in M x (0,00) and for every 1» € WHP(M x [0,00)), with
¥ >0 ae. in M x [0,00) and compact support, one has

(2.1) /OOO /Mq/)qududtg/Ooo /M|vu|fH (Vu, Vi) dudt/ooo /Muatz/)dudtf/Muoz/J(:c,O) du

The next lemmas will be the crucial tools we will use in the proof of Theorems and

Lemma 2.2. Let s > max{l, qﬁl, p+1} be fixed. Then there exists a constant C > 0 such that

for every a € %(f min{1,p — 1},0), every nonnegative weak solution u of problem (LIl) and every

¢ € Lip (M x [0,00)) with compact support and 0 < ¢ <1 one has

/ / Vudtp® dudt + = |a|/ / |VulPu®te® dudt

plata) ° gto a1
< C{|a| a— p+1 / / V| T V™ rEreay dudt+/ [Qyp| =TV a1 dudt}.
0 M

Proof. For any € > 0 let u. := u+¢. Define ¢ = uZ¢?®; then 1 is an admissible test function for problem

(T, with
Vip = aul " Vu + 50" MV, 0 = au® o Ou + s u® 0.

Inequality 2] gives

/ / wul e®V dudt < a/ / |VulPus ™t p® dudt + s/ / IVulP™? (Vu, Vi) ulp*tdudt + 1,
o Jum o Jm o Jm

where

(2.4) :—a/ / a-l suatududt—s/ / uu?gos_latapd,udt—/ ug(uo + €)*¢*(z,0) dp.
M M

Now we have
—a/ / u?tpsatud,udt—as/ / u® o Opu dpdt
o Jm o Jm

—a/ / LS udpu dpdt
M
= / / at a“ go dudt—i—a/ / 0,5 <p dudt .
O[+1 M

Since u2, u2t! € WLP(M x [0,00)) with p > 1 and since ¢® € WP (M x [0,00)) and has compact

g7 e

support, integrating by parts we obtain

foz/ / LS udyu dudt =

thus, recalling that u. = u 4 €, we have

o] 1 o
/ / ue e e dudt — —— | (ug +2)* % (2, 0) dps.
0 M o+

1 M

o tu o, gpdudt—es/ / ©* 1Oy dpdt

]\/I

/ *(2,0)(up 4+ &) dp — e /M *(x,0)(up + £)* dp,

Jr04—|—1

2. I =—
(2:5) a+1



This, combined with ([23]), yields

/ / ululp®V dpdt < a/ |VulPu2~ e dudt + s/ IVulP~2 (Vu, V) u®p* ™t dudt
M o Jum o Jum

o0 ) 1 o
/ / ue e o dpdt — —— [ (o + €)™ g% (2, 0) dps
M a+

1 M

a +1
and then

1
(2.7) |a|/ / [V ul™ lcpsdudt+/ / ulug sVdudt+—/ (uo + &) (2,0) du
M a+1/y

< p=2
< s/o /M [Vu|""" (Vu, V) u ]

Now we estimate the first integral in the right-hand side of (Z7)) using Young’s inequality, obtaining
o0
s/ / >~ | VulP~? (Vu, V) dudt
0 JM

SS/ / gos_lug|Vu|p71|V<p|d,udt
o Jum
o0 p—1 (p-1 |ae|+1 ] ladtt
:/0 /M <|a| Pp% T ue - 5 |V [P~ 1> <s|a| R T |Vg0|> dpdt

[e%e) 4 p—1 e}
< M/ / sDs a— 1|VU|P d,LLdt+ |: S( ):| / / s057}011}87*(\04\+1)|VSD|Pdﬂdt.
4 Jo Ju p lalp 0 JM

From (21 we deduce
(2.8) |a|/ / |VuPu2—t Sd;LdtJr/ / uquo‘@SVdudtJr—/ wo + €)1 (2,0) du
s

p—1
<2 STPyP W‘“)w”dudw—/ / ut T o519, 0| dpdt.
L L e vl o

Note that, by Young’s inequality,

s[ds(p—1)17"" [ s p—(la
I

p—1
_ {4S| | } / / up+0‘ 1 pﬁv;l)vp;g;l)(|V@|p@sfp75(p§i’;1)V*”ﬁifl)dudt
alp M

S

p

1 p(at+a) gta pta—

Z/ / uTt OV dudt + Cla, s/ / (V| ot oo P (7555 =551 qudt
M

w100 dpdt.

and
S > (o4 S—
aJrl/ / w2t "0y | dpdt
- / / ue T (VR ) (o (E) o g Vi) dpt
o+ 1 M
gta s OO ate o gda  atl
S - ud™ eV dudt + D(a, ) |Orpl 7=t @° TV 0T dudt
4Jo Ju o Jm
where s
Cla,s) =2 [48(13 - 1)]”_161 —p+1| (¢+a)p (48(p - 1))1_” o
opl elp ¢+ta |[4s(pp+a—-1)\ plaf
and .

Dia, s) s q—1 4s a1
a,s) = .
’ a+lg+al\g+a
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Substituting in (Z8) we have

3 o0 , o0
31 / / VufPul o dudt + / WSV dpt
4 0 M 0 M

1 [ 1 N
- _/ / udt eV dpdt + —— [ (uo+)* 9% (x,0) dp
o Jum a+1 /y

o0 p(at+a) gta gta a1
< C(CY,S)/ |V(,0| q—p+1 (psfp( q::Lr7+l)V a— p+1 d’udt + D a S / / |at§0| S %V,ﬁ dudt
0 M

Now letting ¢ — 0 and applying Fatou’s lemma, we get

3 o0
(2.9) Z|a|/ / |VulPu®"to® dudt + = / / Vud™*p® dudt
o Jum

<Ca3/ / V| 7551 oo P (5550 5551 dpudt

+D(a’s)/ /|3t¢|ﬁ<ﬁs_fﬁv—%dudt,
0 M

where we use the convention |Vu[Pu®~! = 0 on the set where u = 0, since Vu = 0 a.e. on level sets of

u. Now since there exists a positive constant C, depending on s, p, ¢, such that
_(=1a
Cla,s) < Cla] =#t, D(a,s) <C,

and since 0 < ¢ <1 on M x [0,00), by our assumptions on s the conclusion follows from (2.9).

Lemma 2.3. Let s > max{l, g"'}, Z 2511} be fized. Then there exists a constant C > 0 such that for

every nonnegative weak solution u of equation ([LT), every function ¢ € Lip(S) with compact support
and 0 < o <1 and every a € (——mm{l,p 1,q—1,& p“},O) one has

(2.10)

oo
/ / O ulV dudt
0 M
p—1
_1__(p=1g o0 _ pta-1 plato) 1 > gto a1 P
<C |a| (a—p+1) V= a—pt1 |V(p| =¥ dpdt + |a| |at§0| 1V a1 dpdt
0 M 0 M

g—(1—a)(p—1) (A—a)(p—1)

% / V—qil&fl(ﬁﬁ)m|v<p|q—<1—iq)<p—1) dudt // O ulV dudt
S\K S\K

gta—1

qta
+C // S uITV dudt (/ / V' wres 1|0t<p|q+a 1 d,udt) .
S\K

with K = {(x,t) € S : p(x,t) =1}.

Proof. Under our assumptions ¢ = ¢* is a feasible test function in equation ([ZI). Thus we obtain
(2.11)

/ / gpqududt<s/ / s VulP 72 (Vu, V) dudt— s/ / w1 Opp dudt— / uo(x)p®(x,0) du.

Through an application of Holder’s inequality we obtain

(2.12)

gta—1

1 T o 1 (s=D(ata)—s ata ata
/ / ’U,SOS |at§0| dﬂdt < (/ /S\K uq‘i’ang dﬂdt) </ /I\/[ V qta—1 %) ata—1 |at§0| prE— d‘LLdt>
0



On the other hand, using again Holder’s inequality we obtain

(2.13) / / s> VulP T V| dudt
o Jum
= s/ / (@L;5|Vu|p71u_p7?1(l_a)) (@i_lu%(l_a)|V¢|) dpdt
o Jm
1 2
s</ / ©° | Vul[Pu*? dudt) </ / > PP D= g )P dudt)
o Jum o Jm

Moreover from equation (Z:2]) we deduce
(2.14) / / O [VulPue " dudt < Cla| ™' 455 / /
0o Jm

+C|a|_1/ |0tg0|q TV T dpdt,
0

with C' > 0 depending on s. Thus from @2I1)), (2.12), (m) and ([2I4) we obtain
(2.15) / / P uV dudt
o Jum

p—1
gc{|a|1é”p2‘{/ / VST Vo 555 dpudt + o 1/ / 0| FE V55 dudt} '
0 M
~ (/ / @s—pu(p—l)(l—a)|v(p|1’ d,udt)p
0 M

1
Tt 00 qta—1
(s=)(gta)=s o ate
+C // ItV dudt </ / V- <1+<1vflcp st |8t<p|qﬂv*1 dudt) .
S\K 0o Jm

We use again Holder’s inequality with exponents

pta—1 p(ato)
T q—pF1 |V¢| q—p+1 d,LLdt

4 A
(I-a)(p—-1) a—1 q¢—(1-a)(p—1)

a

to obtain

/ / (ps—pu(p—l)(l—a)|v(p|19 dpdt
0o Jm

(d-—o)(p—1)

a—(1—a)(p—1)
¢ _ pq __(—o)(p—=1) Py B
< // O ulV dudt // PTG D V- (-1 V| = 0=a=1 dydt .
S\K S\K

Substituting into (ZI0]) we have

[T v et o [T [ o )
0 M 0 M

a- a)(p 1)

g—(1—a)(p—1)
// O ulV dudt // M e DV 4 (1 Dt)(p 1)|Vsp|q T=aI=D dudt
S\K S\K
m e’} gta—1
1 (s=D(gta)—s a+a ata
+C // wITV * dudt (/ / Voate=Typ ata-1  |Dyp|ata—1 dudt) .
S\K o Ju

Now inequality (ZI0) immediately follows from the previous relation, by our assumptions on s, « and
since 0 < p < 1.

(2.16)
o0
/ / O ulV dudt
0 M
< C{| |717(p 2 > _pta-1 plata) oo p=1
< « q—p
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Corollary 2.4. Under the hypotheses of LemmalZ3 one has
(2.17) /OO/ ulV dpdt
o Jum
po1
s0{|a|—1‘3” / [ v v e + 1ol [ [ ol FHvoi dudt} p
o Jm

(A—a)(p—1) a)(p 1) a—(A—a)(p—1)

// %) qududt // Vo a- (1 a)(p 1>|V<p|q ey ey dpdt
S\K S\K
r0 (i [T [ (gl
gta—1
o 1 qto qto
X (/ / V™ @ e=T|0pp| ata—1 dudt)
0 M

qt+a
Proof. The conclusion immediately follows combining (ZI0) and (Z2]).

I dudt—i—/ / Oyl T V8 dudt)
0 M

Lemma 2.5. Let s > max{l, ZJF}, 7 2511} be fized. Then there exists a constant C > 0 such that for

every nonnegative weak solution u of equation (LII), every function ¢ € Lip(S) with compact support
and 0 < ¢ <1 and every a € (f—mm{l,p 1,¢q—1,%& p'H},O) one has

(2.18)

/ / O ulV dudt
o Jm

_1_Ap=Da o0 _ pta-1 p(ata) _1 o0 ata  atl
< C |a| (a—p+1) | ; V7 a—pt1 |V(P| q—p+1 dudt + |Oé| ; y |at§0| a—1 |/ "¢ 1 dudt

a—(A—a)(p—1) (d-—a)(p—1)

(1-a)(p=1) p P P
X / V- qj(l*a)(pil) |V(p| a=(=a)e=1 dpdt // O ulV dudt
S\K S\K

1

1 -
tC // oStV dpdt (/ /V*rﬂ|at<p|%1 dudt) ’
S\K 0o Jum

with S = M x [0,00) and K = {(z,t) € S: p(z,t) =1}.

p—1

P

Proof. Inequality (2I8]) can be proved in the same way as (ZI0), where the only difference with respect
to the above argument is that in this case one has to use inequality (2.12)) with o = 0. O

3. PROOF OF THEOREMS AND

Proof of Theorem [ For any fixed R > 0 sufficiently large, let « := —@. Fix any Cy > C”"’TZQH
with Cy and 602 as in HP1. Define for all (z,t) € S
1 if (z,t) € Eg
(3.1) o(z,t) == R,
r(x)’2 1 . c
(()Rig:t) if (z,t) € B,
and for all n € N
1 if (2,t) € Eng,
r(z)?24t%1 .
(3.2) Ma(,1) = 2= L i (2,1) € Eyoap \ Bur,
0 it (2,1) € ES oy g



11

Let
(3.3) on(z,t) == np(z,t)p(z,t) for all (x,t) € S.
We have ¢,, € Lip(S) with 0 < ¢,, < 1; furthermore,
Ao = NnOrp + @0y, Vou = Ve + oV,
a.e. in S, and for every a > 1

|0rn|® < 297 (|0k0] ™ + 0% |®), [Von|® <297 H(|Ve|* + ¢ |Vn|®)

a.e. in S. Now we use ¢, in formula ([22)), with any fixed s > max {1, qqu, #}, and we see that for

some positive constant C' and for every n € N and every small enough |a| > 0, we have

(3.4) / / Vultp8 dudt
plato o ato a+1
<C{|a| a— p+1/ / |[Vp| =+ p+1V e dﬂdt+/ / |0 o | 4TV a1 dudt}
0 M

(p— pat+
< C{|a|_qu+1 / / |V(p| q— p+1V q p+1 dudt
0

_(p=Dgq platoe)
+ |a| q—p+1 pa- a=pF1 |\ q p+1|V77 |q p+1 d‘udt
21/02,, 5 \EnR

+/ / P kad aken dudt+// QT VT T |9y 1 ldudt}
0 M E,1/65, 5 \Enr

_(=Vag
< C{|CY| a—p+1 (11 + IQ) + I3 + 14} s

where
o0 p(ata)
(35) I = / / |V(p|q [EaN Ve q p+1 dudt
0 M
(36) 15 = // (pz(q;rfl) V_q p+1 |V77n|q p+1 d,LLdt
E 1705, 5 \Enr
(3.7) o= [ ol
0 M
qta _ o+l
(3.8) Iy = // QT Vo 1|8t7]n|q T dpdt .
E 1705, 5 \Enr

In view of (B and [B2]) and assumption HP1-(ii) (see (7)) with e =
and every small enough |a| > 0 we get

p+1 > 0, for every n € N

1 02 z(f;fl) plato)
(3.9) I, < // . 0, <ﬁ) T($)0271|VT(1‘)| nCr20 T P dudt
E 1765, r\Enr
< C(nR)~ TR nOr0e / / r(z) @D ESR Y -SE5H gpar
/69, R\EnR

< C(nR)f eii(ﬁ?) Cleza;;(q;fl) (nR) q(izppil +Co 5= p+1 (10g(nR))
Now note that for any constant C' € R and for R > 0 and o = *@ we have
(3.10) RIIC = glalClog R _ .C <

Thus, also using the fact that

|af[0ap — CrOap(g+a) + Co] _ o]
g—p+1 T qg—p+l1

<0,
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from (33) we deduce
(3.11) I, <Cn~ e [log(nR)]*

In a similar way we can estimate Iy, using HP1-(7) (see (C6))). Indeed, for R > 0 large enough,

gto
0 a1 gto
(312) I4 < // < 1 t011> CIBZQLV (Tr\ dﬂdt
51/62 R\EnR (nR)

029+Colo|

C(nR)~ " n@% 555 (uR) ' [log(nR))

< Cpat(T0tCib0=CotCrb0) 10 (n RY]%2 < COn~ a1 [log(nR)]*

IN

In order to estimate I; we observe that if f : [0,00) — [0,00) is a nonincreasing function and if
HP1-(ii) holds (see (7)), then
(3.13)
// tel]%)r(m)(9271)’”(%75)\/7%“6&1& <C f(z)z%+C0"log 2)%4dz
c R/21/92
for every 0 < € < g and R > 0 large enough. This can shown by minor variations in the proof of [12]
formula (2.19)].
Now, since for a.e. © € M we have |[Vr(z)| <1, we obtain for a.e. (z,t) € S
Cloz—l —
r(z)?2 4 th r(x)f2—1
(3.14) Vol < Crlalen (") e

2

Thus, using I0) for every sufficiently large R > 0 we get

plato)

0o 9, \ Cia—1 fy—17 a—pF1
(p—1) 1) t r(x
|Oé|_qp P+(1111 S C|a|_q P+(11 // V_q P+1 Cl|Oé|92 (”7:_) (Rgiez dﬂdt
p(q+a) (p 19)] 1 02 % (g+o)
< Claf // ()% +¢71]° } r(z) @2 DPEET VT dudt
Now, using ([BI3)) with € = q_‘zlﬂ,
o0
(315) |a| 51 p+1 L < C|a|7p(q+a) J(rp Da / 292(C1a—1)p(q+a)+ss+coq ‘p+1 (log Z)S4dz
R/21/92

By our choice of C; and by the very definition of §3 we have

b= 0(Cror — 1)75(‘1 o)

S IPC N . S .
-p+1 q—p+1— qg—p+1

Then using the change of variable y := |b|log z in the right hand side of ([BI%]) we obtain for & > 0 small

enough
e’} S4
(3.16) al #Hn <l [T (1)
0 bl 1ol
< Ol EEE s < Ol

The term I3 can be estimated similarly. Indeed, we start noting that if f : [0,00) — [0,00) is
nonincreasing function and if HP1-(7) holds (see (L)), then for any sufficiently small € > 0 and every
large enough R > 0 we get

o0

(3.17) // t"l]%)twl—l)(%—f)v—ﬁ“dudt < C/ f(2)2511C " log 2)*2dz ;
c R/21/92
this can be shown by minor changes in the proof of [I2] formula (2.19)]. Since for a.e. (z,t) € S
r(z)? +th “ra=tyoi-1
RY- RO’

(3.18) |0sp(,1)] < C1lalfr (
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also using (3I0), we have for every R > 0 large enough

ata 02(Cra— 1) ata
I3 < C|a|ﬁ// |:(7"( )92 +t91)92 2 t(91 1)q+1V a— 1dudt
R

- — laof
Now due to BI7) with e = .=

ata o a |af
(319) I3 < C|Oz|ﬁ // . 92(0104 1) +1+Coq T 51— 1(10g2’)52d2.
R/21/92
By our choice of C; and the very definition of §; we have that
|af |af
=07(Cia — 1 C < -4
B = 0(Crax ) 1+1+0 1< o1

Using the change of variable y := || log z in (BEIZI) we obtain
00 S2
_a_ — Y dy
Claja=T / e Y <—> —
0 161/ 18]
Cla|a17%2.

Inserting (B11), B12), BI86) and B20) into (34) we obtain for every n € N and every sufficiently large

R>0
/ / uIT sV dudt
o Jm

// wItVdudt
Er
C (Ia 7557 + o]~ 5 =755 [log(nR)]* + || 777 + 077 log(n )] )

with C' independent of n and R. Passing to the liminf as n — co we deduce that

// wIt*Vdudt < C (|a| TS |a|ﬁ752) .
Er

Therefore, letting R — oo (and thus o — 0), by Fatou’s lemma, we have

/ / wlV dudt =0
o JMm

in view of our assumptions on Ss, s4, which concludes the proof.

(3.20) I3

IN

IN

IN

IN

Proof of Theorem [L3. We claim that u? € L'(S, Vdudt). To see this, we will show that

(3.21) / /qududt<A</ /qududt) +B

for some constants A > 0, B > 0, 0 < ¢ < 1. In order to prove (B2I) we consider (2ZI7) with ¢

replaced by the family of functions ¢, defined in [B3]), for any fixed s > max{l, gﬂ, Z 253_1} and

C1 > max { 1+%‘;+62, 922((5_0:31), 922(;?;:11))} with Cy, 0 as in HP2 and with R > 0 sufficiently large and
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o= Thus we have
log R’

(3.22) / / ey ulV dudt
0 M
- -a)p-1)
(p w
<C (|a|1q p+1/ / V- PEEay |V<p |q p+1 d,udt) <// tpnqud,udt>
g=(0-—a)(p—1)
__(-a)p-1) rq w
) </ / Vo imaemn [V, [ atD dwit)
R
(-—a)(p—1)
_1 e gto  atl ”
+C | |a [Oppn| TV ™ a1 dudt ey ulV dudt
0 M e
M
__(-—a)p-1) rq w
X <// V a—0-a)p-1) |Vspn|qf(1fa)(pfl) dﬂdt)
R

plata) e ata  adtl ate
+C(|a| a— p+1/ / |V<,0 |q [ES Ve - p+1 dudt+/ / |0t<pn|‘1*1V a—1 dudt)
0 M
gtoa—1
o 1 gta ata
x </ / V™ a T |y, [T dudt>
0 M

Let us prove that for R > 0 large enough, and thus for |«| = @ sufficiently small,

(3.23) hmsup(|a| EzppﬁJl) < C,
n— o0
(p—1)q
(3.24) hmsup(|a|*q—<1—a><p—1>J3) < c
n—oo

(3.25) limsupJ, < C|
n—oo

(3.26) limsupJy < C,
n—oo

for some C > 0 independent of a;, where

o0 _pta-—1 JICERED)
V= a—pF1 |v90n| q—p+1 d,LLdt,
0 M

(3.28) - / /|at%|%?v—%dudt,
0 M

(3.27) J1

(3.29) Jz = // VR Gem oD |V, | T dudt,
f

(3.30) Ji o= /Ooo /M Va1 |9y |THT dpdt.

Note that

(3.31) J1 <C(IL + 1),

with I; and I defined in (3] and &4), respectively. Due to (LI0) in HP2-(ii), by the same arguments

used to obtain ([BI6) and BI1)) with s4 replaced by 54, for every n € N, R > 0 large enough and o = loéR

we have
—1 -1 o _
a7y < € (1+ o=~ log(nR) )
Letting n — oo we get ([B.23)).
Next we observe that

(3.32) Jo < C(I3 + 1),



15

with I3 and I defined in 7)) and &), respectively. By the same computations used to obtain (B20)

1
log R

and ([BI2), with so replaced by 52, we have for every n € N, R > 0 large enough and o =

Jo<C (1 + niﬁ[log(nR)]EZ) :

Again, letting n — oo we obtain (B.23)).

We now proceed to estimate Jy; note that

(3.33) Jy < C(Is + Is),

where

(3.34) Iy = / /V——H;,%ﬂ—qzzil dudt
0 M

(3.35) Is = / /v—q+é—1wii‘il|amn|qi§‘il dpdt.
0 M

Due to (3I8) and @3I0), we have for every R > 0 large enough

05(Cra—1) 314_%
(3 36) I5 <C|a| +a 1 // t91) :| (q (gta—1)(q 1))

|| 1 ||
« 1O -D(Z5 + Gres =D Y~ T~ Grem =D dpdt .

Note that if f : [0,00) — [0,00) is a nonincreasing function and if (L9) in HP2-(7) holds, then for any
sufficiently small € > 0 and every large enough R > 0 we get

o0

(3.37) // 2 44917 )¢ @D () v S dpudt < C/ f(2)251+%= " (log 2)%2dz;

R/21/02

this can be shown by minor changes in the proof of [12, formula (2.19)]. Now due to [B36), (3317) with
lor|

€= Gra—D@D

(oo}
+a _ +a |ex| = _
(3.38) I5 < Cla|7heT O FHET @D T (log )% dz |
R/21/02

By our choice of C; and the very definition of 51, we have for sufficiently small |a| > 0
4+ o ol

’}/2292010(—1) + Cy +51 < —.

( q+a—1 (+a-1(g-1) (¢—1)?

Using the change of variable y := |y|log z in the right hand side of (B3], due to the very definition of

59 we obtain for every R > 0 large enough

ata [ = d
(3.39) I5 < Cla| 7 / eV (i) D<o
0 iVl
Moreover, using (3I0) and (L9) in HP2, for every n € N and a > 0 sufficiently small, we have

gt o
(340) Is < O o) T et i G S
' o = (nR)?2 H
E,1/05, 5 \EnR

(nR) q+a T ncleZaq+a T (nR) 211Co (gt ‘1)‘(0 1) []og(nR)]

IN

[

< On” @7 [log(nR)]™
In view of (B:33), (339), (B:40) we obtain
el ,
Jy<C (1 +n D2 [log(nR)]sZ) .

Letting n — oo we get (3.20)).



16

In order to estimate the integral Js we start by defining A = (q_pﬂ()’[);_l()lq‘_o‘;)(p_l)], and we note that
-1 2(p—1
(3.41) @7)(12|a| <A< @7)(12@4 <e”
(¢—p+1) (¢—p+1)
for every small enough |a| > 0, and that
(1-—a)(p—-1) - Pq 53
=5+ A and ==+ Ap.
¢g—(1-a)(p—1) g—(1-a)p—1) 0

By our definition of the functions ¢, for every n € N and every small enough |a| > 0 we have

3.42 J3 = ysamh Vn i; P dudt
0 M

o 5: 5: o _ 5 5
<ol [T [ vt B B ar s [ [ v 4
0 M 0 M

// V*§4*A|w|3*3”pdudt+// VS4A¢Z_3+AP|Vnn|23+Apdudt]
b E,1/05, 5 \Eng

= 0(17 —|— Ig)

A

C

Now we use condition ([LII)) in HP2-(i7) with e = A, and we obtain for every n € N and R > 0 large
enough

= / / VST A g, [ dpdy
Ey1/65, 5 \Enn

22 +Ap 53
P Oa—1\ o5 TAP
0 =1\ )
< sup ) // (%) V—sa—A dpdt
E21/92nR\ETLR E21/92nR\EnR (nR) 2

apqg

C162 _ 92pq _ __p=1 _
< Ona=0-a)k-1 (nR) Q*(lfa)(pfl)// r(x)(ez 1)p(q7;}7+1+A)V qufrl Adﬂdt
E 1705, 5 \Enr

C162apq

< Ona=0-a)-1) (nR)_Q*(lg%lp)q(pfl) (nR) qi2pp+ql+COA(]Qg(nR))§4,

By our definition of C, A and by relation (B41]) we easily find

C1020pq Oapq Oapq
(343) (—1-p-1 ¢—(-ap-1  g—p+1 @
- pqaCh 04 B agq(p —1)Co
g—(1-a)p—1) [g-1Q-a)p-Dllg—p+1)

qap qap
= - (-a)p-Dlg—p+1) (g—p+1)?

for any small enough || > 0. Moreover by [B.I0)), since o = —

)

1
el We have

R 07(132;))(2;;71) + qéi2pp+ql +CoA <C.
Thus, for any sufficiently large R > 0 and every n € N,
(344) Ig S Cn% (log (nR))§4

In order to estimate I7 we observe that if f : [0,00) — [0, 00) is a nonincreasing function and if HP2- (i)

holds (see (ILII)), then
(3.45)

// f([T(ZC)OZ + tel]%)T(,T)(ezil)p(—q*g*l+€)V7—‘IE;41F178 d,udt < C f(Z)Z§3+C°8_1(lOg 2)54 dZ,
< R/21/92

for every 0 < € < g9 and R > 0 large enough. This can againbe shown by minor variations in the proof

of [I2, formula (2.19)]. Thus, similarly to (B36]) and (338), using (I0), B4I) and (E45), we have for
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1

R > 0 large enough and a = “ T F

(3.46)
[7§C|Q|W// [(r(z)92+ﬁl)é}92(01”‘_1)Wr(z)w?—l)l’(ﬁ“)v—ﬂ—&—/‘dﬂdt
3

< Cla| =550 / 292(C10-) gty 55 COA (100 45
R/21/02

By our choice of C; and the definition of §3 and A we have

Pq qplal
¢—(1—-a)p—1) (¢—p+1)?
thus using the change of variable y = |a|log z in the last integral in (B:46]) we obtain

0o Sa
C|a|7q7(1f;q)(p71) / e Y (i) @
0 la| ) lal
Dqlal

Pq s (p—1)g (p—
Cla|m=a=a)m=1 "% L Cla|=0-6=1 T G=rFhE-0-a-1)

a:=03(Cra— 1)

+§3+00A<* <0,

(3.47) I;

IN

IN

Thus for any sufficiently large R > 0 and every n € N, by [B.42), (3:44) and (3:47)

(p—1)q|o]

|a|7%[]3 < C|a|’q—<1(]i;1>)<171> (|a|q—(fﬁ;ﬁLD+<q—p+1><q—<1—a><p71>> +n%(log (nR))54) .

Letting n — oo, for every R > 0 large enough and oo = — 101 we obtain

g R

[o]

___ (=g (p—1)q
|a| -0 Jg < C|a| (a—piD@-0-a)-1) < (,

that is (3:24).
Now using 23)-B26) in 22)), since ¢, =1 on Fr and 0 < ¢,, < 1 0on M x [0,00), for every R > 0
large enough we have

// wlV dpdt < limsup </ / gaflqududt> SA(/ / qududt) + B
Er n—o0 0o JM o Jm

for some positive constants A, B and o € (0,1). Passing to the limit as R — oo we obtain (3.2I]), and
hence we conclude that w4 € L1(S, Vdudt) as claimed.

Next we want to show that -
/ / wV dudt = 0,
0o JM

and thus that u = 0 a.e., since V' > 0 a.e. on M x [0,00). To this aim, we consider (ZI8) with ¢ replaced
by the family of functions ¢,,. Since ¢, = 1 on Er and since 0 < ¢, < 1 on M x [0, 00), for every n € N,

every R > 0 large enough and o = f@ we have

(3.48)

// w?V dudt §/ /@Zqududt
Er 0 M

_1_ p=1a o0 _ pta-—1 plat+a) _1 > ata o+l P
<C |a| (a—p+1) | . V" a—pF1 |v90n| q—p+1 dudt + |Oé| ; y |at§0n| a—1 |/ "¢ 1 dudt

g—(1—a)(p—1) (1—a)(p—1)

(1—a)(p—1) __pa_ o "
x <// VTG0 |V, |7 06D dudt) (// qudet>
o R

q—1

1
+C<// qududt> (/ VT |97 dudt) o
< 0o Jm

Now we claim that for R > 0 sufficiently large

(3.49) limsup J; < C,

n— o0



18

where

Js ::/ /v—ﬁ|at<pn|?'l dpdt.
0 M

This can be shown similarly to inequality ([B.26]). Indeed
(3.50) Js < C(Ig + L),
where

b= [ vttt dud, o= [ [ VIR om ) du
0 M 0 M

By (B1I8) and BI0), for R > 0 sufficiently large
(3.51) Iy < Cla|7T // )% + %)%

Now note that if f : [0,00) — [0, 00) is a nonincreasing function and if (I9) in HP2-(7) holds, then for
every R > 0 sufficiently large we get

02(Cra—1) L7
} tO-DFE VT dudt .

o0

(3.52) // 2 4 01]72 )t O DTV T T dpdt < C/ f(2)2 7 (log 2)*2dz ;

R/21/02

indeed, the proof of ([B.52]) is similar to that of [12 formula (2.19)], where here one uses condition (L9
with € = 0, see also Remark [[LT1 Then

(353) Iy < C|a|q+1 /1%/21/9 92(0104 gt +s— 1(1ogz)§2dz

o0
< C|a|q+’1/ zgzqcfllq(logz)g2 & < Cla|j717%7t < O
1 z

Moreover, for every n € N by (BI0) and by (L8) with ¢ = 0, see also Remark [[T]

0 a1 .
(3.54) Ly < // < — tel_l) nC102075 V- qudt
21/02 ) R\EnR (nR) 2

10249

nC10 £
< C(nR)™*° 1020 -1 (nR)q T [log(nR)]*> = Cn~ a1

In view of (B50), B353), B54) we have
C162q _
Js < 0 (140~ FF1l log(nR)} )

! log(nR)]*

Letting n — oo we get our claim, inequality (3:49).

Now consider again (B:4])); passing to the limsup as n — oo and using B23)-B28) and B49), we
obtain for some constant C' > 0

a- a)(p 1)

as) [ [ vaasc|(f [ ovaa) T o(f [ Wdudt)

Now we can pass to the limit in (BEE) as R — oo, and thus as a — 0, and conclude by using Fatou’s
Lemma and the fact that u4 € L'(S, Vdudt) that

/ / wlV dudt = 0.
o Jm

Thus v =0 a.e. on M x [0, 00).
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4. PrROOF OF COROLLARIES [[.4] AND

Proof of Corollary [1.7]. We now show that under our assumptions hypothesis HP1 is satisfied (see con-
ditions (L)) and (7). Observe that for small e > 0

92
21/ R
// 1O ) dadt < C’Rm/ 10Dt < crmra [0 )]
E,170, ;\ER 0

Hence, condition (L) is satisfied, if
b2

(4.1) 9, 2 (g—1)m.

On the other hand, for small ¢ > 0,
2

91/02 p
// || @2~ Dp(G=i ) dpat < CRf/ 0= Db (=t =) +m=1,
E21/62R\ER 0

< oRAH O p(=Er—e)+m] |

Therefore condition (L) is satisfied, if

0 pa

01 q—p+1

Now note that we can find 6; > 1,02 > 1 such that conditions [I]) and 2] hold simultaneously, if
(CI2) holds. Thus, from Theorem [[L2 the conclusion follows. O

(4.2)

Proof of Corollary [I. Under our assumptions, for R > 0 large and & > 0 small enough we have

// t(9171)(q%'176)qu%1+8 dudt < CRZ—?(ﬁfl)(qf"l7s>+z—?as+ﬁs+g—f02+al (log R)61+62.
E,1/0,r\ER
Hence condition (L6) in HP1 is satisfied if we choose C > max {0, g—f (a+1)+ 8- 92} and if

62 q 1
4.3 = - <0 01+ 0 —_—
(4.3) 91(02 q1)+01_ ) 1+ 2<q—1

Similarly for sufficiently large R > 0 and small € > 0 we have

// r(z) V() y - e dudt < CRO>—Vp(7mr o)+ FactfetZostos (log R)%+04 .
E 170, ;\ER
Therefore condition (L7) in HP1 is satisfied if Cp > max {0, B+ z—foz — (02 — 1)p} and if

Pq b2 p—
4.4 Loy +204<0,  Syl< ————.
Y ( q—p+1 03) 67" = T

Now for conditions ([@3]) and () to be satisfied, by our assumptions it is sufficient to choose 67 > 1,
0> > 1 such that

-1
q b2 . q
4. — < 2 f0< B
(4.5) Ul(q—l 02) S 10_02<q_1,
02 Pq 1 . Pq
4.6 =< ——— - f0<o3 < ————.
(+0) 0 ~ (q—p+1 7)o et e

Thus we can apply Theorem and conclude.

Proof of Corollary[L4. By our assumptions for large R > 0 and small € > 0 we have

/ / (0Dt )y atrte qugt < CREOD(T e iactier Bariar (o0 pioites
E,1/00 n\ER

// t(91—1)(q%1+a)v—q+1—e dudt < CRZ—?(91—1)(%-{-6)4—2—?&64—,@8—1—2—?02—%01 (10gR)51+52.
E,1/09 n\ER
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Thus conditions (L8)-(T3) of HP2 are satisfied if we choose Cy > max {0, Z—f (a—=1)+ 5+ 92} and

0> q 1
4.7 —= - <0 01+ 0 < ——.
(4.7) 91(02 q1)+01_ ) 1+ 2_q—1
Similarly if R > 0 is large and ¢ > 0 is small enough we have

/ / r(z) @ Ve =)yttt gudr < QR VP(h o) st Bt outon (o0 pydstas

E 170, ;\ER

// r(a) Oz Vr(tm o)yt —squdt < CRO V(o) tatostBetoiton 1o pydatas
E,1/05 g \ER

Thus conditions (CI0)—(TII) in HP2 are satisfied if Cy > max {0, B+ z—fa + (62 — 1)p} and

Pq ) p—1
4.8 - 4 + =04 <0, S3+6 < ———.
49 ( q—p+1 03) 6,7 = TSy —pl

Hence, arguing as in the proof of Corollary [[LH, we have that under our assumptions HP2 holds, and we

can apply Theorem [[L3] to conclude. O

We conclude with the next example, where we show that our results extend those in [31] in the case
of the Laplace—Beltrami operator on a complete noncompact manifold M.

Let us start by fixing a point o € M and denote by Cut(o) the cut locus of o. For any = € M \
[Cut(o) U {o}], one can define the polar coordinates with respect to o, see e.g. [10]. Namely, for any
point z € M\ [Cut(0)U{o}] there correspond a polar radius r(x) := dist(x, 0) and a polar angle § € S™~*
such that the shortest geodesics from o to = starts at o with the direction 6 in the tangent space T,M .
Since we can identify T, M with R™, 6 can be regarded as a point of ™!,

The Riemannian metric in M \ [Cut(o) U {o}] in polar coordinates reads
ds® = dr* + A;(r,0)do"de?

where (01,...,0™~ 1) are coordinates in S~ and (4;;) is a positive definite matrix. It is not difficult
to see that the Laplace-Beltrami operator in polar coordinates has the form
2
A= % +]~'(r,9)% + Ag,,

where F(r,0) = %(bg\//l(r, 0)), A(r,0) := det(A4;;(r,0)), Ag, is the Laplace-Beltrami operator on
the submanifold S, := dB(o,r) \ Cut(o).

M is a manifold with a pole, if it has a point 0 € M with Cut(o) = (). The point o is called pole and
the polar coordinates (r,0) are defined in M \ {o}.

A manifold with a pole is a spherically symmetric manifold or a model, if the Riemannian metric is

given by
(4.9) ds® = dr® +1*(r)do?,

where df? is the standard metric in S™~!, and

(4.10) YeA:= {f € C((0,00)) N C([0,00)) : f'(0) =1, f(0) =0, f > 0in (o,oo)}.

In this case, we write M = My; furthermore, we have \/A(r,0) = ¢™~1(r), so the boundary area of the
geodesic sphere 0Sg is computed by
S(R) = wn™ (R),

wy, being the area of the unit sphere in R™. Also, the volume of the ball Bg(o) is given by

R
1(Br(o) = / S(€)de
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Observe that for ¢(r) = r, M = R™, while for ¢(r) = sinhr, M is the m—dimensional hyperbolic
space H™.

Ezxzample 4.1. Let M be an m—dimensional model manifold with pole o and metric given by (@3] with

o) r ifo<r<1,
T)i=
re=l(logr)f]=1 ifr>2;

where @ > 1 and 8 € (0, qul} . We consider problem (1)) with V' =1 and p = 2. Note that for R > 0
large enough
1w(Bgr) ~ CR*(log R)? < CR**7 |

for any o > 0, while

. W(Br) _
LN T
Furthermore,
d o d m—1 g
o (log \/A(r)) = %(log ([w ()™ 1)) < . for all r > 0.

Thus, for @ > 2, from [3I, Theorem A] we can infer that problem (1) does not admit nonnegative

2

—— for some o > 0, that is provided that
a+o

nontrivial solutions, provided that 1 < ¢ <1+

2
l<g<1l4—.
a

On the other hand, just assuming o > 1, we can apply Corollary [[LG] with p = 2 (see also Remark
L), where f(t) =1, g(z) =1, 01 = a, 02 = 1, 61 = 3, 02 = 0, and thus we can deduce that problem

(T does not admit nonnegative nontrivial solutions, provided that
2
I<g<1+—.
«
So, we can exclude existence of nontrivial solutions also in the particular case when ¢ =1+ %
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