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Abstract

This paper deals with structured multi-agent optimization problems that involve

coupled local and global decision variables. We propose an iterative distributed

algorithm that explicitly accounts for this structure, and requires the agents

to communicate only their tentative solutions for the global variables through-

out iterations. Our approach extends to structured multi-agent optimization

a proximal-based distributed methodology that has recently appeared in the

literature. Privacy of local information is preserved and communication ef-

fort is reduced with respect to alternative distributed solutions where local and

global optimization variables are grouped together and treated as a single deci-

sion vector. Multi-agent optimization problems with the considered structural

properties appear in various contexts. In this paper, we apply our approach to

energy management in a district where multiple buildings can communicate over

a possibly time-varying network and aim at optimizing the use of shared and

local resources. We illustrate the efficacy of the resulting distributed energy

management algorithm by means of a detailed simulation study on a cooling
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problem.
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1. Introduction

This paper addresses optimization problems where multiple agents are con-

nected through a possibly time-varying network and aim at optimizing their

local performance indices subject to heterogeneous constraints. A key feature

of the considered set-up is that it involves both local and global optimization

variables, and the latter variables generate a coupling in the decisions of the

agents. More specifically, we consider m agents that need to agree on a global

decision vector x ∈ Rn, while also deciding their own individual decision vector

ui ∈ Rni , i = 1, . . . ,m, so as to minimize the sum of their local cost functions

fi(x, ui) : Rn × Rni → R, i = 1, . . . ,m, while satisfying the local constraints

(x, ui) ∈ Vi, i = 1, . . . ,m, where Vi ⊆ Rn+ni is the constraint set of agent i.

The tuple (ui, fi, Vi) constitutes private information that agent i is not willing

to share with the other agents. As for the communication structure, the network

connecting the agents is modeled as a directed graph (N,Ek), where the node

set N = {1, . . . ,m} represents the agents and the edge set Ek ⊆ N ×N repre-

sents the communication links that are active at time step k. More specifically,

(j, i) ∈ Ek if agent j can communicate with agent i at k.

Our goal is devising an iterative algorithm over such a time-varying com-

munication network so that the agents jointly solve the following constrained

optimization problem

P : min
x∈Rn,{ui∈Rni}mi=1

m∑
i=1

fi(x, ui) (1a)

subject to: (x, ui) ∈ Vi, for all i = 1, . . . ,m, (1b)

while not sharing with each other their private information represented by the

tuple (ui, fi, Vi) for each agent i, i = 1, . . . ,m.

2



Note that the presence of a structured time-varying network and of infor-

mation privacy constraints prevents us from solving P in a centralized fashion.

Moreover, even in the case when all this information were made available, a

centralized solution to P would be computationally intense and not scalable for

problems with a high number of agents.

In case when a star communication graph is present, with one of the agent

acting as a central authority/aggregator and collecting information from all

agents, a possibility to preserve privacy and obtain a scalable solution would

be to adopt a decentralized1 paradigm, where the central authority/aggregator

collects from all agents their estimates on the global decision vector x, performs

some aggregation/computation and broadcasts some update to all agents. Un-

der this regime, each agent has then to solve a problem with fewer decision

variables and constraints compared to the original one, [1].

Several decentralized algorithms have been proposed in the literature; among

those the alternating direction method of multipliers (ADMM) has attracted

particular attention, [1, 2]. To render P amenable to ADMM each agent should

create a copy of the global decision vector, thus giving rise to a separable ob-

jective function and constraint sets in (1a) and (1b), respectively. However,

we would need to introduce the so called consistency constraints to guarantee

that all these copies should be the same. Applying then ADMM, which involves

running a primal-dual scheme (as opposed to the primal algorithm presented in

the sequel), the dual variables associated with the consistency constraints would

need to be exchanged with all agents via the central authority. This would entail

exchanging nm variables, where n is the number of variables in each copy and

m is the number of agents (one consistency constraint per agent).

1In certain research domains the term distributed is used instead. Motivated by the conven-

tion adopted by the majority of the control systems community we use the term decentralized

when a central authority is present, while we use the term distributed to indicate that a

central authority is absent and communication is restricted only among agents considered as

neighbours according to an underlying communication protocol.
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Here, in view of reducing the amount of information exchange and respect-

ing the privacy constraints, we aim at a protocol that does not involve a central

authority, restricting communication only among neighbouring agents. Given

the time-varying nature of the communication graph (N,Ek) and, hence, of

the notion of neighbours, the proposed communication protocol should be time-

varying. Therefore, we resort to distributed optimization algorithms that al-

low for time-varying communication in contrast to distributed implementations

of ADMM (see [2] for consensus developments). In this realm, the gradi-

ent/subgradient algorithms of [3, 4, 5, 6], or the proximal minimization based

algorithm of [7, 8], could be adopted. The drawback, however, of all these dis-

tributed methods is that agents need to share their local decisions ui which

constitute private information. Alternatively, the primal-dual scheme proposed

in [9, 10] based on dual decomposition could be adopted. However, such a choice

would entail introducing consistency constraints as in ADMM and as a result

an excess of communication involving exchanging nm variables.

In this paper, we propose a proximal based distributed algorithm that builds

on [8], as the latter imposes fewer assumptions and does not require differen-

tiability of the objective function or computation of subgradients as in other

approaches in the literature. At the same time, it is a primal based scheme

that overcomes the need for a communication exchange that increases with the

number of agents as in [9, 10], and exploits the structure of the problem re-

quiring to exchange information related only to the global decision vector. The

value taken by the global optimization vector will in turn affect the optimiza-

tion of the local ones, which, however, will be performed locally to each agent,

without sharing with any other its individual objective function and constraint

set (privacy preserving algorithm), and without the need of enlarging its opti-

mization vector so as to include the local decision vectors of the other agents.

The proposed solution is then scalable in the number of agents since the size of

the global optimization vector over which the agents need to reach consensus is

fixed, and the computation of the local ones is made individually by each agent,

without the need of providing any related information to the others. Note that
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Information
exchange

Algorithm

[7, 8, 3, 4, 5, 6] [9, 10] Algorithm 1

Dual variables – nm –

Local variables ui per agent ni – –

Global variables x n – n

Table 1: Information exchange in the proposed algorithm and the most relevant approaches

in the literature.

this nested optimization scheme was suggested in [8, Remark 1] but with ref-

erence to the special (significantly easier) case where local and global decisions

are coupled only through the performance index and the feasibility region for

the local decision variables is independent of the value taken by the global ones.

It is actually the coupling via the constraint that makes the problem difficult

to solve.

Our algorithm extends the one in [7, 8] to the considered structured frame-

work, and has the advantage with respect to [9, 10] of reducing the exchange of

information, and with respect to [3, 4, 5, 6, 7, 8] of preserving privacy of local

decisions, besides achieving significant communication savings. The theoretical

guarantees provided in [7, 8] on the convergence to an optimizer of the central-

ized counterpart of the problem are shown to still hold in our structured setting.

The proposed approach is particularly convenient when there is a high number

of local optimization variables and only a few global ones. Table 1 classifies

the main features of the proposed algorithm (Algorithm 1) with respect to the

most relevant distributed optimization approaches over time-varying networks,

[3, 4, 5, 6, 7, 8, 10, 9]. All these algorithms perform local computations of the

same complexity; we thus report their difference in terms of the amount and

nature of information that needs to be exchanged.

Optimization problems for multi-agent systems exhibiting the considered

structural properties can be found in various application domains. Here, we
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focus on energy management in buildings connected over a network sharing

common resources, as it naturally fits the class of structured programs with

each building/agent having several decision variables related to temperature

set-points that are local and should not be shared with other agents, while hav-

ing some global variables related to the usage of shared resources. Optimal

energy management in buildings has attracted significant attention worldwide,

since recent studies [11] have shown that more than 30% of the total electricity

consumption in Europe and in the United States is related to buildings and

half of that to climate control. Constructing algorithms for optimal energy

management in building networks will allow demand modulation through intel-

ligent control and coordination of certain appliances, or demand deferrability

by appropriate use of the storage devices. To achieve this, not only conven-

tional energy management methods need to be revisited, but also conceptually

different control and coordination schemes have to be designed.

Towards this direction, optimization based algorithms have been already suc-

cessfully applied to the problem of energy management in buildings, due to their

ability to handle the multi-objective nature of the problem (e.g., minimize en-

ergy costs, maximize building utility), while taking physical and/or technologi-

cal constraints (e.g., storage limits, comfort constraints) into account. Studies in

this direction include, but are not limited to, [12, 13, 14, 15, 16, 17]. Recently, in

[18, 19], a compositional perspective is adopted, allowing for smart-grid control

that involves multiple buildings, chiller plants, storage devices, co-generation

plants, etc., interacting with each other, whereas in [20] an energy-hub perspec-

tive is adopted, investigating the problem of managing a collection of buildings in

a cooperative manner. However, the network encoding the interaction among

the different modules is considered to be time-invariant, and the problem is

solved in a centralized fashion. In [21], a decentralized scheme for scheduling

smart appliances in a residential district with a shared energy storage system is

described, with an aggregator playing the role of the central entity coordinating

the buildings demand and managing the exchanges with the grid and the shared

energy storage system. In [22], a hierarchical scheme implementing a decentral-
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ized heuristic solution is proposed, which accounts also for the on-off switching

of devices. In [23] a decentralized control methodology is applied to a home

energy management problem. In all cases the underlying network topology is

assumed to be time-invariant.

In this paper, we deal in particular with the problem of cooling of a building

district, where buildings connected over a (possibly) time-varying network, are

equipped with individual chiller plants and are connected to a cooling network

through which they can exchange cooling energy. The aim is minimizing the

district electrical energy costs over a given time horizon, while guaranteeing

comfort conditions for the building occupants.

Note that building energy management applications have been studied re-

cently in [24] and [25] according to a multi-agent perspective. In contrast with

these references, we allow for a more general formulation where the cost func-

tion is only required to be convex, and propose an algorithm that is completely

distributed since it does not require any central authority. As for the applica-

tion, we provide a more accurate modelling for the building, since we explicitly

account for its thermal inertia, and for the chiller unit, since we consider its

efficiency as a function of the cooling energy request.

Our contributions can then be summarized as follows:

• we propose a scalable distributed algorithm which extends [7, 8] to struc-

tured multi-agent optimization problems, preserving its optimality guar-

antees, without requiring agents to disclose their local decision variables

and limiting the amount of exchanged information to that related to the

global decision variables, which have a fixed size, independent on the num-

ber of agents;

• we show how the proposed algorithm can be applied to resource shar-

ing in energy management of a building district, and perform a detailed

simulation-based study.

The rest of the paper unfolds as follows: In Section 2 we formulate the struc-

tured multi-agent optimization problem and introduce our distributed solution,
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including a detailed convergence analysis. In Section 3 we describe the energy

management problem over a building district. Section 4 provides a simulation

based study, whereas Section 5 concludes the paper.

2. Multi-agent optimization with local decisions

In Section 2.1, we provide a distributed iterative procedure to solve the

optimization problem P in (1) and then analyze its convergence properties in

Section 2.2.

At every iteration of the proposed distributed algorithm, each agent i solves

an appropriate local optimization problem and then exchanges information with

other agents only regarding the tentatively obtained value for the common de-

cision vector x. In this way, one can account for information privacy, because

agents are not required to share their own cost function fi, constraint set Vi,

and decision vector ui, i = 1, . . . ,m. Moreover, even though all the necessary

information could be exchanged, solving P in a centralized fashion may be com-

putationally intensive and our distributed algorithm is also a means to alleviate

this issue.

Under certain structural and communication assumptions, the proposed al-

gorithm converges, and agents reach consensus to a common value for the global

decision vector x that, together with the converged values for the local decision

vectors ui, i = 1, . . . ,m, forms an optimal solution of P (note that P does not

necessarily admit a unique solution).

2.1. Distributed algorithm

The pseudo-code of the proposed distributed procedure is given in Algo-

rithm 1. In the remainder of this subsection we provide some explanations of

the algorithm steps.

Initially, each agent i, i = 1, . . . ,m, starts with some tentative values ui(0)

and xi(0) for its local decision vector and the global decision vector, respec-

tively. The latter constitutes an estimate of agent i (this justifies the sub-

script i in xi) of what the value of the global decision vector might be. Those
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Algorithm 1 Distributed algorithm for structured optimization

1: Initialization

2: k = 0

3: (xi(0), ui(0)) ∈ Vi, for all i = 1, . . . ,m

4: For i = 1, . . . ,m repeat until convergence

5: x̄i(k) =
∑m
j=1 a

i
j(k)xj(k)

6: (xi(k + 1), ui(k + 1)) ∈ arg min(xi,ui)∈Vi
fi(xi, ui) + 1

2c(k)‖x̄i(k)− xi‖2

7: k ← k + 1

tentative values are chosen arbitrarily from the set of feasible solutions, i.e.,

(xi(0), ui(0)) ∈ Vi (step 3). One sensible choice for (xi(0), ui(0)) is to set it such

that (xi(0), ui(0)) ∈ arg min(xi,ui)∈Vi, fi(xi, ui), as it guarantees local constraint

satisfaction for each agent. However, the convergence analysis presented in the

sequel does not depend on the initialization of the algorithm. At iteration k, each

agent i constructs a weighted average x̄i(k) of the solutions xj(k), j = 1, . . . ,m

communicated by its neighboring agents and its own one (step 5). Coefficient

aij(k) ≥ 0, indicates how agent i weights the solution received by agent j at

iteration k. If aij(k) = 0, agent j does not use information related to agent i

at iteration k (this is necessarily the case if (j, i) /∈ Ek). The coefficients aij(k)

are chosen by the user but they are required to satisfy some assumptions spec-

ified in Section 2.2. Agent i solves then a local minimization problem, seeking

the optimal solution pair (xi, ui) within Vi that minimizes a performance cri-

terion, which is defined as a linear combination of the local objective function

fi(xi, ui) and a quadratic term2, penalizing the difference from x̄i(k) (step 6).

The relative importance of these two terms is dictated by c(k) > 0, which act

as the step-size parameter of a gradient-like method. Similarly to the aij(k)

coefficients, also the sequence {c(k)}k≥0 is a design parameter but it is subject

to restrictions described in Section 2.2. Since multiple minimizers may exist,

we assume that at every iteration the same deterministic tie-break rule (as e.g.

2Throughout the paper, ‖ · ‖ denotes Euclidean norm.
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that implemented by a deterministic numerical solver) is used.

Algorithm 1 is closely related to the distributed methodology that has been

recently proposed in [7, 8]. However, in Algorithm 1, neighboring agents need to

exchange at every iteration their tentative estimates for the value of the global

decision vector only, while, as discussed in the introduction, the distributed

algorithm in [7, 8] requires to exchange both the global and the local decision

vectors. When the dimension of the local decision vector is high compared to

the global one, this would unnecessarily increase the amount of information

that needs to be exchanged. Algorithm 1 alleviates this issue by exploiting the

particular structure of P, where the objective functions and the constraint sets

are coupled only by means of x.

2.2. Algorithm analysis

In this section we study the convergence properties of Algorithm 1. To this

end, we shall first introduce some assumptions on optimization problem P.

Assumption 1. For all i = 1, . . . ,m, the function fi(·, ·) : Rn × Rni → R is

jointly convex with respect to its arguments. Moreover, for all i = 1, . . . ,m,

fi(·, ·) : Rn × Rni → R is jointly Lipschitz continuous with respect to its argu-

ments.

Note that under Assumption 1, and due to the presence of the quadratic

penalty term, the objective function in the optimization problem at step 6 of

Algorithm 1 is strictly convex with respect to xi. Therefore, a unique solution

for xi is admitted; this is not the case for ui.

Assumption 2. For all i = 1, . . . ,m, the set Vi ⊆ Rn+ni is compact and

convex. Moreover,
⋂m
i=1 Vi has non-empty interior.

For all i = 1, . . . ,m, for any x ∈ Rn, consider the set

Ui(x) =
{
ui ∈ Rni : (x, ui) ∈ Vi

}
. (2)
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Moreover, for all i = 1, . . . ,m, consider the projection of Vi on the x domain,

i.e.,

Xi =
{
x ∈ Rn : ∃ui ∈ Rni such that (x, ui) ∈ Vi

}
. (3)

A direct consequence of the first part of Assumption 2 is that, for all i =

1, . . . ,m, Xi and Ui(x) for any x ∈ Xi are all compact and convex. By the

second part of Assumption 2, we also have that
⋂m
i=1Xi, and hence also Xi,

i = 1, . . . ,m, has a non-empty interior. Moreover, Ui(x) is non-empty for any

x ∈ Xi, i = 1, . . . ,m. The fact that Vi is both convex and compact implies

that the set-valued mapping Ui(·) is continuous on Xi, see [26]. In the following

assumption we further require that Ui(·) is Lipschitz continuous.

Assumption 3. For all i = 1, . . . ,m, the set-valued mapping Ui(·) : Xi ⇒ Rni

is Lipschitz continuous, i.e., there exists Li ∈ R, Li > 0, such that

dH(Ui(x), Ui(x
′)) ≤ Li‖x− x′‖, for all x, x′ ∈ Xi, (4)

where

dH(Ui(x), Ui(x
′)) = sup

ui∈Rni

∣∣∣∣ min
vi∈Ui(x)

‖ui − vi‖ − min
v′i∈Ui(x′)

‖ui − v′i‖
∣∣∣∣ , (5)

denotes the Pompeiu-Hausdorff distance (see p. 272 in [27]) between the sets

Ui(x) and Ui(x
′).

Besides Assumptions 1–3, which need to be verified from problem to problem,

we also impose the following restrictions on the choices of the penalty parameter

sequence {c(k)}k≥0 and on the communication weights aij(k), i, j = 1, . . . ,m and

k ≥ 0.

Assumption 4. {c(k)}k≥0 is a non-increasing sequence with c(k) > 0 for all

k. Moreover,
∑∞
k=0 c(k) =∞ and

∑∞
k=0 c(k)2 <∞.

A direct consequence of the last part of Assumption 4 is that limk→∞ c(k) =

0, meaning that the relative importance of the quadratic penalty term over the

local cost function fi(·, ·) is progressively increased to force consensus of the
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different xi(k)’s. A possible choice for {c(k)}k≥0 that satisfies Assumption 4 is

to select it from the class of generalized harmonic series, e.g., c(k) = α/(k + 1)

for some α > 0. Given this choice, a small value of α will drive the agents to

quickly reach consensus on x and then seek optimality, whereas a high value

of α will let the agents minimize their local cost function first and then adjust

their decisions to agree on a common x. To get an insight on the role of c(k)

we refer the reader to an example in Appendix B.

Assumption 5. There exists η ∈ (0, 1) such that for all i, j ∈ {1, . . . ,m} and

all k ≥ 0, aij(k) ≥ 0 and aij(k) > 0 implies that aij(k) ≥ η. Moreover, for all

k ≥ 0,

1.
∑m
j=1 a

i
j(k) = 1 for all i = 1, . . . ,m,

2.
∑m
i=1 a

i
j(k) = 1 for all j = 1, . . . ,m.

The interpretation of having a uniform lower bound η, independent of k, for

the (non-zero) coefficients aij(k) in Assumption 5 is that it ensures that each

agent is weighting information received by other agents at a non-diminishing

rate (as η is strictly greater than zero) as iterations progress, [4]. Moreover,

points 1 and 2 ensure that this weighting is a convex combination of the other

agent estimates and the local estimate, where a non-zero weight is assigned to

this latter since aii(k) ≥ η.

Let E∞ =
{

(j, i) : aij(k) > 0 for infinitely many k
}

denote the set of edges

(j, i) such that agent j uses information provided by agent i infinitely often. The

following connectivity and communication assumption is eventually enforced.

Assumption 6. The graph (N,E∞) is strongly connected, i.e., for any two

nodes there exists a path of directed edges that connects them. Moreover, there

exists k̄ ≥ 1 such that for every (j, i) ∈ E∞, agent i uses information from a

neighboring agent j at least once every consecutive k̄ iterations.

Assumption 6 guarantees that any pair of agents communicates at least

indirectly infinitely often, and the intercommunication interval is bounded. For

further details the reader is referred to [8, 3]. It should be emphasized that
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allowing for iteration-varying topology is typically referred to as time-varying

communication in the distributed optimization literature [4]. However, at each

iteration of the algorithm a finite horizon optimization program has often to

be solved, as in the energy management application presented in the sequel.

Therefore, the absence of communication at any given iteration of the algorithm

does not necessarily imply absence of communication at a given step of the finite

horizon problem, but rather at the time of local computation.

Problem P can be equivalently written as

min
x∈

⋂m
i=1Xi

m∑
i=1

gi(x), (6)

where, for all i = 1, . . . ,m, and for any x ∈ Rn,

gi(x) = min
ui∈Ui(x)

fi(x, ui). (7)

Note that for all x ∈ Xi the minimum in (7) exists due to the Weierstrass’

theorem (Proposition A.8, p. 625 in [1]), since Ui(x) is compact by Assumption

2 and fi(·, ·) is continuous due to Assumption 1. We then have the following

auxiliary lemmas, which are crucial for the proof of Theorem 2. Their proofs

are provided in Appendix A.

Lemma 1. Under Assumptions 1 and 2, it holds that gi(·) : Rn → R is convex

on Xi, for all i = 1, . . . ,m.

Lemma 2. Under Assumptions 1, 2, and 3, it holds that gi(·) : Rn → R is

Lipschitz continuous on Xi, for all i = 1, . . . ,m.

Consider now Algorithm 1, and, according to (7), re-write step 6 as

xi(k + 1) = arg min
xi∈Xi

gi(xi) +
1

2c(k)
‖x̄i(k)− xi‖2. (8)

Note that, since gi(·) is convex on Xi (Lemma 1) and the quadratic penalty

term in (8) is strictly convex, xi(k + 1) is univocally defined.

Le us now recall Theorem 1 in [8], which is crucial for proving convergence

of Algorithm 1.
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Theorem 1 ([8]). Consider problem (6). If Xi are convex and compact, gi(·) are

convex on Rn, and
⋂m
i=1Xi has non-empty interior, then, under Assumptions 4–

6, there exists a minimizer x? of (6) such that the sequence {xi(k)}k≥0 satisfies

limk→∞ ‖xi(k)− x?‖ = 0, for all i = 1, . . . ,m.

What is missing for a direct application of Theorem 1 in our context is the

convexity of functions gi(·) over the whole Rn. Yet, building on Theorem 1,

we prove in Theorem 2 below that Algorithm 1 converges to a minimizer of P.

More precisely, we are able to show that there exists a minimizing global decision

vector x? of P such that the values {xi(k)}k≥0 generated by Algorithm 1 con-

verge to x?, for all i = 1, . . . ,m (i.e. agents reach consensus on the value of the

global decision vector). Moreover, though the local decision vector {ui(k)}k≥0,

i = 1, . . . ,m, generated by Algorithm 1 may exhibit an oscillatory behavior, all

their limit points will form together with x? a minimizer of P.

Theorem 2. Let {xi(k)}k≥0, {ui(k)}k≥0, i = 1, . . . ,m, be the sequences of

estimates generated by Algorithm 1. Under Assumptions 1-6:

1. there exists a minimizing vector x? of P, such that limk→∞ ‖xi(k)−x?‖ =

0, for all i = 1, . . . ,m;

2. any limit point (u?1, . . . , u
?
m) of the sequence {(u1(k), . . . , um(k))}k≥0, is

such that (x?, u?1, . . . , u
?
m) is a minimizer of P.

Proof. Consider Algorithm 1 with step 6 rewritten as in (8). Thanks to As-

sumptions 1-3 and thanks to Lemmas 1 and 2, it holds that

p.1 Xi is convex and compact, for all i = 1, . . . ,m;

p.2
⋂m
i=1Xi has non-empty interior;

p.3 gi(·) : Rn → R is convex on Xi, for all i = 1, . . . ,m;

p.4 gi(·) : Rn → R is Lipschitz continuous on Xi, for all i = 1, . . . ,m.

Under Assumptions 4-6 and given properties p.1 and p.2, if gi(·) in (7) were

convex on Rn, one could invoke Theorem 1 to directly conclude that there
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exists a minimizer x? of (6), such that limk→∞ ‖xi(k) − x?‖ = 0, for all i =

1, . . . ,m. Here, we do not have convexity of gi(·) over the whole Rn, but only

the characterization of gi(·) through conditions p.3 and p.4. On the other hand,

p.3 and p.4 constitute a weaker set of conditions on gi(·) (as a matter of fact,

convexity over the whole Rn together with the compactness condition in p.1

implies p.3 and p.4), and, as it follows from the discussion below Assumption

3 in [8], it is easy to see that Assumptions 4-6 and properties p.1-p.4 suffice to

draw the same conclusion that limk→∞ ‖xi(k) − x?‖ = 0, for all i = 1, . . . ,m,

where x? is a minimizer of (6). The fact that a minimizer x? of (6) is also the

x-component of the minimizer of P (by the equivalence between problem P and

(6)), concludes then the proof of the first part of the theorem.

The second part follows along lines akin to the proof of point (b) of Theorem

1.17 in [28]. Specifically, let (u?1, . . . , u
?
m) be any limit point of the sequence

{(u1(k), . . . , um(k))}k≥0, which exists thanks to the compactness Assumption

2. Thanks to Assumption 2 it also holds that (x?, u?1, . . . , u
?
m) is feasible for P.

Given the definition of gi and that of ui(k), recalling that limk→∞ ‖xi(k)−x?‖ =

0 for all i = 1, . . . ,m, and thanks to the continuity of gi(·) as assured by Lemma

2, for any given ε > 0 it holds that

m∑
i=1

fi(xi(k), ui(k)) =

m∑
i=1

gi(xi(k)) ≤
m∑
i=1

gi(x
?) + ε

for k large enough. This in turn implies that
∑m
i=1 fi(x

?, u?i ) ≤
∑m
i=1 gi(x

?)+ ε.

Being ε arbitrary, it follows that
∑m
i=1 fi(x

?, u?i ) ≤
∑m
i=1 gi(x

?), which, given

the equivalence between problem P and (6), shows that (x?, u?1, . . . , u
?
m) is a

minimizer of P.

Remark 1 (satisfaction of the algorithm assumptions). Assumptions 4 and 5

imply that Algorithm 1 is synchronous, and agents need to agree prior to the

execution of the algorithm on {c(k)}k≥0 and the weight coefficients {aij(k)}k≥0,

i, j = 1, . . . ,m. For every iteration k, these weights should form a doubly

stochastic matrix. A distributed methodology to construct doubly stochastic ma-

trices can be found in [29, 3]. Assumption 6 is standard in distributed optimiza-
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tion algorithms over networks, and is satisfied for a wide class of time-varying

network structures. In particular, periodic absence of communication links, as

in the case study of Section 4, falls in the proposed framework.

As for the other assumptions, even though it is relatively straightforward to

verify Assumptions 1 and 2, note that the compactness requirement of Assump-

tion 2 is not restrictive from a practical point of view, as numerical computation

is typically performed over compact domains (enclosing the region where deci-

sion variables take values from). Moreover, most practical problems involve

decisions/actuation that is subject to limitations, thus ensuring compactness.

However, it is in general difficult to verify Assumption 3. This is due to the

fact that existence of a uniform Lipschitz constant, such that the set-valued con-

tinuity condition (4) is satisfied, is hard to verify even numerically. In [30], the

authors determine a Lipschitz constant for Assumption 3 to hold, for the case

where the set-valued function Ui(x) in (2) admits a representation as a prod-

uct of a Lipschitz continuous single-valued function and a convex, compact and

non-empty set (see Lemma 3.5 and Remark 2.7 therein). This is the case if the

constraint sets Vi, i = 1, . . . ,m, are polytopic. This opens the road for approx-

imation procedures for problems where Assumption 3 is hard to verify. To this

end, a piecewise affine approximation of general convex constraint sets could

be constructed, thus replacing the original problem with one that has polytopic

constraints sets, for which Assumption 3 is satisfied [30].

3. Energy management of a building district

In this section, we describe the cooling problem of a building district. Each

building can set the temperatures of its thermally controlled zones within some

appropriate range, can operate on its own chiller unit, and can exchange energy

with a cooling network shared among the other buildings in the district, so as to

satisfy its cooling load and minimize electric energy costs. Given that the shared

resource has a limited capacity, some coordination is needed among buildings

and this is realized via a (possibly) time-varying communication network so as
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to model temporary failures.

In this set-up, global decision variables are the energy exchanges of all build-

ings with the cooling network, and local decision variables are the zone temper-

ature set-points of each building, which affect its cooling load and have to be

chosen compatibly with the actuation capabilities of the chiller unit of the build-

ing. The resulting constraint on the local decision variables finally depends on

the global decision variables since the cooling load has to match the sum of the

cooling energy produced by the chiller and that drawn from the cooling network.

Clearly, the electrical energy cost depends on both the energy exchanges with

the cooling network and the zone temperature set-points.

3.1. Modeling of the components

We next present the models of a building, a chiller plant, and a cooling net-

work, which constitute the basic components of the considered district network.

We focus on energy management over a finite time horizon, divided into nt

time slots, each of them having duration ∆ ∈ R. Models describe the energy

contribution of each component per time slot t, t = 1, . . . , nt, and are taken

from [19], where a compositional modeling framework for energy management

of a district network is presented.

Building

We adopt the convex formulation proposed in [31] to model each individual

building in the network. The adopted building model was validated in [19]

according to the ANSI-ASHRAE (American Society for Heating Refrigerating

and Air-conditioning Engineers) 140 standard.

Temperature set-points are control input variables and the actual build-

ing temperatures are assumed to track the imposed profiles. This entails the

presence of a lower level control system able to effectively track the set-points.

Constraints are enforced on the maximum cooling energy request and thus in-

directly on the admissible temperatures and temperatures variation rate, so as

to make it a reasonable assumption.
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We consider a building composed of nz zones and denote by T̃z(t) ∈ R the

temperature of zone z, z = 1, . . . , nz, at the end of time slot t, t = 1, . . . , nt.

Then, we can collect all control inputs in vector T̃ = [T̃ (1) · · · T̃ (nt)]
> ∈ Rnznt ,

where we set T̃ (t) = [T̃1(t) · · · T̃nz
(t)]> ∈ Rnz .

Let EB,z(t) ∈ R denote the cooling energy request of building zone z during

time slot t, in order to track a given zone temperature profile, with t = 1, . . . , nt

and z = 1, . . . , nz. EB,z(t) constitutes of four energy contributions, namely

EB,z(t) = Ewalls,z(t) + Epeople,z(t) + Einternal,z(t) + Einertia,z(t), (9)

where Ewalls,z(t) ∈ R is the amount of thermal energy exchanged between zone

z and its adjacent walls over time slot t, Epeople,z(t) ∈ R and Einternal,z(t) ∈ R

are the thermal energy produced by people and by other internal heat sources in

zone z, respectively, and Einertia,z(t) ∈ R is the energy contribution due to the

thermal inertia of zone z, over time slot t. The energy request of the building

over the time slot t is given by

EB(t) =

nz∑
z=1

EB,z(t),

and EB = [EB(1) · · · EB(nt)]
> describes the cooling energy requested by the

building to track the temperature set-points of every zone over the time horizon

[1, nt]. In [19, Section 2.1] it is shown that the following expression holds for

EB:

EB = AT (0) +B(d)T̃ + C(d) +Dd, (10)

where T (0) represents the building thermal state at time 0 and vector d collects

all the disturbances affecting the system, i.e., the outside ambient temperature,

the incoming shortwave and longwave solar radiation and people occupancy.

Matrices A, D, B(d), and C(d) have appropriate dimensions and the last two

depend on the disturbance vector d. Also, the building thermal state T (nt) at

the end of the time horizon is given by a similar expression but with different

matrices, i.e.,

T (nt) = ÃT (0) + B̃(d)T̃ + C̃(d) + D̃d.
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Chiller plant

A chiller plant converts electric energy into cooling energy. The cooling

energy is then transferred to the building via, e.g., the chilled water circuit.

The electrical energy Echiller,e(t) needed to produce a certain amount Echiller,c(t)

of cooling energy during time slot t can be obtained as a biquadratic convex

approximation of the Ng-Gordon model, [32]:

Echiller,e(t) = c2E
4
chiller,c(t) + c1E

2
chiller,c(t) + c0, (11)

where the parameters c0, c1, c2 are determined using weighted least squares to

best fit the most relevant points, i.e, those that correspond to zero energy request

and to the maximum value of the Coefficient Of Performance (COP), which is

the ratio between Echiller,c(t) and Echiller,e(t). Derivations are reported in [19,

Section 2.2].

Cooling network

Since the cooling network has a high thermal inertia, it acts as a thermal

storage, whose energy content can be described as a first-order dynamical sys-

tem, with the energy exchange (drawn or inserted) as input and the thermal

energy stored as state:

Estored(t+ 1) = aEstored(t)−
m∑
i=1

eis(t), (12)

where Estored(t) ∈ R is the amount of cooling energy stored, see [19, Section 2.3].

In view of the multi-building problem considered in the next section we assume

that the cooling network is shared among m buildings, and denote by eis(t) ∈ R

the cooling energy exchanged (eis(t) > 0 if the cooling network is discharged,

and eis(t) < 0 if it is charged), with building i in time slot t. The coefficient

a ∈ (0, 1) is introduced to model energy losses.

3.2. Building district problem formulation

Consider a district of m buildings, each of them equipped with a different

chiller plant, that share a common cooling network. To this end, append to
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all quantities introduced in the previous section the superscript i, to denote

that they correspond to building i, i = 1, . . . ,m, e.g., Eichiller,e(t) denotes the

cooling energy of the chiller at building i at time slot t, T̃ i denotes the vector

of zone temperatures at building i, etc. For each i and t, the electric energy

request of building i over the time slot t is given by the chiller electric energy

request Eichiller,e(t). Our objective is to minimize the total electric energy cost

for the m building network, across a horizon of nt steps. To achieve this, for

each building i we will schedule the zone temperature set-points T̃ i(t) and the

energy exchange eis(t) with the cooling network. Therefore, we seek to solve the

following minimization problem:

min{{
T̃ i(t)∈Rnz ,eis(t)∈R

}nt

t=1

}m

i=1
,{

T i(0)∈Rnw
}m

i=1
,Estored(1)∈R

m∑
i=1

nt∑
t=1

ψi(t)Eichiller,e(t), (13)

where ψi(t) ∈ R is the electric energy price for building i over the time slot t and

Eichiller,e(t) is its electric energy request (computed according to (11)) within the

same time slot.

This minimization is subject to the following constraints, that must hold for

each time slot t and every building i:

• Energy balance equation: the chiller cooling energy request Eichiller,c(t) is

given by

Eichiller,c(t) = EiB(t)− eis(t), (14)

where EiB(t) is the cooling energy requested by the building in the time

slot t and is one of the component of vector Ei
B shown in (10), whereas

eis(t) is the energy exchange between building i and the cooling network

in the same time slot.

• Electric energy limits: the electric energy drawn from the grid is limited

to Eimax ∈ R, as an effect of the chiller unit size and maximum capability,

thus giving rise to

0 ≤ Echiller,e(t) ≤ Eimax. (15)
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• Cooling energy limits: zone z cooling energy request EiB,z(t), is non-

negative, i.e.,

EiB,z(t) ≥ 0 ∀z = 1, . . . , nz. (16)

• Comfort constraints: the zone temperature set-point is kept within certain

comfort limits, i.e.,

T̃ i(t) ∈ [T̃ imin(t), T̃ imax(t)], (17)

where T̃ imin(t) ∈ Rnz , T̃ imax(t) ∈ Rnz denote the minimum and maximum

comfort temperatures.

• Cooling network energy limits: the amount of cooling energy stored should

be non-negative and within the energy cooling network capacity limit

Es,max ∈ R, i.e.,

Estored(t) ∈ [0, Es,max]. (18)

• Cooling network energy exchange limits: the energy exchanged with the

cooling network is subject to

eis(t) ∈ [−eis,max, e
i
s,max], (19)

where eis,max ∈ R denotes the maximum value of energy that the building

can exchange with the cooling network per time slot.

• Final value constraints: the zone temperature and the building thermal

state at the beginning and at the end of the planning horizon should be

equal, i.e.,

T̃ i(nt) = T̃ i(0) ∧ T i(nt) = T i(0). (20)

To ensure that the cooling network does not get empty at the end of the

horizon, we impose the constraint

Estored(nt) ≥ Estored(1). (21)
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Constraint (21) is of particular importance in case of a receding horizon imple-

mentation of the proposed scheme.

Note that the quantity Eichiller,e(t) in (13) is a function of the decision vari-

ables
{
T̃ i(t), eis(t)

}nt

t=1

}m
i=1

,
{
T i(0)

}m
i=1

(see (14) and (10)) and Estored(1) affects

the admissible range for eis(t), t = 1, . . . nt, i = 1, . . . ,m, through (18) and (12),

so that here we optimize it as well.

If we define now vectors ui, i = 1, . . . ,m, and x as follows:

ui =
[
T̃ i(1), . . . , T̃ i(nt), T

i(0)
]> ∈ Rntnz+nw , (22a)

x =
[
ē1s, . . . , ē

m
s , Estored(1)

]> ∈ Rmnt+1, (22b)

where ēis =
[
eis(1), . . . , eis(nt)

]> ∈ Rnt , then, ui, i = 1, . . . ,m, can be thus

thought of as a local decision vector related to the comfort and actuation con-

straints of each chiller plant, that can be enforced locally, whereas x can be

treated as a global decision vector which is related to the energy exchange of

the building district with the common cooling network. Given (22a) and (22b),

the energy management in (13)-(21) is an instance of problem (1).

Remark 2 (alternative closed-loop strategy). Note that the proposed energy

management solution consists of an open-loop strategy that is pre-computed of-

fline, where the zone temperature set-points and the energy exchange with the

cooling network for the whole one-day reference time horizon are set based on

some nominal profile for the disturbances. Alternatively, one could adopt a

model predictive control approach where the optimal value for the zone tempera-

ture set-points and the energy exchange with the cooling network is determined

online, by solving problem (13) on some finite-length time window, applying only

the values corresponding to the current time instant, shifting the time window

one step ahead in time, recomputing the optimal value for the decision variables

on the shifted time window, and so on (receding horizon strategy). The advan-

tage is that one can exploit state measurements and the possibly updated profile

of the disturbances, thus getting a closed-loop strategy that is better tailored to

the actual disturbance realizations. Computations can still be run in a distributed
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way through Algorithm 1. Constraints are however imposed on the time required

for computing the optimal solution, which calls for further investigations on its

convergence rate.

3.3. Satisfaction of algorithm assumptions

The energy management problem of Section 3.2 is a convex minimization

program. Assumption 2 is satisfied, as an effect of the physical and techno-

logical constraints imposed in (14)-(21). Even if this were not the case, all

numerical calculations are performed on compact domains, hence satisfaction of

Assumption 2 is not an issue. Due to convexity and compactness, it can be also

easily verified that the objective function is Lipschitz continuous with respect

to all decision variables, thus satisfying Assumption 1.

Assumptions 4 and 5 can be imposed by defining appropriately {c(·)}k≥0
and the weight coefficients {aij(k)}k≥0, i, j = 1, . . . ,m in Algorithm 1. Assump-

tion 6 is satisfied in the case of periodic absence of communication links, as in

the case study of Section 4, which falls in the proposed framework. Verifying

Assumption 3 is instead generally difficult. However, applying Algorithm 1 to

the case study of Section 4 we verified numerically that the assertions of The-

orem 2 are valid (by comparing the achieved results with the optimal solution

of the centralized problem), even though we were not able to formally verify

satisfaction of Assumption 3.

4. Simulation results

Consider a network of m = 3, identical, three-storey buildings, as schemati-

cally illustrated in Figure 1. Each building is divided into nz = 3 thermal zones

(one per floor) and is equipped with its own chiller, namely, building 1 has a

medium-size chiller, building 2 a small one, and building 3 a large one for which

the COP curves as a function of the cooling energy request Echiller,c are shown

in Figure 2. Parameters values of the biquadratic approximations (11) can be

found in [19, Section 2.2].
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Figure 1: Structure of each building.

We considered a time horizon of 24 hours discretized in nt = 144 time

slots of ∆ = 10min each. The external disturbances affecting the buildings are

reported in Figure 3. The three buildings are supposed to be subject to the

same disturbance profiles, and the occupancy shall be intended per building

and equally partitioned among the zones. The period in which the occupancy

is greater than zero is referred to as “occupancy period” and it is within the

“working hours” range 7AM to 6PM. In all buildings, temperature constraints

are set to T̃ imin = 20◦C and T̃ imax = 24◦C during working hours and to T̃ imin =

16◦C and T̃ imax = 30◦C otherwise. Figure 4 represents the profile of the energy

price, which is assumed to be identical for all buildings, during the 24 hours

time horizon.

We assessed the performance of the algorithm for two different choices of the

weights {aij(k)}k≥0, i, j = 1, . . . ,m, defining the communication protocol over

the same bi-directional communication graph where all buildings are connected

together. In the first communication protocol, buildings 1 and 3 exchange in-

formation only with building 2 but not with each other and the communication

scheme is kept fixed across iterations with link weights equal to 1/3. In the

second one, at each iteration k, only two buildings communicate and weights

of active links are set equal to 1/2. The order in which the links are activated

within the period is: (1, 2), (2, 3), and (1, 3). We applied Algorithm 1 with
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Figure 5: Optimal zone temperature profiles of building 1. The temperature of zone 2 (at the

middle) is always the lowest, it acts as a passive thermal storage draining heat of the other

zones through floor and ceiling.

the two communication protocols and in both cases the proposed distributed

approach was able to retrieve the optimal solution.

Figure 5 shows the optimal temperature profiles for the three zones of build-

ing 1. It can be observed that, while the profiles of zones 1 and 2 are kept

close to the maximum temperature bound of the working hours comfort range

(outside the grey area), the temperature of zone 2 is always lower than the

other two. Zone 2 is indeed subject to a pre-cooling phase before the occupancy

period so as to cool down the building, acting as a passive thermal storage to

drain the heat of the other zones through floor and ceiling. The temperature

profiles of the other two buildings are very similar to that of building 1, and

hence are not reported here.

In Figures 6 and 7 we report the cooling network exchange profiles computed

by building 1 at iteration k = 1 and at consensus (when Algorithm 1 converges),

respectively. From Figure 6 it is clear that, at the beginning, building 1 acts in

a “selfish” manner and its optimal strategy is to constantly withdraw cooling

energy from the cooling network (e1s > 0, solid line), thus forcing buildings 2

and 3 to charge the cooling network (e2s < 0 and e3s < 0, dashed and dot-dashed

lines, respectively). The stored energy is shown with the black dotted line. The

consensus solution depicted in Figure 7 is instead cooperative. Building 3, which
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Figure 6: Cooling network exchange profiles at iteration k = 1. Building 1 is constantly

withdrawing cooling energy (e1s > 0, solid line), thus forcing buildings 2 and 3 to charge the

cooling network (e2s < 0 and e3s < 0, dashed and dot-dashed lines, respectively). The stored

energy is shown with the black dotted line.

has the biggest chiller, is constantly providing cooling energy (e3s < 0) to the

shared cooling network; building 2, which has the smallest chiller, is constantly

withdrawing energy (e2s > 0) from it; and building 1 provides/retrieves energy

to/from the cooling network depending on the time slot. In this way, differences

in the chiller sizes are compensated through the cooling network.

The number of iterations needed to achieve consensus are 278 for the fixed

topology and 1032 for the time-varying topology, where we considered the solu-

tion to be at consensus if either the absolute or the relative difference between

the solutions of the agents across two consecutive iterations was less than a

given threshold, which was taken to be 10−3.

We compared the performance achieved in the considered set-up of three

buildings sharing a cooling network with that of a baseline setting where each

building uses one third of the cooling network capacity, without exchanging
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Figure 7: Cooling network exchange profiles at consensus. Cooperative solution, with building

3 constantly providing cooling energy (e3s < 0) to the shared cooling network; building 2

constantly withdrawing energy (e2s > 0) from it; and building 1 providing/withdrawing energy

depending on the time slot. The stored energy is shown with the black dotted line.
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cooling energy with the other buildings. This is the case when buildings do

not communicate, and each one optimizes the use of its own share of energy

in the cooling network. In the baseline setting, the electrical energy cost for

the district is 56.83 euros whereas it reduces to 48.28 euros in the case when

buildings are sharing the common cooling network, with a saving of about 15%.

Figure 8 shows the COP coefficient of the chillers of the three buildings for

the baseline setting. Figure 9 shows the same quantities but for the case when

the cooling energy in the cooling network is shared. In Figure 8 the chiller of

building 1 is clearly better performing with respect to the other two, whereas

the consensus solution reported in Figure 9 shows that the efficiency of the

two other chillers is increased significantly. As for the individual costs, in the

baseline setting, buildings 1, 2, and 3 spend 15.43, 20.72, and 20.68, respectively,

whereas if they share the cooling network their costs become 13.63, 7.17, and

27.48, with an increase of the amount spent by building 3 (the one that owns

the large chiller) that is largely compensated by the decrease of those of the

other two buildings.

5. Concluding remarks

In this paper we proposed a distributed scheme for structured multi-agent de-

cision making problems over a time-varying communication network, involving

both local and global decision variables, with the feasibility domain of the local

decision variables depending on the global ones, and the individual objective

functions depending on the global decision variables. In particular, a proximal

minimization based approach was adopted, and a theoretical extension to an

algorithm that recently appeared in [8] was provided. The proposed scheme

does not require for agents to reveal information that is considered as private,

and overcomes the communication and computational challenges imposed by

centralized or decentralized optimization paradigms.

The efficacy of the proposed distributed algorithm was illustrated by means

of a detailed simulation study on the cooling of multiple buildings in a district
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Figure 8: COP profiles for the baseline setting.

Figure 9: COP profiles when the energy in the cooling network is shared.
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sharing a cooling network. The considered case study refers to a simple set-up,

which, however, could be extended to a more realistic one by including local

generation capabilities, intermittent sources, electrical storage systems. As long

as convexity is preserved, nonlinearity will not be an issue. To relax the convex-

ity requirement of Assumption 1, convex relaxations techniques with guaranteed

relaxation gap may be employed. To this end, we aim at investigating the case

where integer variables related, e.g., to on/off device switching, are introduced.

The combinatorial nature of the resulting mixed integer optimization problem

makes distributed schemes involving the solution of lower dimensional problems

very appealing. However, devising effective distributed solutions is far more

challenging and, indeed, only a limited number of results are available in the

literature on decentralized, [33, 34], and distributed, [35], mixed integer opti-

mization.

Current work concentrates on extending the proposed distributed optimiza-

tion scheme for structured decision making problems to the stochastic case,

based on the scenario-based solution to stochastic distributed optimization pro-

posed in [8]. This extension will enable the design of a distributed energy man-

agement algorithm that is robust against the uncertainty on the disturbances

affecting the thermal dynamics of a building.

Appendix A. Proofs

Proof of Lemma 1. For each i = 1, . . . ,m, fix any x, x′ ∈ Xi and λ ∈ [0, 1].

By (7), let

u?i (x) ∈ arg min
ui∈Ui(x)

fi(x, ui), (A.1)

u?i (x
′) ∈ arg min

ui∈Ui(x′)
fi(x

′, ui). (A.2)

Note that the existence of such minimizers is guaranteed by Weierstrass’ theorem

(Proposition A.8, p. 625 in [1]), since Ui(x), Ui(x
′) are compact and non-empty

(Assumption 2), and fi(·, ·) is continuous (Assumption 1).
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Since u?i (x) ∈ Ui(x) and u?i (x
′) ∈ Ui(x′), we have that (x, u?i (x)) ∈ Vi and

(x′, u?i (x
′)) ∈ Vi, which, given the convexity of Vi (Assumption 2), implies that(

λx+ (1− λ)x′, λu?i (x) + (1− λ)u?i (x
′)
)
∈ Vi. (A.3)

This also implies that λu?i (x) + (1−λ)u?i (x
′) ∈ Ui(λx+ (1−λ)x′) (see (2)). We

then have

gi(λx+ (1− λ)x′) = min
ui∈Ui(λx+(1−λ)x′)

fi(λx+ (1− λ)x′, ui)

≤ fi(λx+ (1− λ)x′, λu?i (x) + (1− λ)u?i (x
′))

≤ λfi(x, u?i (x)) + (1− λ)fi(x
′, u?i (x

′))

= λgi(x) + (1− λ)gi(x
′), (A.4)

where the first inequality follows because λu?i (x) + (1−λ)u?i (x
′) ∈ Ui(λx+ (1−

λ)x′) and the definition of min, the second inequality because fi(·, ·) is jointly

convex with respect to its arguments (Assumption 1), whereas the last equality

because (A.1), (A.2) and the definition of gi(·) in (7). Since (A.4) holds for

any x, x′ ∈ Xi, and for any λ ∈ [0, 1], the convexity of gi(·) on Xi remains

proven.

Proof of Lemma 2. The proof is inspired by the proof of Corollary 3.5 of

[27]. For each i = 1, . . . ,m, fix any x, x′ ∈ Xi. Let also u?i (x) ∈ Ui(x), u?i (x
′) ∈

Ui(x
′), be as in (A.1) and (A.2), respectively. By Assumption 3, we have for all

ui ∈ Rni that∣∣∣∣ min
vi∈Ui(x)

‖ui − vi‖ − min
v′i∈Ui(x′)

‖ui − v′i‖
∣∣∣∣ ≤ Li‖x− x′‖. (A.5)

Take ui = u?i (x). We then have that

min
v′i∈Ui(x′)

‖u?i (x)− v′i‖ ≤ min
vi∈Ui(x)

‖u?i (x)− vi‖+ Li‖x− x′‖

≤ Li‖x− x′‖, (A.6)

where the last inequality holds because u?i (x) ∈ Ui(x).

Letting v̄′i ∈ arg minv′i∈Ui(x′) ‖u?i (x)− v′i‖, (A.6) is equivalent to

‖u?i (x)− v̄′i‖ ≤ Li‖x− x′‖. (A.7)
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Similarly, taking ui = u?i (x
′) in (A.5) gives that minvi∈Ui(x) ‖u?i (x′)− vi‖ ≤

Li‖x− x′‖, which, letting v̄i ∈ arg minvi∈Ui(x) ‖u?i (x′)− vi‖ is equivalent to

‖u?i (x′)− v̄i‖ ≤ Li‖x− x′‖. (A.8)

Note that v̄i, v̄
′
i, exist due to the Weierstrass’ theorem (Proposition A.8, p. 625

in [1]), since Ui(x), Ui(x
′) are compact and non-empty due to Assumption 2,

and since ‖u?i (x′)− vi‖ and ‖u?i (x)− v′i‖ are continuous with respect to vi and

v′i, respectively.

By Assumption 1, fi(·, ·) : Rn × Rni → R is Lipschitz continuous. Denoting

its Lipschitz constant by Ci ∈ R, Ci > 0, we have that

fi(x
′, v̄′i) ≤ fi(x, u?i (x)) + Ci‖x− x′‖+ Ci‖u?i (x)− v̄′i‖

≤ fi(x, u?i (x)) + Ci(1 + Li)‖x− x′‖, (A.9)

where the last inequality follows in view of (A.7). Since v̄′i ∈ Ui(x′) and since

u?i (x
′) minimizes fi(x

′, ·) over Ui(x
′), (A.9) yields

fi(x
′, u?i (x

′)) ≤ fi(x, u?i (x)) + Ci(Li + 1)‖x− x′‖. (A.10)

Similarly, by the Lipschitz continuity of fi(·, ·) and by using (A.8), we have

that

fi(x, v̄i) ≤ fi(x′, u?i (x′)) + Ci‖x− x′‖+ Ci‖u?i (x′)− v̄i‖

≤ fi(x′, u?i (x′)) + Ci(1 + Li)‖x− x′‖. (A.11)

Since v̄i ∈ Ui(x) and since u?i (x) minimizes fi(x, ·) over Ui(x), (A.11) in turn

gives that

fi(x, u
?
i (x)) ≤ fi(x′, u?i (x′)) + Ci(Li + 1)‖x− x′‖. (A.12)

Combining (A.10) and (A.12) we have that |fi(x, u?i (x)) − fi(x′, u?i (x′))| ≤

Ci(Li + 1)‖x− x′‖, which is equivalent to |gi(x)− gi(x′)| ≤ Ci(Li + 1)‖x− x′‖,

being gi(x) = fi(x, u
?
i (x)) and gi(x

′) = fi(x
′, u?i (x

′)).

Hence, gi(·) is Lipschitz continuous on Xi with Lipschitz constant Ci(Li+1).

This concludes the proof.
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Appendix B. Step-size sequence

In this section we provide a numerical example that admits an analytic

solution, and offers insight on how the {c(k)}k≥0 sequence affects the algorithm

convergence. To this end consider problem P with m = 2, n = 1, ni = 0,

fi(x, ui) = fi(x) = γ(x + si), with γ > 0 and s1 = 1, s2 = −1, and Vi =

[−M,M ] with 1 < M <∞, for i = 1, 2. This amounts to solving the following

optimization problem

min
x∈R

γ(x+ 1)2 + γ(x− 1)2 (B.1)

subject to x ∈ [−M,M ],

where the cost function is split among two agents. Clearly, the optimal solution

of (B.1) is achieved when x = x? = 0.

Let us apply Algorithm 1 to solve (B.1) in a distributed manner, where

as far as the communication structure is concerned we assume that it is fully

connected and choose aij(k) = 1/2 for all k ≥ 0, for i, j = 1, 2. Step 6 of

Algorithm 1 simplifies to the following iteration

xi(k + 1) =

min(x̂i(k + 1),M), if x̂i(k + 1) ≥ 0

max(x̂i(k + 1),−M), otherwise,

(B.2)

where

x̂i(k + 1) =
x̄i(k)− si2γc(k)

2γc(k) + 1
, (B.3)

is the unconstrained minimizer of the optimization program of agent i. There-

fore, (B.2) encodes the projection of x̂i(k) on [−M,M ].

If we initialize the algorithm with xi(0) = arg minxi∈Vi = −si, i = 1, 2, as

suggested in Section 2.1, we have that x̄i(0) = 0, for i = 1, 2. It can then be

easily shown using induction that x̄i(k) = 0 for all k ≥ 0, for i = 1, 2, thus (B.2)

reduces to

xi(k + 1) = −si
2γc(k)

2γc(k) + 1
. (B.4)

By inspection of (B.4), we can note that the constraints are satisfied but are

never active since M > 1. Moreover, we have that
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• c(k) has to converge to zero (as required by Assumption 4) for xi(k) to

converge to x? = 0,

• the convergence rate of xi(k) is dictated by that of c(k).

References

[1] D. Bertsekas, J. Tsitsiklis, Parallel and distributed computation: Numerical

methods, Athena Scientific (republished in 1997), 1989.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed opti-

mization and statistical learning via the alternating direction method of

multipliers, Foundations and Trends in Machine Learning 3 (1) (2010) 1–

122.

[3] A. Nedic, A. Ozdaglar, Distributed subgradient methods for multi-agent

optimization, IEEE Transactions on Automatic Control 54 (1) (2009) 48–

61.

[4] A. Nedic, A. Ozdaglar, P. Parrilo, Constrained consensus and optimization

in multi-agent networks, IEEE Transactions on Automatic Control 55 (4)

(2010) 922–938.

[5] M. Zhu, S. Martinez, On distributed convex optimization under inequality

and equality constraints, IEEE Transactions on Automatic Control 57 (1)

(2012) 151–164.

[6] S. Lee, A. Nedic, Distributed random projection algorithm for convex op-

timization, IEEE Journal on Selected Topics in Signal Processing 7 (2)

(2013) 221–229.

[7] K. Margellos, A. Falsone, S. Garatti, M. Prandini, Proximal minimization

based distributed convex optimization, in: 2016 American Control Confer-

ence (ACC), 2016, pp. 2466–2471.

35



[8] K. Margellos, A. Falsone, S. Garatti, M. Prandini, Distributed constrained

optimization and consensus in uncertain networks via proximal minimiza-

tion, IEEE Transactions on Automatic Control 63 (5) (2018) 1372–1387.

[9] T.-H. Chang, A. Nedic, A. Scaglione, Distributed Constrained Optimiza-

tion by Consensus-Based Primal-Dual Perturbation Method, IEEE Trans-

actions on Automatic Control 59 (6) (2014) 1524–1538.

[10] A. Falsone, K. Margellos, S. Garatti, M. Prandini, Dual decomposition for

multi-agent distributed optimization with coupling constraints, Automatica

84 (2017) 149 – 158.

[11] J. Lausten, Energy efficiency requirements in building codes, energy effi-

ciency policies for new buildings, International Energy Agency (IEA) (2008)

477–488.

[12] G. Henze, D. Kalz, S. Liu, C. Felsmann, Experimental analysis of model-

based predictive optimal control for active and passive building thermal

storage inventory, International Journal of HVAC & Research 11 (2) (2005)

189–214.

[13] Y. Ma, F. Borrelli, B. Hencey, A. Packard, S. Bortoff, Model predictive

control of thermal energy storage in building cooling systems, IEEE Con-

ference on Decision and Control (2009) 392–397.

[14] J. Siroky, F. Oldewurtel, J. Cigler, S. Privara, Experimental analysis of

model predictive control for an energy efficient building heating system,

Applied Energy 88 (9) (2011) 3079–3087.

[15] Y. Ma, A. Kelman, A. Daly, F. Borrelli, Predictive control for energy ef-

ficient buildings with thermal storage: Modeling, simulation and experi-

ments, IEEE Control Systems Magazine 1 (1) (2012) 45–66.

[16] F. Oldewurtel, A. Parisio, C. Jones, D. Gyalistras, M. Gwerder, V. Stauch,

B. Lehmann, M. Morari, Experimental analysis of model predictive control

36



for an energy efficient building heating system, Energy and Buildings 45 (2)

(2012) 15–27.

[17] K. Deng, Y. Sun, A. Chakraborty, Y. Lu, J. Brouwer, P. Mehta, Optimal

scheduling of chiller plant with thermal energy storage using mixed integer

linear programming, American Control Conference (2013) 2958 – 2963.

[18] D. Ioli, A. Falsone, S. Schuler, M. Prandini, A compositional framework for

energy management of a smart grid: A scalable stochastic hybrid model for

cooling of a district network, in: 2016 12th IEEE International Conference

on Control and Automation (ICCA), 2016, pp. 389–394.

[19] D. Ioli, A. Falsone, A. V. Papadopoulos, M. Prandini, A compositional

modeling framework for the optimal energy management of a district

network, Journal of Process ControlAvailable online 6 November 2017.

doi:https://doi.org/10.1016/j.jprocont.2017.10.005.

[20] G. Darivianakis, A. Georghiou, R. Smith, J. Lygeros, A Stochastic Opti-

mization Approach to Cooperative Building Energy Management via an

Energy Hub, IEEE Conference on Decision and Control (2015) 1 – 6.

[21] K. Paridari, A. Parisio, H. Sandberg, K. H. Johansson, Demand response

for aggregated residential consumers with energy storage sharing, in: 2015

54th IEEE Conference on Decision and Control (CDC), 2015, pp. 2024–

2030.

[22] D. Ioli, A. Falsone, M. Prandini, An iterative scheme to hierarchically struc-

tured optimal energy management of a microgrid, in: IEEE Conference on

Decision and Control, Osaka, Japan, 2015, pp. 5227–5232.

[23] T.-H. Chang, M. Alizadeh, A. Scaglione, Real-time power balancing via

decentralized coordinated home energy scheduling, IEEE Transactions on

Smart Grid 4 (3) (2013) 1490–1504.

37



[24] S. Koehler, C. Danielson, F. Borrelli, A primal-dual active-set method for

distributed model predictive control, Optimal Control Applications and

Methods 38 (3) 399–419.

[25] A. Parisio, S. Pacheco Gutierrez, Distributed model predictive control

for building demand side management, in: European Control Conference,

2018.

[26] J. P. Aubin, Viability theory, Birkhäuser Boston, 1991.
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